Reliability

Advanced Topics in Computer Architecture

Timothy Jones



Historic reliability

L. H'l” ! ']




Silicon trends




Why we care now

* Microprocessors are increasingly used in situations where we want to
be sure of their correctness

 Self-driving cars, nuclear power stations, medical devices, etc

* Many industrial sectors mandate the use of error-detection strategies
* For example, ASIL standards in automotive

* With increased susceptibility to faults, even non-safety-critical
computing starts to require fault tolerance

https://perspectives.mvdirona.com/2009/10/vou-really-do-need-ecc-memory/



https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/

Hard errors

* Permanent errors that affect operation
* Caused by device wearout in-the-field

* Also can occur from manufacturing variabilities



Soft errors

* Transient errors that can affect operation
* They are transient because their effects don’t last
* They are not repeatable

* Caused by
* Alpha particle strikes
e Cosmic rays!



Error manifestation

No

A
Bit has error Benign fault;
protection? no error

Yes, detection
only

Yes, detection Affects
Detected and correction program
unrecoverable v output?
error (DUE) No error

»
Benign fault;
no error

Silent data
corruption

(SDC)




l[dentifying vulnerabilities

* We can perform an analysis of processor structures to identify vulnerable
state

* We identify the bits that are required for architecturally correct execution
(ACE)

* These bits could result in incorrect output if they were flipped
* The architectural vulnerability factor (AVF) is a useful metric

ncycles .
Y "YEE ACEbits
AVF = ==
ncycles * nbits




ldentifying vulnerabilities

* Bits can be ACE in some cycles, not ACE in others
» Registers, for example

0x00000000feedcatfe

0x1234567890123456




ldentifying vulnerabilities

* Bits can be ACE in some cycles, not ACE in others

» Registers, for example

0x00000000feedcafe

0x1234567890123456

Most
significant bits
unACE if used
as a 32-bit
number



ldentifying vulnerabilities

* Bits can be ACE in some cycles, not ACE in others

» Registers, for example Most
significant bits
unACE if used

as a 32-bit
number
0x00000000feedcafe
0x1234567890123456
All ACE if read
"""""""" again, or all
unACE if last
read has

occurred



ldentifying vulnerabilities

* Bits can be ACE in some cycles, not ACE in others

» Registers, for example Most
significant bits
unACE if used

as a 32-bit
number
0x00000000feedcafe
0x1234567890123456
All ACE if read
"""""""" again, or all
All unACE until next unACE if last
cycle where this read has
will be written to occurred

and represent r2



Metrics

* Two related metrics are often used to define reliability

* The FIT rate (failures in time)
* Defined as the total number of errors per billion device hours

* MTTF (mean time to failure)
* Represents the time between two errors

MTTF~
FIT



Dual-core lockstep

* In a system with dual-core lockstep, a program is run twice on

different cores

e Results compared at each cycle

* Introduces temporal and spatial redundancy into the system

Application
and data

Core O

Core 1

Checker

P



Redundant multithreading

* Run two versions of code and compare results
e Can be a software scheme, perhaps with some hardware support
* Or a purely hardware approach

* Can run on different cores with one passing the other data
 Or the same core, within a different SMT context



Taking advantage of faulty hardware

* Some systems use the faulty core
to provide hints to others

Clusrer,

* For example, Necromancer:
Enhancing System Throughput by
Animating Dead Cores
Ansari, Feng, Gupta and Mahlke
ISCA 2010

Cluster,




Approximate computing

* |n certain situations we can embrace errors

- -




Approximate computing

* |n certain situations we can embrace errors




Summary

* Reliability is a problem that has come back to haunt us

* Required for safety-critical systems
* Increasing needed / desired in others too

* A variety of techniques developed to
 |dentify which parts of the core are vulnerable
e Reduce vulnerability to errors by re-executing parts of the code
 Embrace the unreliability for performance



