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What are Computer Graphics &
Image Processing?

Scene
description

Computer Image analysis &
graphics computer vision
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Where are graphics and image
processing heading?

Scene
description

Computer Image analysis &
graphics computer vision

~| Light field >
Computational

Computational
| Advanced  fon
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What is a (computer) image?

» A digital photograph? (“JPEG")
» A snapshot of real-world lighting?

From computing | From mathematical
. mage .
perspective perspective
(discrete) / \ (continuous)
2D array of pixels 2D function
*To represent images in To express image processing
memory as a mathematical problem
*To create image processing *To develop (and understand)

software algorithms



Image

» 2D array of pixels
» In most cases, each pixel takes 3 bytes: one for each red, green and blue

» But how to store a 2D array in memory?

row-major column-major interleaved, row-major
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Stride

» Calculating the pixel component index in memory
For row-major order (grayscale)
L(x,y) =x+ Y Neps
For column-major order (grayscale)
L(X,Y) = X Npoys T ¥
For interleaved row-major (colour)
i(x,y,c)=x+3+y-:3 n,+cC
General case
i(x,y,c) =x-s,ty-sy,+c-s.
where sy, s;, and s, are the strides for the x,y and colour
dimensions



Padded images and stride

» Sometimes it is desirable to “pad” image with extra pixels

for example when using operators that need to access pixels outside the
image border

» Or to define a region of interest (ROI)

Allocated memory space
Image

Region of Interest
(ROI)

» How to address pixels for such an image and the ROI?
7



Padded images and stride

Allocated memory space
Image

Region of Interest
(ROI)

i(x,y,¢) = lpipst T X Sy ty- Sy, +C- 5.

» For row-major, interleaved



Pixel (PIcture ELement)

» Each pixel (usually) consist of three values describing the
color

(red, green, blue)

» For example
(255, 255, 255) for white
(0, 0, 0) for black
(255, 0, 0) for red

» Why are the values in the 0-255 range!
» Why red, green and blue! (and not cyan, magenta, yellow)
» How many bytes are needed to store 5MPixel image!

(uncompressed)

9



Pixel formats, bits per pixel, bit-depth

» Grayscale — single color channel, 8 bits (| byte)
» Highcolor — 216=65,536 colors (2 bytes)

Sample Length: 5 6 5
Channel Membership: Red Green Blue

Bit Number: 1514 13121110 9 8 7 6 5 4 3 2 1 0
RGBAX R.G.B. ~A. X
Sample Length Notation: 5.6.5.0.0

» Truecolor — 22* = 16,8 million colors (3 bytes)

» Deepcolor — even more colors (>= 4 bytes)

Sample Length: 2 10 10 10
Channel Membership: None Red Green Blue

Bit Number: 31 30 29 28 27 26 25 24 23 22 21 20191817 16 151413121110 9 8 7 6 5 4 3 2 1 0O

RGBAX R.G.B.A. X
Sample Length Notation: 10 1 0 1 002
» But why!?

10



Color banding

» If there are not
enough bits to
represent color

» Looks worse
because of the
Mach band illusion

8-bit gradient 8-bit gradient, 24-bit gradient

» Dithering (added | dithered
noise) can reduce S
. ®
banding S
L
Printers é
Many LCD displays
do it too _ _ \
Intensity profile




What is a (computer) image?

» A digital photograph? (“JPEG")
» A snapshot of real-world lighting?

From computing | From mathematical
. mage .
perspective perspective
(discrete) / \ (continuous)
2D array of pixels 2D function
*To represent images in To express image processing
memory as a mathematical problem
*To create image processing *To develop (and understand)

software algorithms



Image — 2D function

» Image can be seen as a function I(x,y), that gives intensity
value for any given coordinate (Xx,y)




Sampling an image

» The image can be sampled on a rectangular sampling grid
to yield a set of samples. These samples are pixels.
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What is a pixel?

» A pixel is not

a box
a disk
a teeny light

» A pixel is a point

it has no dimension 000000
00 70000

>
P

It occupies no area
it cannot be seen

it has coordinates not @

circle!

» A pixel is a sample

15
From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf



Sampling and quantization

» The physical world is described in terms of continuous quantities

» But computers work only with discrete numbers

» Sampling — process of mapping continuous function to a discrete

one

» Quantization — process of mapping continuous variable to a

discrete one

1)
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Resampling

» Some image processing operations require to know the
colors that are in-between the original pixels

o —9 O ¢

+

o—9 0 90
o—0 0 9
*o—90 090

Pixel

» What are those operations!?

» How to find these resampled pixel values?



Example of resampling: magnification

9—@

¢ Output image

o o 0\0 *—0 0 ¢

O —90 909 O 090 O 0 90 ¢

Input image
90 0 O 0 90 ¢
o —0 00 009§
*—9 90 O 0 0 ¢
o—90 0 O 0 09
_____________________________________________ *—90 090 0o ¢



Example of resampling:
scaling and rotation

*—@
L
®
@
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How to resample?

» In ID: how to find the most likely resampled pixel value
knowing its two neighbors?

>

pixel value v
D

v

pixel position x

20



(Bi)Linear interpolation (resampling)

» Linear — ID

» Bilinear — 2D
> Sampling
3 Y1 kernel
s /\\
S y
X
a Y2

l/

X1 X X2 pixel position

21



(Bi)cubic interpolation (resampling)

22

pixel value v

-

e

<S5

\\

Sampling
kernel
(convolution
kernel)

pixel position x



Bi-linear interpolation

O—0—0—0 Given the pixel values:

v —"0—e°—@ I(x,y,)=4

C (x,yl D I(x,,»,)=8B
V: @ @ @ &

I(x,y,)=C

. x’ o I(x,,y,)=D

Calculate the value of a pixel [(X, y) — 9 using bi-linear interpolation.

Hint: Interpolate first between A and B, and between C and D, then interpolate
between these two computed values.

23
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preserving filter

Edge-

Blurred

Original

SI91I] pue s10le1ado jurod



Point operators

» Modify each pixel independent from one another

» The simplest case: multiplication and addition

Pixel position Input pixel
x=(X,y) value

Resulting pixel

@i Bias
value

26



Pixel precision for image processing

» Given an RGB image, 8-bit per color channel (uchar)

What happens if the value of |0 is subtracted from the pixel
value of 5?

250+ 10 =
How to multiply pixel values by .5 ?

a) Using floating point numbers

b) While avoiding floating point numbers

27



Image blending

» Cross-dissolve between two images

Pixel from Pixel from
image | image 2
g9(x) = (1 —a)fo(x) + afi(x)
Resulting pixel Blending
value parameter

» where a is between 0 and |

28



Image matting and compositing

: S 1 !
- -
.
-7
-
)it

» Matting — the process of extracting an object from the
original image

» Compositing — the process of inserting the object into a
different image

» It is convenient to represent the extracted object as an
RGBA image

29



Transparency, alpha channel
» RGBA —red, green, blue, alpha

alpha = 0 — transparent pixel

alpha = | — opaque pixel s

» Compositing

Final pixel value:

P = alpixer + (1-— a)Cbackground +

Multiple layers:

Py = Cbackground .
Pi:aiCi+(1—ai)Pi_1 i1 =1..N <

30



Image histogram

6000

5000 -

4000 -

3000 -

2000 -

1000 -

Number of pixels

0

Pixel value

» histogram / total pixels = probability mass function

what probability does it represent!?

31



Histogram equalization

» Pixels are non-uniformly distributed across the range of
values 6000

5000 -

4000 -

3000 -

2000 -

1000 -

0
0 50 100 150 200 250

» Would the image look better if we uniformly distribute
pixel values (make the histogram more uniform)!?

» How can this be done?

32



6000

Histogram equalization s

4000 -

» Step |: Compute image histogram >

2000 -

1000 -

» Step 2: Compute a normalized
cumulative histogram

1 !
N o

» Step 3: Use the cumulative » Y,
histogram to map pixels to °S 8 w0 im b @
the new values (as a look-up table)

out _C( )

255 |

33



Linear filtering

» Output pixel value is a weighted sum of neighboring

pixels Input pixel
value

Kernel (filter)

Resulting pixel Sum over neighboring
value pixels, e.g. k=-1,0,1, j=-1,0,1
for 3x3 neighborhood

compact notation (§ — f X h

Convolution
operation

34



Linear filter: example

45
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92
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0.1

0.1
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124

132

62

78

94
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49

53

68

83

97

113

128

133

50

50

58

70

84

102

116

126

50

50

52

58

69

86

101

120

Why is the matrix g smaller than f ?

