Introduction to MATLAB

Markus Kuhn

Computer Laboratory, University of Cambridge

https://www.cl.cam.ac.uk/teaching/2122/TeX+MATLAB/

matlab-slides-4up.pdf 2021-08-24 18:15 08246ba

What MATLAB is not

» not a computer algebra system
» not a strong general purpose programming language
® |imited support for other data structures

® few software-engineering features;
typical MATLAB programs are only a few lines long

® not well-suited for teaching OOP
® limited GUI features

> not a high-performance language (but fast matrix operators)
got better since introduction of JIT compiler (JVM)

> not freely available (but local campus licence)

MathWorks Logo

What is MATLAB

high-level language (garbage collecting, var-len structures)
BASIC-like syntax, with elements from C, GUI IDE

basic data type: 2- or 3-dimensional floating-point matrix

vvvyyy

most operators and functions work on entire matrices
= hardly ever necessary to write out loops

v

uses internally highly optimized numerics libraries
(BLAS, LAPACK, FFTW)

» comprehensive toolboxes for easy access to standard algorithms from
many fields: statistics, machine learning, image processing, signal
processing, neural networks, wavelets, communications systems

» very simple |/O for many data/multimedia file formats

\4

popular for experimental /rapid-prototype number crunching

» widely used as a visualization and teaching tool

Open-source MATLAB alternatives

Similar to MATLAB, subset compatible: GNU Octave, SciLab, FreeMat
Other high-level languages for technical computing:

» R - focus on statistics and plotting
https://www.r-project.org/

» Python — a full-featured programming language. Modules:
® numpy — numerical arrays, fast linear algebra

® matplotlib — MATLAB-like plotting functions
https://matplotlib.org/

® SciPy — scientific computing, Pandas — data analysis, etc.

» Julia — modern, fast, full-featured, compiled, interactive language
https://julialang.org/

® MATLAB-inspired syntax (especially for arrays)
® combines dynamic and static type systems, multiple dispatch
® LLVM backend, can also call C, C++, Python, R, Fortran functions
® LISP-like metaprogramming, rich flexible type system
» others: LuaJIT (SciLua), Perl Data Language (PDL), OCaml (Owl)

Jupyter is a popular browser-based notebook environment for recording
and presenting experiments in Julia, Python, R, ...

https://www.cl.cam.ac.uk/teaching/2122/TeX+MATLAB/
https://www.r-project.org/
https://matplotlib.org/
https://julialang.org/

Local availability

MATLAB is installed and ready to use on
» Intel Lab, etc.: MCS Windows
» Intel Lab, etc.: MCS Linux (/usr/bin/matlab)
» CL MCS Linux server: ssh -X linux.cl.ds.cam.ac.uk
» MCS Linux server: ssh -X linux.ds.cam.ac.uk
» Computer Laboratory managed Linux PCs

cl-matlab -> /usr/groups/matlab/current/bin/matlab

Campus license (666637) allows installation on staff/student home PCs
(Linux, macOS, Windows):
» https://uk.mathworks.com/academia/tah-portal/
the-university-of-cambridge-666637.html

» Includes full suite of ~ 180 toolboxes: Statistics and Machine
Learning, Signal Processing, Image Processing, Image Acquisition,
Bioinformatics, Control Systems, Wavelets, Deep Learning, Audio
System, GPU Coder, Instrument Control, RF, ...

» Installation requires setting up a https://uk.mathworks.com/
account with your @cam.ac.uk email address.

MATLAB matrices (1)

Generate a “magic square” with equal row/column/diagonal sums and
assign the resulting 3 x 3 matrix to variable a:

>> a = magic(3)

a =
8 1 6
3 5 7
4 9 2

Assignments and subroutine calls normally end with a semicolon.
Without, MATLAB will print each result. Useful for debugging!

Results from functions not called inside an expression are assigned to the
default variable ans.

Type help magic for the manual page of this library function.

Documentation

» Full documentation built in: start matlab then type

® doc — to browse built-in hypertext manual

® doc command — to jump to a specific manual page (e.g. plot)

® help command — to show plain-text summary of a command
» Read first: doc — MATLAB — Getting Started

» Tutorial videos:

https://uk.mathworks.com/videos.html
» Documentation also available online (HTML and PDF):
® https://uk.mathworks.com/help/matlab/

® https://uk.mathworks.com/help/ — toolboxes

Locally installed MATLAB may be behind the latest release. If you spot problems with the MCS
MATLAB installation, please do let the lecturer know (— mgk25@cl.cam.ac.uk).

