
Reliability 

Advanced	Topics	in	Computer	Architecture	

Timothy	Jones



Historic reliability



Silicon trends



Why we care now

• Microprocessors	are	increasingly	used	in	situations	where	we	want	to	
be	sure	of	their	correctness	
• Self-driving	cars,	nuclear	power	stations,	medical	devices,	etc	

• Many	industrial	sectors	mandate	the	use	of	error-detection	strategies	
• For	example,	ASIL	standards	in	automotive	

• With	increased	susceptibility	to	faults,	even	non-safety-critical	
computing	starts	to	require	fault	tolerance	
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/

https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/
https://perspectives.mvdirona.com/2009/10/you-really-do-need-ecc-memory/


Hard errors

• Permanent	errors	that	affect	operation	

• Caused	by	device	wearout	in-the-field	

• Also	can	occur	from	manufacturing	variabilities



Soft errors

• Transient	errors	that	can	affect	operation	
• They	are	transient	because	their	effects	don’t	last	
• They	are	not	repeatable	

• Caused	by	
• Alpha	particle	strikes	
• Cosmic	rays!



Error manifestation

Bit	
read?

Bit	has	error	
protection?

Affects	
program	
output?

Detected	
unrecoverable	
error	(DUE) No	error

Silent	data	
corruption	
(SDC)

Benign	fault;	
no	error

No

Yes,	detection	
and	correction

NoYes

Yes,	detection	
only

Benign	fault;	
no	error



Identifying vulnerabilities

• We	can	perform	an	analysis	of	processor	structures	to	identify	vulnerable	
state	
• We	identify	the	bits	that	are	required	for	architecturally	correct	execution	
(ACE)	
• These	bits	could	result	in	incorrect	output	if	they	were	flipped	
• The	architectural	vulnerability	factor	(AVF)	is	a	useful	metric	

𝐴𝑉𝐹 =
∑𝑛𝑐𝑦𝑐𝑙𝑒𝑠

𝑖=0 𝐴𝐶𝐸𝑏𝑖𝑡𝑠

𝑛𝑐𝑦𝑐𝑙𝑒𝑠  ∗ 𝑛𝑏𝑖𝑡𝑠



Identifying vulnerabilities

• Bits	can	be	ACE	in	some	cycles,	not	ACE	in	others	
• Registers,	for	example

0x00000000feedcafe

0x1234567890123456

0x????????????????

.

.

.

.

.

.

r0

r1

.

.

.



Identifying vulnerabilities

• Bits	can	be	ACE	in	some	cycles,	not	ACE	in	others	
• Registers,	for	example

0x00000000feedcafe

0x1234567890123456

0x????????????????

.

.

.

.

.

.

r0

r1

.

.

.

Most	
significant	bits	
unACE	if	used	
as	a	32-bit	
number



Identifying vulnerabilities

• Bits	can	be	ACE	in	some	cycles,	not	ACE	in	others	
• Registers,	for	example

0x00000000feedcafe

0x1234567890123456

0x????????????????

.

.

.

.

.

.

r0

r1

.

.

.

Most	
significant	bits	
unACE	if	used	
as	a	32-bit	
number

All	ACE	if	read	
again,	or	all	
unACE	if	last	
read	has	
occurred



Identifying vulnerabilities

• Bits	can	be	ACE	in	some	cycles,	not	ACE	in	others	
• Registers,	for	example

0x00000000feedcafe

0x1234567890123456

0x????????????????

.

.

.

.

.

.

r0

r1

.

.

.

Most	
significant	bits	
unACE	if	used	
as	a	32-bit	
number

All	ACE	if	read	
again,	or	all	
unACE	if	last	
read	has	
occurred

All	unACE	until	next	
cycle	where	this	
will	be	written	to	
and	represent	r2



Metrics

• Two	related	metrics	are	often	used	to	define	reliability	
• The	FIT	rate	(failures	in	time)	
• Defined	as	the	total	number	of	errors	per	billion	device	hours	

• MTTF	(mean	time	to	failure)	
• Represents	the	time	between	two	errors	

𝑀𝑇 𝑇𝐹~ 
1

𝐹𝐼𝑇



Dual-core lockstep

• In	a	system	with	dual-core	lockstep,	a	program	is	run	twice	on	
different	cores	
• Results	compared	at	each	cycle	
• Introduces	temporal	and	spatial	redundancy	into	the	system

Core	0

Core	1

Application	
and	data

Ch
ec
ke
r

Correct?



Redundant multithreading

• Run	two	versions	of	code	and	compare	results	
• Can	be	a	software	scheme,	perhaps	with	some	hardware	support	
• Or	a	purely	hardware	approach	

• Can	run	on	different	cores	with	one	passing	the	other	data	
• Or	the	same	core,	within	a	different	SMT	context



Taking advantage of faulty hardware

• Some	systems	use	the	faulty	core	
to	provide	hints	to	others	

• For	example,	Necromancer:	
Enhancing	System	Throughput	by	
Animating	Dead	Cores	
Ansari,	Feng,	Gupta	and	Mahlke	
ISCA	2010



Approximate computing

• In	certain	situations	we	can	embrace	errors



Approximate computing

• In	certain	situations	we	can	embrace	errors



Summary

• Reliability	is	a	problem	that	has	come	back	to	haunt	us	

• Required	for	safety-critical	systems	
• Increasing	needed	/	desired	in	others	too	

• A	variety	of	techniques	developed	to	
• Identify	which	parts	of	the	core	are	vulnerable	
• Reduce	vulnerability	to	errors	by	re-executing	parts	of	the	code	
• Embrace	the	unreliability	for	performance