35

f&xy)

h(xy)

57

69

83

98

112

124

53

60

71

85

100

114

gxy)




Padded image

Padded and

Padding an image

blurred image

36

Image edge

ZE1ro

blurred: zero normalized zero




What is the computational cost of the
convolution?

9(i,5) =>_ f(i —k,j — )h(k,1)

k.l

» How many multiplications do we need to do to convolve
100x 100 image with 9x9 kernel ?

The image is padded, but we do not compute the values for
the padded pixels

37



Separable kernels

» Convolution operation can be made much faster if split
Into two separate steps:

|) convolve all rows in the image with a ID filter

2) convolve columns in the result of |) with another D filter

» But to do this, the kernel must be separable

hi1y hiz  his Uq
hyy hyy hoys| = |Uz2|-[V1 V2 V3]
h3y hsy hss us

38



Examples of separable filters

» Box filter:

O |—O|—O|—
O|—O|—\O|—
O|—O|—O|—
W —,W|—WwW]|—

» Gaussian filter:
1 2102
G(x,y;0) = e 503

2mo2

What are the corresponding ID components of this separable
filter (u(x) and v(y))?

G(x,y) = u(x) v(y)

39



Unsharp masking

» How to use blurring to sharpen an image !
results original image high-pass image blurry image

7

Jsharp — f + 7y f — {hblur X

40



Why “linear” filters ?

» Linear functions have two properties:

Additivity: f(x)+ f(y) = f(x + y)
Homogenity: f(ax) = af (x) (where“f” is a linear function)
» Why is it important?
Linear operations can be performed in an arbitrary order
blur(aF + b) = a blur(F)+ b

Linearity of the Gaussian filter could be used to improve the
performance of your image processing operation

This is also how separable filters work:

Matrix multiplication Convolution

The components (u * U) * f = U * (U * f)
of a separable
A kernel - - Animage



Operations on binary images

» Essential for many computer vision tasks

® ® . * .
» Binary image can be constructed by thresholding a
grayscale image

ﬂﬂ@={1 =

0 else,

42



Morphological filters: dilation

0

e

a) Original image by Structuring ¢y Image after dilation;
element; original in dashes
¥ = origin

» Set the pixel to the maximum value of the neighboring
pixels within the structuring element

» What could it be useful for ?

43



Morphological filters: erosion
0

T

_________________

______________

a) Original image by Structuring ¢y Image after erosion;
glement; original in dashes
¥ = 0rigin

» Set the value to the minimum value of all the neighboring
pixels within the structuring element

» What could it be useful for ?
44



Morphological filters: opening

R

a) Original image by Structuring
element;
¥ = origin

» Erosion followed by dilation
» What could it be useful for?

45

¢y Image after opening =
gerosion followed by
dilation




Morphological filters: closing

0

e

a) Original image by Structuring
element;
¥ = origin

» Dilation followed by erosion
» What could it be useful for ?

46

¢y Image after closing =
dilation followed by
grosion; original in
dashes.




Binary morphological filters: formal

d€f1n1t10n Binary image Correlation

(similar to

Number of |s inside convolution)

the region restricted ,
Structuring

by the structuring C = S
SN f ® element

S — size of structuring element (number of 1s in the SI)

e dilation: dilate(f, s) = 6(c,1);

e erosion: erode(f,s) = 6(c, S);

e majority: maj(f,s) = 0(c, S/2);

e opening: open(f, s) = dilate(erode(f, s), s);

e closing: close(f, s) = erode(dilate( f, s), s).

47

O(f,C) = {

1 if f>ec,
0 else,



Multi-scale image processing (pyramids)

» Multi-scale processing operates on
an image represented at several
sizes (scales)

Fine level for operating on small
details

Coarse level for operating on large
features
» Example:

Motion estimation
Use fine scales for objects moving slowly

Use coarse scale for objects moving fast

Blending (to avoid sharp boundaries)

48



Two types of pyramid

Gaussian
pyramid

ey |
= \‘ -l

Laplacian | R e PRl ] L& Level 4 (base band)
e o0 || L Lewels

pyramid

(a.k.a DoG |
Diffence of ||
Gaussians)

BURT, P. AND ADELSON, E. 1983. The
Laplacian Pyramid as a Compact

_ : . Level 1 Image Code. [EEE Transactions
49 o ) " on Communications 31, 4, 532—
540.



Gaussian Pyramid

50

reduce

reduce

reduce —

Why is blurring needed?

o

Blur the image and downsample
(take every 2" pixel)




Laplacian Pyramid - decomposition

-——> expand - )

> —>1

expand

51



Laplacian Pyramid - synthesis

expand

expand

expand




Reduce and expand
Reduce Expand

— [ Filter rows — Upsample rows
A —— | i
— E: Subsample rows \m — E Filter rows

=l

x KT
s Upsample columns
M: — E Subsample columns — Filter columns

Filter columns

' Frequency response of
0.4
° | Laplacian pyramid bands
0.35 o
o) \
023 % 06r 0.0202 0.0397 0.161 0l5
K = = 3 - g
02 S04 / k.
0.15 \\
0.1 02" i // \
0.0 T T /// B _,,_,f"/-i /,/ \\
0 0 e S =
a7 2 oo el ad 5 0.5

-0.05
Frequency [samples/cycle]

53



Example: stitching and blending

Combine two images:

Image-space
blending

Laplacian pyramid
blending

54



References

» SzELISKI, R.2010. Computer Vision: Algorithms and Applications.
Springer-Verlag New York Inc.
Chapter 3
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Edge stopping filters

24 »

» 2 Examples from [Gastal & Oliveira 2011]



Nonlinear filters: Bilateral filter

» Goal: Smooth out an image without blurring edges

Gaussian
filter

Bilateral
filter




Bilateral filter

spatial kernel f

“Kernel” changes
from one pixel to
another

- influence g in the intensity Kernel for this pixel
domain for the central pixel

output weight f x g input
for the central pixel



Bilateral filter

Input image

ZqEQ x(q)w(p, q)

y(p) =
quﬂ W(pr CI)
Pi)fel Neighborhood of the
coordinates pixel p
p=(~))

w(p, q) = gs(p — @) g-(x(p) — x(q))
\_Y_I | ' J
distance in  distance (difference) in
the spatial position (x,y) pixel values

B —|ld|l, 3 -
gs(d) = exp P gr(d) = exp >

2

7)

r

2

pixel value

A
Wﬂ >pixel position

-



How to make the bilateral filter fast?

» A number of approximations have been proposed

Combination of linear filters [Durand & Dorsey 2002, Yang et
al. 2009]

Bilateral grid [Chen et al. 2007]
Permutohedral lattice [Adams et al. 2010]
Domain transform [Gastal & Oliveira 201 1]



Joint-bilateral filter (a.k.a guided/cross b.f.)