MATLAB matrices (2)

Colon generates number sequence:

>> 11:14
ans =
11 12 13 14

>> -1:1
ans =
-1 0 1
>> 3:0
ans =

Empty matrix: 1-by-0

Specify step size with second colon:
>> 1:3:12

>> 3:-0.5:2
ans =
3.0000 2.5000 2.0000

Single matrix cell: a(2,3) == 7. Vectors as indices select several rows and
columns. When used inside a matrix index, the variable end provides the

highest index value: a(end, end-1) == 9. Using just “:

i

is equivalent to

“1:end” and can be used to select an entire row or column.

https://uk.mathworks.com/academia/tah-portal/the-university-of-cambridge-666637.html
https://uk.mathworks.com/academia/tah-portal/the-university-of-cambridge-666637.html
https://uk.mathworks.com/
https://uk.mathworks.com/videos.html
https://uk.mathworks.com/help/matlab/
https://uk.mathworks.com/help/

MATLAB matrices (3)

Select rows, columns and
submatrices of a:

>> a(1,:)
ans =
8 1 6
>> a(:,1)
ans =
8
3
4

>> a(2:3,1:2)
ans =

3 5

4 9

Review: matrix multiplication

Matrices can also be accessed as a
1-dimensional vector:
>> a(1:5)
ans =
8 3 4 1 5

>> a(6:end)
ans =

ans =
8 5 2
>> size(b)
ans =
1 3
°
.
°
°
.
°
°
.

Each element of the matrix product is the scalar product of

the corresponding in the
the corresponding in the

and

MATLAB matrices (4)

Use [] to build new matrices, where , or space as a delimiter joins
submatrices horizontally and ; joins them vertically.

> c=[27; 3 1]
c =

2 7

3 1
>> d = [a(:,end) a(1,:)"']
d =

6 8

7 1

2 6
>> e = [zeros(1,3); a(2,:)]
e =

0 0 0

3 5 7

Mask matrix elements:

>> find(a > 5)

ans =
1
6
7
8
>> a(find(a > 5)) =0
a =
0 1 0
3 5 0
4 0 2

10

Review: inner and outer product of vectors

Special cases of matrix multiplication

(....)-

Row vector times column vector:

Column vector times row vector:

~(....)

12

MATLAB matrices (5)

Operators on scalars and matrices:

>> [11; 10] = [2 3]

ans =

5

2
>> [1 2 3] .x [10 10 15]
ans =

10 20 45

Inner and outer vector product:
>> [235] *x [17 11]"

ans =

78
>> [235]" = [17 11]
ans =

2 14 22

3 21 33

5 35 55

The imaginary unit vector v/—1 is available as both 1i and 1j, and

matrices can be complex.

Related functions: real, imag, conj, exp, abs, angle

2D plotting

N\
\\\\\\\\
A\

= sqrt(x.”2 + y."2);

s = sin(r) ./ r; s(find(r==0)) = 1;
plot3(x, y, s);

grid on;

-20 -10 0 10 20

imagesc(xl, yl, s, [-1 1]);
colormap(gray) ;
set(gca, 'DataAspectRatio', [1 1 1]);

Plotting

20-point raised cosine

1 [0} Q
[0} Q

08 | o} o]

0.6 |

04

0.2 T T
oo | fo
0 5 10 15
x = 0:20;
y = 0.5 - 0.5%cos(2*pi * x/20);
stem(x, y);

title('20-point raised cosine');

20

1

0.8 -

0.6
KN\
04 / \\\
/ \

02/ \

0 | / ~
02 - ~—
-0.4

0 2 4 6 8 10

t = 0:0.1:10;

x = exp(t * (j - 1/3));

plot(t, real(x), t, imag(x));

grid; legend('real', 'imaginary')

Plotting functions plot, semilogx, semilogy, loglog all expect a pair of
vectors for each curve, with = and y coordinates, respectively.

Use saveas(gcf, 'plot2.eps') to save current figure as graphics file.

14

Some common functions and operators

*,

matrix multiplication, exponentiation
/., \, inv

A/B=AB~', AB=A"1B, A~!
+, -, .*, -/1 .

element-wise add/sub/mul/div/exp
==, "=, <, >, <=, >=

relations result in element-wise 0/1
length, size

size of vectors and matrices
zeros, ones, eye, diag

all-0, all-1, identity, diag. matrices
xlim, ylim, zlim

set plot axes ranges
xlabel, ylabel, zlabel

label plot axes
audioread, audiowrite, sound

audio I/O
csvread, csvwrite

comma-separated-value 1/0O

> >

imread, imwrite, image,
imagesc, colormap
bitmap image 1/0
plot, semilog{x,y}, loglog
2D curve plotting
conv, conv2, XcCOrr
1D/2D convolution,
cross/auto-correlation sequence
fft, ifft, ££t2
discrete Fourier transform
sum, prod, min, max
sum up rows or columns
cumsum, cumprod, diff
cumulative sum or product,
differentiate row/column
find
list non-zero indices
figure, saveas
open new figure, save figure

16

Functions and m-files

To define a new function, for example decibel(z) = 10%/29, write into a

file decibel.m the lines

function f = decibel(x)

% DECIBEL(X) converts a decibel figure X into a factor

f =10 .7 (x ./ 20);
Only the function that has the same name as the m-file in which it is
defined can be called from outside the file; all other functions are only
visible inside the file. The function keyword sets the variable whose
value will be returned and lists the parameter variables.

