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Why we care now

* Microprocessors are increasingly used in situations where we want to
be sure of their correctness

 Self-driving cars, nuclear power stations, medical devices, etc

* Many industrial sectors mandate the use of error-detection strategies
* For example, ASIL standards in automotive

* With increased susceptibility to faults, even non-safety-critical
computing starts to require fault tolerance

https://perspectives.mvdirona.com/2009/10/vou-really-do-need-ecc-memory/
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Hard errors

* Permanent errors that affect operation
* Caused by device wearout in-the-field

* Also can occur from manufacturing variabilities



Soft errors

* Transient errors that can affect operation
* They are transient because their effects don’t last
* They are not repeatable

* Caused by
* Alpha particle strikes
e Cosmic rays!
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l[dentifying vulnerabilities

* We can perform an analysis of processor structures to identify vulnerable
state

* We identify the bits that are required for architecturally correct execution
(ACE)

* These bits could result in incorrect output if they were flipped
* The architectural vulnerability factor (AVF) is a useful metric
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* Bits can be ACE in some cycles, not ACE in others
» Registers, for example
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Metrics

* Two related metrics are often used to define reliability

* The FIT rate (failures in time)
* Defined as the total number of errors per billion device hours

* MTTF (mean time to failure)
* Represents the time between two errors

MTTF~
FIT



Dual-core lockstep

* In a system with dual-core lockstep, a program is run twice on

different cores

e Results compared at each cycle

* Introduces temporal and spatial redundancy into the system
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Redundant multithreading

* Run two versions of code and compare results
e Can be a software scheme, perhaps with some hardware support
* Or a purely hardware approach

* Can run on different cores with one passing the other data
 Or the same core, within a different SMT context



Taking advantage of faulty hardware

* Some systems use the faulty core
to provide hints to others

Clusrer,

* For example, Necromancer:
Enhancing System Throughput by
Animating Dead Cores
Ansari, Feng, Gupta and Mahlke
ISCA 2010

Cluster,




Approximate computing

* |n certain situations we can embrace errors
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Summary

* Reliability is a problem that has come back to haunt us

* Required for safety-critical systems
* Increasing needed / desired in others too

* A variety of techniques developed to
 |dentify which parts of the core are vulnerable
e Reduce vulnerability to errors by re-executing parts of the code
 Embrace the unreliability for performance