» The “range” term does not need to operate in the same
domain as the filter output

Example:

A simplified
T algorithm from
| [Mueller et al. 2010]

- e
= e
& -

e

o Stereo }mage pair

The “range”
The “spatial” term operates

term operates on the colour

on disparities image
v

Joint bilateral
filter

Estimated left-to-right disparity

Filtered disparity



Joint bilateral filter: Flash / no-flash

Buisiousp Yyum Jajsuel) [lereq

Flash No-flash :
A F
No-Flash | .t Flash |-
. . . Image ' Image N Lin Lin
» Preserve colour and illumination from ——r | s e I L
. . Joint : Shadow &
the no-flash image Bilateral Bilateral S Specrlasity
. ) Filter ' —"m* Detection
» Use flash image to remove noise and e
add details N
’ yBase ‘ 4R ! m el M | Mask M ’
» [Petshnigg et al. 2004] L] e
Denoising \_/ Detail Transfer detection

I Al"inul = (1 _ M)ANRFDUIuiI + MABusc ‘




Example of edge preserving filtering

» Domain Transform for Edge-Aware Image and Video
Processing

» Video:
https://youtu.be/UlIxh 11QrTY?t=4m0s

From: http://inf.ufrgs.br/~eslgastal/DomainTransform/

Input Edge-aware smoothing Stylization Pencil-drawing

R
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Optimization-based methods




Gradient Domain compositing
» Compositing [Wang et al. 2004]

12 images from [Drori at al. 2004]



Gradient domain methods

» Operate on pixel gradients instead of pixel values

Convert to Convert to
Gradients Color

Pixels
N

. /I,——> —> >
Gradients=F, 3 1
b

EIR

|
-

\/

V.
-
\ /7
h}




Forward Transformation

» Forward Transformation

Compute gradients as differences between a pixel and its two
neighboors

II,erl '_ Iﬂ:jy

Ix,y Ix+1,y

Ix,y+1

Result: 2D gradient map (2 x more values than the number of
pixels)



Processing gradient field

» Typically, gradient magnitudes are modified while gradient
direction (angle) remains the same

Gpy =V,

f(IVIzyl|)

IVl

» Examples of gradient editing functions:

Hard thresholding

..................................
.....................................
....................................
....................................
...................................
..................................
...................................

..................................

Edited magnitude

................................

Original magnitude

Edited magnitude

Soft thresholding

Original magnitude

Edited magnitude

| Gradient editing

function

Smooth attenuation

Original magnitude



Inverse transform: the difficult part

» There is no strightforward transformation from gradients to

luminance

Convert to
Gradients

Convert to
Color

T

= |nstead, a minimization problem is solved:

arg minz [(Ix+1,y — Iy — G3)
I aw

Image Pixels

\_

= (L1 — Loy — G:Ecyz)/)z]

Desired gradients

16



Inverse transformation

» Convert modified gradients to

pixel values

Not trivial!

Most gradient fields are
inconsistent - do not produce
valid images

If no accurate solution is
available, take the best possible
solution

Analogy: system of springs

10

11




Gradient field reconstruction: derivation

» The minimization problem is given by:
. 2 s
afg;mnz [(I-%‘H,y — Ly —G3) + (Loy+1 — Loy — G) ]
T,y

» After equating derivatives over pixel values to 0 we get:

Derivation done in the lecture

iir1:—1.@,- i [:c—l—l.y 3 I.-J:,y—l "t I.'I:,y—l—l T 41;1:1; — C;II; = 'G{f—)Ly s Gl; %) —iG

In matrix notation:

Divergence of a vector

Laplace operator — V%I = divG —— field (Nx1 vector)

(NxN matrix) )
a . . _ Az (z) (v)
Vi =Lory+ Loy + Loyr + Login — 4L, 5,y divGay = G2y = Golay + G2y~ G
Image as 12 4
a column ‘
vector
I N.M




Laplace operator for 3x3 image

19



Solving sparse linear systems

» Just use “\” operator in Matlab / Octave:
X =A\Db;

» Great “cookbook’:
TEUKOLSKY, S.A., FLANNERY, B.P, PRESS,W.H.,AND VETTERLING, W.T. 1992.
Numerical recipes in C. Cambridge University Press, Cambridge.

» Some general methods

Cosine-transform — fast but cannot work with weights (next slides) and
may suffer from floating point precision errors

Multi-grid — fast, difficult to implement, not very flexible

Conjugate gradient / bi-conjugate gradient — general, memory efficient,
iterative but fast converging

Cholesky decomposition — effective when working on sparse matrices

20



Pinching artefacts

» A common problem of
gradient-based methods
is that they may result in
“pinching” artefacts (left
image)

» Such artefacts can be
avoided by introducing
weights to the
optimization problem

21



Weighted gradients

» The new objective function is:

argmin Z 0 (Lessy — Tay = ) + 1) (Luyir — Loy — G2)’]

» so that higher weights are assigned to low gradient
magnitudes (in the original image).

= wW¥ = .

()
I T T

» The linear system can be derived again

but this is a lot of work and is error-prone

22



Weighted gradients - matrix notation (1)

» The objective function:

argmin " [u8) (et — Fay — G + ) (Feys — Luy ~ O]
L,y

» In the matrix notation (without weights for now):
v il
v I - GW)

» Gradient operators (for 3x3 pixel image):

arg min
I

-1 0 0 1 0 0 000 -1 1. 0 0 0 0 0 0 O]
0 -1 0 0 1 0 000 0 -110 0 0 0 0 O
0 0 -1 0 0 1 000 0O 00 0O O 0O 0 O
0 0 0 -1 0 0 100 0 0 0-1 1 0 0 0 O
V.=]10 0 0 0 -1 0 010 vV,=|0 0 0 0 -11 0 0 0
0 0 0 0 0 —-1001 0O 0 00 0 0 0 0 0
0 0 0 0 O 0 00O 0O 0 00 0 0 -1 1 0
O 0 O O o0 0 o0o00O0 O 0 0 0 O O 0 -11
(0 0 0 0 0 0 00 0 0 0 00 0 0 O 0 O

23



Weighted gradients - matrix notation

» The objective function again: . ||[V.] _ [GY
arg Imin vy = G(y)

I

» Such over-determined least-square problem can be so
using pseudo-inverse:

v. v |¥] =17 v [Ge
» Or simply:

(Ve Vet V, V) 1=V, GO +V, GO
» With weights:

(VLW V,+V,WV,) I=V,WGY +V, WG

24
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a, (g}

o p. du 2 au -
argmin Z (up—8p)~ + 2| axp(g) T +ay »(8) ER

10

WLS filter: Edge stopping filter by
optimization

» Weighted-least-squares optimization

Make reconstructed image u Smooth out the image by making

u P p p

T | =/ Spatially varying smoothing — less
AN —amr | smoothing near the edges

,\\ \ ——a=2 ||

\\\ : B 1
\...x::;-;;:-\:..'-.;\ﬁ;‘__t_';_'f:_::__;;___h’; Cl x’p ( g ) - au (04
0 0I2 Uld OIS UIS 1 v (g) + E
N 0x

» [Farbman, Z,, Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for
multi-scale tone and detail manipulation. ACM SIGGRAPH 2008, 1-10. ]

25



Poisson image editing
S F*

T S N Q

m}in//Q|Vf—V|2 subject to: flaﬂ :f*laﬂ

» Reconstruct unknown values f given a source guidance
gradient field v and the boundary conditions flae =/*|aq

» [Pérez, P, Michel Gangnet, & Blake, A. (2003). Poisson Image Editing. ACM Transactions
on Graphics, 3(22), 313-318. https://doi.org/10.1145/882262.882269]
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Colour 2 Gray

» Transform colour images
to gray scale

» Preserve colour saliency

» When gradient in
luminance close to 0

» Replace it with gradient in
chrominance

» Reconstruct an image
from gradients

» Gooch,A A, Olsen, S. C.,Tumblin, J., &
Gooch, B. (2005). Color2Gray. ACM
Transactions on Graphics, 24(3), 634.
https://doi.org/10.1145/1073204.1073241




Gradient Domain: applications

» More applications:

28

Lightness perception (Retinex) [Horn 1974]
Matting [Sun et al. 2004]

Color to gray mapping [Gooch et al. 2005]

Video Editing [Perez at al. 2003, Agarwala et al. 2004]

Photoshop’s Healing Brush [Georgiev 2005]
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Single Program Multiple Data (SPMD)

» Consider the following vector addition example

for(i=0:11){
Cli]=A[i]+B[i]

Serial program:

)
let
moentre task A AP AF dF 4F 4F 4F dF dF v dr ar d
1 FAF 4F dF 4F 4F 4F 4F 4dF dr 4r ar 4

C W AW dF dF dF 4F 4F 4F JF 4v 4F 4r 4

Multiple copies of the same program execute on different data in parallel

for(i=0:3){ for(i=4:7){ for(i=8:11){
Cli]=A[i]+BJ[i] Cli]=A[i]+B[i] Cli]=A[i]+BJ[i]

SPMD program:
multiple copies of the

} ! }
some programrunon A RN
e S pAr AR A A A AT AR ar
C

data |

2 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/




Parallel Software — SPMD

» In the vector addition example, each chunk of data could
be executed as an independent thread