The m-file must be in the current directory (cd) or MATLAB's search
path (path) to become accessible.

Use edit db to edit the m-file, help db to show the first comment

lines and type db to show its source text.

M-files can also contain just sequences of statements instead of a
function definition. These are called simply by typing their name.

Spectrogram of the first 6 s:

-100

Frequency (kHz)

-120

mmmmmﬁ?ﬁ ,mpwm“'
i

[t
I mm-llill w i mmﬂln

(1]
| ...g._u—-ﬂlm u::inﬁ;fiﬁummmmimul 11!
- . Illl'ﬂ.ll

-140

Power/frequency (dB/Hz)

Example: generating an audio illusion

Generate an audio file with 12 sine tones of apparently continuously
exponentially increasing frequency, which never leave the frequency range
300-3400 Hz. Do this by letting them wrap around the frequency interval

and reduce their volume near the interval boundaries based on a
raised-cosine curve applied to the logarithm of the frequency.

First produce a 2 s long waveform in which each tone raises 1/12 of the
frequency range, then concatenate that into a 60 s long 16-bit WAV file,

mono, with 16 kHz sampling rate. Avoid phase jumps.

Parameters:
fs = 16000;
d = 2;
n = 12;
fmin = 300;
fmax = 3400;

Example solution:
t = 0:1/fs:d-1/fs;

h
h
h
h
h

% timestamps for each sample point

sampling frequency [Hz]

time after which waveform repeats [s]

number of tones
lowest frequency
highest frequency

% normalized logarithm of frequency of each tone (row)
% for each sample point (column), all rising linearly
% from O to 1, then wrap around back to O

1 = mod(((0:n-1)/n)' * ones(1,

f = fmin * (fmax/fmin)

p = 2#pi * cumsum(f, 2) / fs;
% make last column a multiple of 2+%pi for phase continuity

p = diag((2*pi*floor(p(:,end)/(2%pi))) ./ p(:,end)) * p;
s = sin(p); % sine value for each tone and sample

% mixing amplitudes from raised-cosine curve over frequency
0.5 - 0.5 * cos(2*pi * 1);
sum(s .* a)/m; J mix tones together, normalize to [-1,

w = repmat(w, 1, 3);
spectrogram(w, 2048,

w = repmat(w, 1, 20);

A variant of this audio effect, where each tone is exactly one octave (factor 2 in frequency) from

% repeat waveform 3x

fsxd) + ones(n,1) * (t/(d*n)),
R % freq. for each tone and sample
% phase for each tone and sample

+1]

1);

18

1800, 2048, fs, 'yaxis'); ylim([0 fmax/1e3*1.1]) % plot

% repeat waveform 20x
audiowrite('ladder.wav', w, fs, 'BitsPerSample', 16);

the next, is known as the Shepard—Risset glissando.

What changes to the parameters would produce that?

% make audio file

20

MATLAB, Julia, NumPy: comparative cheat sheet

MATLAB Julia NumPy
vector size (1,n) [123] [123] np.array([1, 2, 3]).reshape(1, 3)
vector size (n,1) [1;2; 3] [123) np.array([1, 2, 3]).reshape(3, 1)
vector size (n) n/a [1,2, 3] np.array([1, 2, 3])
j to nstep k jikin jken np.arange(j, n+1, k)
matrix [12;34] [12;34] np.array([[1, 2], [3, 4]])
0 matrix zeros(2, 2) zeros(2, 2) np.zeros((2, 2))
1 matrix ones(2, 2) ones(2, 2) np.ones((2, 2))
identity matrix eye(2, 2) | np.eye(2)
diagonal matrix diag([1 2 3]) Diagonal([1, 2, 3]) np.diag([1, 2, 3])
transpose A transpose(A) AT
complex conj. transpose A A A.conj()
concat hor. [[12][12]] [[x2][12] B = np.array([1, 2])

np.hstack((B, B))

matrix to vector A(2) Al] A flatten()
flip left/right fliplr(A) reverse(A,dims=2) np.fliplr(A)
broadcast a function f=0(x) x.72; f(x)=x"2; f.(x) def f(x):

f(x) return x**2

f(x)

element Aj A2, 2) A2, 2] AL, 1]
rows 1 to 4 A(1:4,) Al1:4,] Al0:4,]
element-wise multipl. A *B A *B A*B
matrix multiplication A*B A*B A@B

https://cheatsheets.quantecon.org/

21

https://cheatsheets.quantecon.org/