» On modern CPUs, the overhead of creating threads is so
high that the chunks need to be large

In practice, usually a few threads (about as many as the number
of CPU cores) and each is given a large amount of work to do

» For GPU programming, there is low overhead for thread
creation, so we can create one thread per loop iteration

3 From: OpenCL 1.2 University Kit -



Parallel Software — SPMD

_ = loop iteration
Single-threaded (CPU)
// there are N elements Time >
fO]f(j_ = O,' i < N; i++) TO ooo-
C[i] = A[1] + BI[1i]

Multi-threaded (CPU)

// tid is the thread id O o 1 2 3
// P is the number of cores T1 4 5 6 7
for(i = 0; 1 < tid*N/P; i++) T2 8 9 10 11

Cli] = A[1] + B[1i] T3 12 13 14 15

Massively Multi-threaded (GPU)

TO
// tid 1s the thread id T1
Cltid] = A[tid] + B[tid] T2
T3

s

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/




Parallel programming frameworks

» These are some of more relevant frameworks for
creating parallelized code

[ OpenCL ]

[ OpenACC ]




OpenCL Openc

» OpenCL is a framework for writing parallelized code for
CPUs, GPUs, DSPs, FPGAs and other processors

» Initially developed by Apple, now supported by AMD, IBM,
Qualcomm, Intel and Nvidia

» Versions

Latest: OpenCL 3.0
OpenCL C++ kernel language

SPIR-V as intermediate representation for kernels

Vulcan uses the same Standard Portable Intermediate Representation

AMD, Intel, Nlvidia

Mostly supported: OpenCL 1.2
OSX, older GPUs



OpenCL platiorms and drivers

» To run OpenCL code you need:
Generic ICD loader

Platform 1
« (e.g. NVIDIA Driver)

. ’ ICD Loader | Platform 2
Included in the OS (opencldl) [~ ™ (e.g. AMD Driver)
Installable Client Driver 4  Platform3

(e.g. Intel Driver)

From Nyvidia, Intel, etc.

This applies to Windows and Linux, only one platform on Mac

» To develop OpenCL code you need:

OpenCL headers/libraries

Included in the SDKs
Nvidia — CUDA Toolkit
Intel OpenCL SDK

But lightweight options are also available



Programming OpenCL

» OpenCL natively offers C99 API
» But there is also a standard OpenCL C++ AP| wrapper

Strongly recommended — reduces the amount of code

» Programming OpenCL is similar to programming shaders
in OpenGL

Host code runs on CPU and invokes kernels
Kernels are written in C-like programming language
In many respects similar to GLSL

Kernels are passed to APl as strings and compiled at runtime
Kernels are usually stored in text files

Kernels can be precompiled into SPIR from OpenCL 2.1



Example: Step 1 - Select device

Get all Select Get all Select
Platforms Platform Devices Device

//get all platforms (drivers)

std::vector<cl::Platform> all platforms;

cl::Platform::get(&all platforms);

if (all platforms.size() == 8){
std::cout << " No platforms found. Check OpenCL installation!\n"“;
exit(1);

¥
cl::Platform default platform = all platforms[©];

std::cout << "Using platform: " << default platform.getInfo<CL_PLATFORM NAME>() << "\n";

[/get default device of the default platform
std::vector<cl::Device> all devices;
default platform.getDevices(CL DEVICE TYPE ALL, &all devices);
if (all devices.size() == @){
std::cout << " No devices found. Check OpenCL installation!\n";
exit(1);
¥
cl::Device default device = all devices[©];
std::cout << "Using device: " << default _device.getInfo<CL_DEVICE _NAME>() << "\n";



Example: Step 2 - Build program

Create Load sources Create Build
context (usually from files) Program Program

cl::Context context({ default device });

cl::Program: :5Sources sources;

// kernel calculates for each element C=A+B

std::string kernel code =
" kernel void simple_add{( glebal const int* A, _ global const int* B, _ global int* C) {"
" int index = get global id(@);"
G C[index] = A[index] + B[index];"

my o, m
2 »

sources.push_back({ kernel code.c_str(}, kernel code.length() })};

cl::Program program{context, sources);

try {
program.build({ default device });

¥
catch (cl::Error err) {
std::cout << " Error building: " <<
program.getBuildInfo<CL_PROGRAM BUILD LOG>{(default device) << "\n";
exit(1);



Example: Step 3 - Create Buffers and
COpYy memory

Create Create Enqueue
Buffers Queue Memory Copy

// create buffers on the device

cl: :Buffer buffer A{context, CL_MEM READ WRITE, sizeof(int) * 18);
cl::Buffer buffer B(context, CL_MEM READ WRITE, sizeof(int) * 18);
cl::Buffer buffer C{context, CL_MEM READ WRITE, sizeof(int) * 10);

int A[]

T8, 1@y 85 A5, B, W 8,9 1
ink Bf] =18, 1,2, @, 1, 2, @

¥ 3 3 3 1? 2? E] };

¥ ¥ ¥

[//create queue to which we will push commands for the device.
cl: :CommandQueue queue(context, default device);

J/write arrays A and B to the device
queue.enqueuelWriteBuffer(buffer A, CL_TRUE, @, sizeof(int) * 10, A);
queue .enqueuelriteBuffer(buffer B, CL_TRUE, @, sizeof(int) * 18, B);



Example: Step 4 - Execute Kernel and
retrieve the results

Create
Kernel

Set Kernel

I ‘ Arguments

—

Kern

Enqueue

Enqueue
el memory copy

cl::Kernel kernel(program, "simple add");

kernel.setArg(®, buffer A};
kernel.setArg(l, buffer B});
kernel.setArg(2, buffer C});

queue.enqueueNDRangeKernel (kernel, cl::NullRange, cl::NDRange(18), cl::NullRange);

int C[1€];

[//read result C from the device to array C
queue.enqueueReadBuffer(buffer C, CL TRUE, @, sizeof(int) * 18, C);

queue.finish();

std: :cout << " result: \n";
for {ink i = 9; 3¢ 10; 3:8)]
std::cout << C1] << " ";

¥
std::cout << std::endl;

Our Kernel was

kernel wvoid simple add({ read only const intk 4,
__read only const int* B,

Wwrite only int* ) {

int index = get global id({C});
Clindex]=A[index]4+E[index]




OpenCL API Class Diagram

» Platform — Nvidia CUDA Platform |1
» Device — GeForce 1080 - e
» Program — collection of T — Command Quee l‘i—o" 2 S ]

kernels j *]
» Buffer or Image — device - - | 0. 1%

: . * X
memory Device 1D ]‘ Context [}
| —>0 *<

» Sampler — how to .T i

interpolate values for o , 3

Program |x MemObject

Image | - {abstract} _x
» Command Queue — put a 1% Sampler

sequence of operations — | ‘}

there Kernel I B ]

Buffer Image

» Event — to notify that 4 l |

something has been done *¢

From: OpenCL API 1.2 Reference Card



Platform model

» The host is whatever the OpenCL library runs on

Usually x86 CPUs for both NVIDIA and AMD

» Devices are processors that the library can talk to

CPUs, GPUs, DSPs and generic accelerators
» For AMD

All CPUs are combined into a single device (each core is a compute unit

and processing element)

Each GPU is a separate device

03
0

Processing
5

Element
*,

Host

== &

11

//
Compute Unit

Compute Device




Execution model

» Each kernel executes on |ID, 2D or 3D array (NDRange)
» The array is split into work-groups

» Work items (threads) in each work-group share some local
memory

work-group size S,

» Kernel can querry
get global id(dim)

work-group {wx, wy,)

get group id (dlm) {,"‘ work-item work-item
get_local_id (dim) ,”’, (W S##Fy Wy Sps P ) AR (W Sps,4F Wy SypsF)
J {sx,sy,? {0, 0} {sx,sy) (Sy-1.0)
» Work items are not

£
’ r "
e i : work-group size Sy

bound to any memory

M work-item work-item
entlt)’ NDHangesizeG}, R PP, .
(Unlike GLSL Shaders) iER(E H“ :-—-u“ (5050 =(0.871) | " | (5.8 =(8¢1.8,1)

I J
I =

NDRange size Gx




Memory model

» Host memory

Usually CPU memory, device does
not have access to that memory

» Global memory [__global]

Device memory, for storing large

data

» Constant memory [__constant]

v

Fast, accessible to all work-items
(threads) within a workgroup

» Private memory [__private]

Accessible to a single work-item

(thread)

OpenCL Device

p-

|

Private
Memory

Private
Memory

Private
Memory

Private
Memory

[ Work Item }[ Work Item ]

[ Work Item J[ Work Item ]

Local Memory J { Local Memory J

Local memory [__locdl]

Workgroup

Workgroup

Global/Constant Memory

Host Memory

Host




Memory objects

cl::image | DBuffer ]

/v[ cl::Memory }\ /

[ cl::Buffer ]

cl::lmage

_— 1 N T

[ cl::BufferGL ] [ cI::BufferRenderGL] [ cl::lmage | D

[ cl::lmage2D ] [ cl::lmage2D ]

This diagram is incomplete — there are more memory objects

» Buffer
ArrayBuffer in OpenGL

Accessed directly via C pointers

» Image
Texture in OpenGL
Access via texture look-up function

Can interpolate values, clamp, etc.



Programming model

» Data parallel programming
Each NDRange element is assigned to a work-item (thread)

Each kernel can use vector-types of the device (float4, etc.)

» Task-parallel programming

Multiple different kernels can be executed in parallel

» Command queue

CL_QUEUE OUT OF ORDER EXEC MODE _ENABLE
clCreateCommandQueue ( Execute out-of-order if specified, in order otherwise
cl context context,

cl device id device, \\\\\/////,

cl_command_queue_properties properties,
cl int* errcode_ret)

Provides means to both synchronize kernels and execute them in parallel



Big Picture

OpenCL

-

Context
g ¢ $ $
Programs Kernels ects Command Queues
‘ é I ’

 kemel void Images Il-l Buffers I'I = -
S mephoe “:::m » CPU mlum arg[0] value In Out of
mmﬂ ® — Order Order
(nu-mmw(o); — mm argl1] valve Queue | Queue

. arg[2] value

GPU

Compile code ,

£ Copyright Khronos Group, 2009 - Page 15
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Thread Mapping

» By using different mappings, the same thread can be

assigned to access different data elements

The examples below show three different possible mappings of
threads to data (assuming the thread id is used to access an

element)

int tid =

Mapp|ng get global id(1) *
get _global size(0) +
get _global id(0);

0
Thread IDs 4

8

12| 13

21  From: OpenCL 1.2 University Kit -

Ww N = O

N o o A

int tid =
get global id(0) *
get global size(l) +
get global id(1);

10

1

12
13
14

15

int group_size =
get local size(0) *
get local size(1);

int tid =
get_group id(1l) *
get num groups (0) *
group_size +

get group id(0) *
group_size +
get_local id(1) *
get local size(0) +
get local id(0)
0 1 4 5
2 3 6 7
8 9 12 | 13
10| 11 | 14 | 15
*assuming 2x2 groups



Thread Mapping

» Consider a serial matrix multiplication algorithm

for (i1=0; i1< M; il++)
for (i2=0; i2< N; i2++)
for (i3=0; 13< P; 13++)
Clil][i2] += A[il][i13]xB[i3][i2];

» This algorithm is suited for output data decomposition
We will create N x M threads

Effectively removing the outer two loops

Each thread will perform P calculations

The inner loop will remain as part of the kernel

» Should the index space be MxN or NxM!?

22  From: OpenCL 1.2 University Kit -



Thread Mapping

» Thread mapping |: with an MxN index space, the kernel would be:

Mapping for C

int tx = get_global_id(0); 0 4 8 12

int ty = get_global_id(1); 1/ 5 9 13

for (13=0; 13<P; 13++) 2 6 10 14
Cltx][ty] += Altx][i3]*B[i3][ ty I; 3| 7

11| 15

» Thread mapping 2: with an NxM index space, the kernel would be:

Mapping for C

int tx = get_global_id (0); ol 1] 2| 3

int ty = get_global_id (1);
for (i3=0; 13<P;i3++) 4| 5| 6| 7

Clty J[tx] +=Alty][13]«B[i3 ][ tx ]; 182 193 :: :;

» Both mappings produce functionally equivalent versions of the program

23  From: OpenCL 1.2 University Kit -



Thread Mapping

» This figure shows the execution of the two thread mappings
on NVIDIA GeForce 285 and 8800 GPUs

5 1 r
Mapping 1 on 8800 —— | = | '
Mapping 2 on 8800 ----x--- |
Mapping 1 on 285 -—-#-- f .
4 Mapping 2 on 285 ----@--- J"
) /
j=. !
S /
(o]
@ /
& 3t / 7
@ / X
£ Ve i
L d v, "/
.5 2 r X
5
Q
@
> p
ni i
1 A" X
; I < ol
o ,/-',-‘_-_;‘_'..'1-"*" - ) I
0 L --—:f:.—.:;i:-' £ e s oG 1

256 512 768 1024 1280 1536 1792 2048
Size of one dimension

» Notice that mapping 2 is far superior in performance for both
GPUs

24  From: OpenCL 1.2 University Kit -



Thread Mapping

» The discrepancy in execution times between the
mappings is due to data accesses on the global memory
bus

Assuming row-major data, data in a row (i.e., elements in
adjacent columns) are stored sequentially in memory

To ensure coalesced accesses, consecutive threads in the same
wavefront should be mapped to columns (the second
dimension) of the matrices

This will give coalesced accesses in Matrices B and C

For Matrix A, the iterator i3 determines the access pattern for row-
major data, so thread mapping does not affect it

25 From: OpenCL 1.2 University Kit -
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Reduction

» GPU offers very good float reduce_sum(float* input, int length)
performance for tasks {
in which the results are
stored independently

float accumulator = input[0];
for(int i = 1; i < length; i++)
accumulator += input[i];

Process N data items return accumulator;

and store in N memory }

location
» But many common operations require reducing N values into | or few values
sum, min, max, prod, min, histogram, ...

» Those operations require an efficient implementation of reduction

» The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions

http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/



Reduction tree for the min operation

__kernel :
vo1d reduce min(_ global float® buffer, » barrier ensures that all threads
__local float* scratch, (work units) in the local group
__const int length, . .
" global float* result) { reach that point before execution
int global index = get global id(9); continue
int local index = get _local id(@); . .
// Load data into local memory » Each iteration of the for loop
if (global_index < length) { computes next level of the
scratch[local_index] = buffer[global_index]; . .
} else { reduction pyramid
scratch[local_index] = INFINITY;
}
barrier(CLK_LOCAL_MEM_FENCE); Local memory
for(int offset = get_local_size(9) / 2;
offset > @; offset >>= 1) { O 1/2|3|4[5|6]7

if (local _index < offset) {
float other = scratch[local index + offset];
float mine = scratch[local_index];

Parallel Reduction
Tree for Commutative

scratch[local index] = (mine < other) ? mine : Qpergtay
other;

}
barrier(CLK_LOCAL_MEM_FENCE);

} |

if (local_index == 0) { } SIMD Utilization for
result[get group_id(@)] = scratch[0]; [ Reduction Tree

}

}



Multistage reduction

» The local memory is usually \ A A AAAA AL
limited (e.g. 50kB), which - e
restricts the maximum size of
the array that can be processed

» Therefore, for large arrays need
to be processed in multiple
stages

The result of a local memory
reduction is stored in the array
and then this array is reduced



Two-stage reduction

Stage 1 Different colours denote different threads
Global memory

0/1|2|3|4|5|6|7|0|1|2(3[4|5|6|7|0(1[2|3]|4|5|6|7

Local memory __kernel

Stage 2 void reduce(__global float* buffer,
9 0]112]314151617 __local float* scratch,

__const int length,
__global float* result) {

int global index = get global id(9);
float accumulator = INFINITY;
// Loop sequentially over chunks of input

vector
. . . while (global_index < length) {
» First stage: serial reduction by float element = buffer[global_index];
accumulator = (accumulator < element) ?
N concurrent threads accumulator : element;
global index += get global size(9);
Number of threads < data items }

// Perform parallel reduction
[The same code as in the previous example]

» Second stage: parallel reduction
in local memory }



Reduction execution times on CPU/GPU

Reduction Performance on CPU Reduction Performance on GPU

1.00E+11 - Commutative

1.00E+08 ===GPU Optimized
Serial
1.00E+07 / Parallel

1.00E+06 1.00E+08
10000 100000 1000000 10000000 10000 100000 1000000 10000000

Two-phase

1.00E+09 -

1.00E+10 -+

1.00E+09

Reductions/second
Reductions/second

Vectorized

Size Size

» Different reduction algorithm may be optimal for CPU and GPU

» This can also vary from one GPU to another

» The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/



Better way?

» Halide - a language for image processing and
computational photography

Code written in a high-level language, then translated to
x86/SSE, ARM, CUDA, OpenCL

The optimization strategy defined separately as a schedule

Auto-tune software can test thousands of schedules and
choose the one that is the best for a particular platform

(Semi-)automatically find the best
trade-offs for a particular platform redundant £

y locality
work

Designed for image processing but
similar languages created for other
purposes

parallelism




OpenCL resources
» https://www.khronos.org/registry/OpenCL/

» Reference cards
Google: “OpenCL API Reference Card”

» AMD OpenCL Programming Guide

http://developer.amd.com/wordpress/media/2013/07/AMD _Accelerated Parallel Processing OC
L _Programming_Guide-2013-06-2|.pdf
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Motivation: 3DoF vs 6DoF in VR

» Tracking with inexpensive » Requires internal (inside-
Inertial Measurements Units out) or external tracking
» Content: » Content:
Geometry-based graphics Geometry-based graphics
Omnidirectional stereo video Point-cloud rendering
May induce cyber-sickness due Image-based rendering

due to the lack of

. View interpolation
motion depth cues

Light fields

Source for the images: https://www.qualcomm.com/media/documents/files/on-device-motion-tracking-for-immersive-vr.pdf



3D computer graphics
» We need:

Geometry + materials +
textures

Lights

» Full control of illumination,
realistic material appearance

» Graphics assets are Cyberpunk 2077 (C) 2020 by CD Projekt RED
expensive to create

» Rendering is expensive

Shading tends to takes most of
the computation



Baked / precomputed illumination

¥

» We need: = B
Geometry + textures + < '
(light maps)

» No need to scan and

model materials

» Much faster rendering
— simplified shading

‘ . 1%, o "

Precomputed light maps (from Wikipedia)



Billboards / Sprites
» We need:

Simplified geometry + textures
(with alpha)
Lights
» Much faster to render than
objects with 1000s of
triangles

» Used for distant objects

or a small rendering budget

» Can be pre-computed from

complex geometry I,g\tree rendered from a set of billboards
rom:

https://docs.unity3d.com/ScriptReference/Bil
IboardAsset.html



Light fields + depth

» We need:
Depth map

Images of the object/scene

Camera

» We can use camera-captured

images

» View-dependent shading

» Depth-map can be computed

using multi-view stereo
techniques

CV methods can be unreliable

» No relighting

L RN MRE B RE

P =g AR =

Light Field
Image

Novel View
Image Disk_ —v—

A depth map is approximated by triangle
mesh and rasterized. From: Overbeck et al.
TOG 2018,

Demo:
https://augmentedperception.github.io/welco
me-to-lightfields/



Light fields
» We need:

Images of the scene

Or a microlens image

Camera

» As light fields +depth but
No geometry, no need for 25900688665880
any 3D reconstruction 00800808005 sss0sees

Photographs are rep-
projected on the plane

Requires massive number of
images for good quality



Multi-plane images (MPI)
» We need:

Images of the scene
+ camera poses

» Each plane: RGB + alpha

Decomposition formulated
as an optimization problem

2N Promote to MPI
- ﬁ

Differential rendering

» Only front view prsd s

Reconstruction
loss

[1] Mildenhall, et al. “Local Light Field Fusion.” ACM
Transactions on Graphics 38, no. 4 (July 12, 2019): 1—
14. hitps://doi.org/10.1145/3306346.3322980

[2] Wizadwongsa et al. “NeX: Real-Time View Synthesis
with Neural Basis Expansion.” In CVPR, 8530-39. IEEE,
2021. https://doi.org/10.1109/CVPR46437.2021.00843 From [2]
https://nex-mpi.github.io/

[ _

View-dependent RGB MPI Ground truth

8



Neural Radiance Fields (NeRF)

5D Input Output Vol Rendering
4 We need Position +ngi1rection Color i%lensit Rel(l)(;:EICl 4 Crﬁ(oiglng
y g
Images of the scene i T ™Yy /I\Ilgt
+ camera poses . | 2
ik -g.t.
Similar to MPI but 2
. From [1]
stored in a . CEEE
volumetric data e “ ey [ IANR
* : : / b 4 /W Ray Distance .
Stru Ctu re ot : it . . / . c) Volumetric Rendering
. . [ ! .- / . & o o .
Implicit: multi-layer l L miitnize Lyeeon + ALty
Training PS
Pe rce Pt I"O n oS a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization
. . . From [2
Explicit:Voxel grid 2l
Volumetric [1] Mildenhall, et al. “NeRF: Representing Scenes as

. . . Neural Radiance Fields for View Synthesis,” 405-21, 2020.
differential rendering |
[2] Yu et al. “Plenoxels: Radiance Fields without Neural
Networks.” In CVPR, 5501-10, 2022.
http://arxiv.org/abs/2112.05131.



From a plenoptic function to a light field

» Plenoptic function — describes all possible rays in a 3D
space v

L(z,y,2,0,0)
Function of position (x,y, z)

and ray direction (6, ¢)
But also wavelength A and time t

Between 5 and 7 dimensions

» But the number of dimensions can be reduced if
The camera stays outside the convex hull of the object
The light travels in uniform medium

Then, radiance L remains the same along the ray (until the ray
hits an object)

This way we obtain a 4D light field



Planar 4D light field




Refocusmg and view point adjustment

» 12 Screen capture from http://www.lytro.com/



Depth estimation from light field

» Passive sensing of depth ~ Reconstructed
Central view  depth

» Light field captures multiple
depth cues

Correspondance (disparity)
between the views

Defocus

Occlusions

From: Ting-Chun Wang, Alexei A. Efros, Ravi
Ramamoorthi; The IEEE International Conference
on Computer Vision (ICCV), 2015, pp. 3487-3495

13



Two methods to capture light fields

» Small baseline » Large baseline
» Good for digital refocusing » High resolution

» Limited resolution » Rendering often requires
approximate depth




Light field image — with microlens array

— e =
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=
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[
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Microlens
array

Subject

Main lens

Photosensor
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Digital Refocusing using
Light Field Camera

Lenslet

SR R R N K B R
P Bk B R R R
E A R R B E R E

S A R R R R R R
E A K R K K E N
E A R R R E R R

e-sided microlenses [Ng et al 2005]




Lytro-cameras

» First commercial light-field cameras

» Lytro illum camera
40 Mega-rays
2D resolution: 2450 x 1634 (4 MPixels)




Raytrix camera

XIIIADS

(o

» Similar technology to Lytro

» But profiled for
computer vision applications

Micro Lens Array Main Lens Object

Image Sensor Intermediate Image

18



Stanford camera array

Application: Reconstruction of
occluded surfaces

S A AL AALLLL

E ATt iy
YYYY YTIIINN

A YW

YY Y Y999yt

96 cameras

19




PiCam camera array module

» Array of 4 x 4 cameras on a
single chip

» Each camera has its own lens
and senses only one spectral

COIOUI" band 2-Element Lens Array Sensor Array
Optics can be optimized for
o
that band Pacsu s o
» The algorithm needs to —| o f—

reconstruct depth

20
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Imaging — without lens

Two example

points <

e

"~

Object

22

Every point in the scene illuminates every point
(pixel) on a sensor. Everything overlaps - no useful
image.

Sensor

film

camera sensor
retina



Imaging — pinhole camera

Two example

points
<\ B

Object

Pinhole mask

Pinhole masks all but only tiny beams of light. The light

from different points is separated and the image is
formed.

But very little light reaches the sensor.

23

Sensor

film

camera sensor
B’ retina

A’




Imaging — lens

4 \ Sensor
Two example / film
points > camera sensor
~\— retina
Object

Lens

Lens can focus a beam of light on a sensor (focal plane).

Much more light-efficient than the pinhole.

24



Imaging — lens

25

/T Sensor

\ film
camera sensor
retina

Objec

W/

Lens

But it the light beams coming from different distances are
not focused on the same plane.
These points will appear blurry in the resulting image.

Camera needs to move lens to focus an image on the
sSensor.



Depth of field

» Depth of field — range of depths that provides sufficient
focus

F"f ’ 11
rf.prr.nr#-- g
o e wmlen sviy A be-nvm ‘1.‘['“‘

poerfocal distance opposy
7 arce using. It yvou the

he depth of field wa
e to infinity.< Forx
amera has a hypert

elocus at 18 tees,

26



Defocus blur is often desirable

To separate the object of Defocus blur is a strong depth cue
interest from background

27



Imaging — aperture

/_\ Sensor
/ film
camera sensor
retina
Objec
Lens

Aperture

Aperture (introduced behind the lens) reduces the
amount of light reaching sensor, but it also reduces
blurriness from defocus (increases depth-of-field).

28



Imaging — lens

/1 Sensor
‘ \ film
camera sensor

retina
Focal length

Focal length — length between the sensor and the lens that is
needed to focus light coming from an infinite distance.

Larger focal length of a lens — more or less magnification?

29
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Light fields: two parametrisations
(shown in 2D)

(s,t)

%[ Ray ] S - position
I >
S - slope

(x-position u - position

Position and slope
(slope - tangent of the angle) Two planes

31



Lighttfield - exa






Lightfield - ex




Lightfield - example

--
‘ ‘

]

|
\/

Slop\e S

}——

Image on the retina

Position x
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Light field rendering (1/3)

We want to render a scene (Blender monkey) as seen
by camera K. We have a light field captured by a
camera array. Each camera in the array has its aperture
on plane C.

37



Light field rendering (2/3)

From the view point of
camera K

Each camera in the
array provides
accurate light
measurements only for
the rays originating
from its pinhole
aperture.

The missing rays can
be either interpolated
(reconstructed) or
ignored.



Light field rendering (3/3)

The rays from the camera need to be projected on the focal
plane F. The objects on the focal plane will be sharp, and
the objects in front or behind that plane will be blurry
(ghosted), as in a traditional camera.

39

Ry

o

If we have a proxy geometry, we can
project on that geometry instead — the
rendered image will be less
ghosted/blurry



Intuition behind light field rendering

» For large virtual aperture (use all cameras in the array)
Each camera in the array captures the scene
Then, each camera projects its image on the focal plane F

The virual camera K captures the projection

» For small virtual aperture (pinhole)

For each ray from the virtual camera

interpolate rays from 4 nearest camera images

Or use the nearest-neighbour ray i

)

40



LF rendering — focal plane

» For a point on the focal

plane, all cameras capture
3D object .
the same point on the 3D

F object

» They also capture
approximately the same
colour (for diffuse objects)

» Averaged colour will be

C .
the colour of the point on

the surface

V>

41



LF rendering — focal plane

» If the 3D object does not

lie on the focal plane, all
3D object .
camaras capture different

F points on the object

» Averaging colour values
will produce a ,,ghosted”
‘ ‘ Image
} » If we had unlimited

number of cameras, this
would produce a depth-
% of-field effect

42



Finding homographic transformation 1,3

For the pixel coordinates p, of
the virtual camera K, we want to
find the corresponding
coordinates p; in the camera array

3D object

Given the world 3D coordinates hdl

/' Pa/ \J
of a point w: et .
g e Rea
[ Intrinsic | Projection] [ View ] ‘
camera matrix | matrix matrix

_f 0 21 M & & i (011 V1 U13 via| [ X
— ()x ¥ Cx 01 0 of [Vt V22 V23 U ¥
0 Oy 1y 0010 U31 Us2 Uszz Us4 Z

- = & 110 0 o0 1]]|1]




Finding homographic transformation 2/3

» A homography between two views is usually found as:
Pk = KxPVgw
p; = K;PV;w
hence
p; = K;PV,Vx'P 1K py
» But, Kx PV is not a square matrix and cannot be
inverted

To find the correspondence, we need to constrain 3D

coordinates w to lie on the plane: e

N-(w—wp)=0 or d:[nx Ny N —N-*wp}

Y
Z
1

44



Finding homographic .

The plane in
the camera coordinates
(not world coordinates)

3/3

» Then, we add the plane equation t¢ the projection matrix

Li f it

Y | 0

d,,; a 0

w i | ! 0
D;

» Where d; is the distance to the plane (set to 0)

» Hence
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Electromagnetic
spectrum

» Visible light
Electromagnetic waves of wavelength

in the range 380nm to 730nm

Earth’s atmosphere lets through a lot
of light in this wavelength band

Higher in energy than thermal
infrared, so heat does not interfere
with vision

&)
=
)
c
o)
e E
o
= 0
O o
LY
Wl o
1000 MHz —
E UHF
500 MHz -+
11 VHF
7-13
100 MHz—_ FM
1 VHF
J1 26
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ﬁ L
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~ KT}
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- =
L
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400 nm
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Colour

» There is no physical definition of colour — colour is the result
of our perception

» For reflective displays / objects

colour = perception( illumination X reflectance )
@
FYA

» For emissive objects or displays

colour = perception( emission )

A
)\
@
4 sy



Black body radiation

» Electromagnetic radiation emitted by a perfect absorber at a
given temperature

» Graphite is a good approximation of a black body

14

12 -
Classical theory (5000 K)
10

Intensity (arb.)




Correlated colour temperature

» The temperature of a black body radiator that produces light
most closely matching the particular source

» Examples:

Typical north-sky light: 7500 K
Typical average daylight: 6500 K
Domestic tungsten lamp (100 to 200 W): 2800 K

Domestic tungsten lamp (40 to 60 W): 2700 K
Sunlight at sunset: 2000 K

» Useful to describe colour of the illumination (source of
light)




vay
Standard illuminant D65 &

» Mid-day sun in Western Europe / Northern Europe
» Colour temperature approx. 6500 K

CIE D65

1.00

0.80 -
5
3 0.60 -
O
()
= 0.40 -
ks X, y = (0.3128, 0.3290)
* 0.20 - CCT = 6504 K

CRI = 100

000 e —
3/ 450 550 650 750

5 Wavelength (nm)



Retlectance

» Most of the light we see is reflected from objects

» These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

10 Y Y  Emm— o - e
o8 Wh)’ not .
red?
06~ 4

REFLECTANCE
(o]
=

REFLECTANCE

o2

l 2 1 S I |
400 300 600 700

WAVELENGTH A (am) WAVELENGTH ) (am)

J FE N




Reflected light
L(A)=I(A)R(A)

» Reflected light = illumination X reflectance

CIE D65
1.00
0 e
0.80 -
%
3 060
o
[¢b]
2 0.40 -
ks X, y = (0.3128, 0.3290)
E 6.90 - CCT = 6504 K
CRI = 100

000 e ——

350 450 550 650 750

REFLECTANCE

Wavelength (nm)

The same object may appear to have p—

. . 400 300 00 00
different color under different WAVELENGTH A (am)
illumination.

9



Fluorescence

>

Normalized Data

Normalized Data

o o o o =
N DN O ® O

o
@)

T

N
oy

n —— Absorption
— F| 420nm EXx
FI 450nm Ex
—— FI1470nm Ex

—
400 500 600 700
Wavelength (nm)

—— Absorption

—— F1 420nm EXx
FI 450nm Ex

— FI1 470nm EX

400 500 600 7700
Wavelength (nm)
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Colour perception

» Di-chromaticity (dogs, cats)
Yellow & blue-violet

Green, orange, red indistinguishable

» Tri-chromaticity (humans, monkeys)
Red-ish, green-isn, blue-ish T ';:E.é:t"'
Colour-deficiency e IR G A Y

Most often men, green-red colour-deficiency ALY S g8t

www.lam.mus.ca.us/cats/color/




Colour vision

» Cones are the photreceptors
responsible for colour vision

» Three types of cones

Only daylight, we see no colours
when there is not enough light

S — sensitive to short /
wavelengths A

400 450 500 550 600 650 700

M — sensitive to medium

wavelengths Sensitivity curves — probability that a

photon of that wavelengths will be

absorbed by a photoreceptor. S,M

wavelengths and L curves are normalized in this
plot.

L — sensitive to long



Perceived light

» cone response = sum( sensitivity X reflected light )

Intensity (cou
- [N
i=3

400 450 500 550 600 650 700

Although there is an infinite number of Formally
wavelengths, we have only three 730
photoreceptor types to sense R, = JSS (A1) L(A)dA
differences between light spectra 130

14 Index S for S-cones



Metamers

» Even if two light spectra are different, they may appear to have
the same colour

» The light spectra that appear to have the same colour are
called metamers

‘A S

*
700 )\' 00 450 700 I I

» Example:

P

400

P
.
700 )\' 40 40 S0 50 60 60 700

400
|5




Practical application of metamerism

» Displays do not emit the same light spectra as real-world
objects

» Yet, the colours on a display look almost identical

On the display

" BT P
\ : I )
400 700
P
*
400 700 M

In real world
16



Tristimulus Colour Representation

1
Ar.\y colour can be. matched P RO 645 m
using three linear independent o 00526 -
reference colours fest source . S “444mm
May require “negative”

contribution to test colour

Matching curves describe the VObseWer
value for matching mono-
chromatic spectral colours of
equal intensity

With respect to a certain
set of primary colours

Tristimulus Values

L
| o |

500 600 700

Wavelength, A (nm)

17



Standard Colour Space CIE-XYZ
» CIE Experiments [Guild and Wright, 1931]

Colour matching experiments
Group ~12 people with ,,normal® colour vision

2 degree visual field (fovea only)

» CIE 2006 XYZ

Derived from LMS colour matching functions by Stockman & Sharpe

S-cone response differs the most from CIE 1931

» CIE-XYZ Colour Space

Goals
Abstract from concrete primaries used in an experiment
All matching functions are positive

Primary ,,Y” is roughly proportionally to achromatic response (luminance)



Standard Colour Space CIE-XYZ

» Standardized imaginary primaries CIE
XYZ (1931)

Sensitivity

19

Could match all physically realizable colour
stimuli

Cone sensitivity curves can be obtained by
a linear transformation of CIE XYZ

T T T T

LMS

| 1 1 !
400 450 500 550 600 650 700
Wavelength [nm]

Value

.

o-—L—L—A—l—l—L—L—l—&-—L
WO NWRrRUION®O©

coco
N w s
T~ T 1rrrrrrrr 111111

0.8

A

500 600
Wavelength, A = (nm)

700



CIE chromaticity diagram

» chromaticity values are defined in terms of x, ), z
X Y Z

X = , Y= , Z= x+y+z=1

X+Y+Z7 X+Y+7 X+Y+Z7
ignores luminance s
can be plotted as a 2D function

pure colours (single wavelength) s10nm

lie along the outer curve 07 ]

all other colours are a mix of 06

pure colours and hence lie >

inside the curve 5

points outside the curve do not
exist as colours 490nm

20
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Achromatic/chromatic vision

mechanisms |
. Light spectra

1.5
q ' J
0.5 1
0
400 500 600 700

A

M

400 450 500 550 600 650 700
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Achromatic/chromatic vision

mechanisms |
. Light spec’;ra

q ‘I J
0.5 7

400 500 600 700

A

M

400 450 500 550 600 650 700

Sensitivity of

Luminance does : the achromatic
NOT explain the Q mechanism
brightness of light!
[Koenderink et al. ~
Vision Research B A
2016] Luminance w0 xe e 70

achromatic

23



Achromatic/chromatic vision

mechanisms |
. Light spectra

400 450 500 550 600 650 700

N

/!
B—

Green-red Luminance
chromatic achromatic

24



Achromatic/chromatic vision
mechanisms

. Light spectra

Blue-yellow Green-red Luminance
chromatic chromatic achromatic

25



Achromatic/chromatic vision

mechanisms |
. Light spectra

Cao et al. (2008). Vision OAL.L

Research, 48(26), 2586-92. w0 s0 600 700

R S M L

Blue-yellow Green-red Luminance
s e o 0 chromatic chromatic achromatic

Wavelength (nm)

26



Luminance

» Luminance — measure of light weighted by the response of the
achromatic mechanism. Units: cd/m?

700

Luminance — Ly = j kL(A)V(A)dA k = 683.002
y\ \
Light spectrum (radiance) Luminous efficiency function
(weighting)
350 400 4;0 560 A 800 | 1 |
Wavelength [nm] 400 500 600 700
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Visible vs. displayable colours

» All physically possible and visible
colours form a solid in the XYZ space e
» Each display device can reproduce a Visible
subspace of that space =
» A chromacity diagram is a projection
of a slice taken from a 3D solid in
XYZ space n
» Colour Gamut — the solid in a colour X
space [
Usually defined in XYZ to be device- T

independent

29
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Standard vs. High Dynamic Range

<

HDR cameras/formats/displays attempt
capture/represent/reproduce (almost)
all visible colours

They represent scene colours and
therefore we often call this representation

scene-referred
SDR cameras/formats/devices attempt
to capture/represent/reproduce only
colours of a standard sRGB colour
gamut, mimicking the capabilities of
CRTs monitors

They represent display colours and
therefore we often call this representation

display-referred

30

VISIble
Color
gamut

SRGB
Samug

o
oQ
~<

durUIWN| 80|
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——— Tone mapping

From rendering to display

HlI IR / E ‘Fi ySICAal

Rendering

\L Scene-referred ———

S — Emitted light

Display-referred

colours
J/ Digital signal /
gigmigph

Display encoding
EOTF /
Inverse display model

31



From rendering to display

HDR / p \%x}'b« ical
Rendering
Emitted light
colours

T ,
one Mapping Display-referred

colours

floating point values .. .

relative to physical values DIQITG| Slgnal /
Linear colour UL

Display encoding space

— EOTF /

Inverse display model

Gamma-corrected
colour space

8-12 bit integers
encoded for efficiency

32



From rendering to display

HDR / physical ' "
Rendering Display model /\

\L Scene-referred gamma- ——— . .
colours corrected Emitted |Igh1’
———— Tone mappin :

PPing Display-referred *
colours

floating point values .. .

relative to physical values DIQITG| Slgnal /

Linear colour UL

Display encoding space
P EOTF /
Inverse display model

Gamma-corrected
colour space

Inverse display model

8-12 bit integers
encoded for efficiency

33



Display encoding for SDR: gamma

» Gamma correction is often used to encode luminance or tri-
stimulus color values (RGB) in imaging systems (displays,
printers, cameras, etc.)

1 . . : .
/
- Gamma 0.8 _
G
o (usually =2.2)
. 0.6F
_ 14 ol
VOU.t — d Vln P
0.2F e
(relative) Luminance Luma T E— 0.6 0.8
Physical signal Digital signal (0-1) Vin
1 Colour: the same equation
1 y applied to red, green and blue
Inverse: Vi, = (E - Vout) colour channels.

34



Why is gamma needed?

Linear encoding Vg= 0.00 <- Pixel value (luma)

<- Luminance

Linear intensity /= HiH .

» Gamma-corrected pixel values give a scale of brightness levels
that is more perceptually uniform

» At least |2 bits (instead of 8) would be needed to encode
each color channel without gamma correction

» And accidentally it was also the response of the CRT gun

35



Luma — gray-scale pixel value

» Luma - pixel “brightness” in gamma corrected units
L' =0.2126R" 4+ 0.7152G" + 0.0722B’

R’, G' and B’ are gamma-corrected colour values
Prime symbol denotes gamma corrected

Used in image/video coding

» Note that relative luminance if often approximated with

L =0.2126R + 0.7152G + 0.0722B
= 0.2126(R")Y+0.7152(G")Y+0.0722(B")Y

» R,G,and B are linear colour values

» Luma and luminace are different quantities despite similar formulas

36



Standards for display encoding

Standard Dynamic Range  ITU-R 709 2.2 gamma / sSRGB 8to 10
High Dynamic Range ITU-R 2020 ITU-R 2100 (PQ/HLG) 10 to 12
Colour space Electro-Optical Transfer Function
What is the XYZ of “pure” red, How to efficiently encode each primary
green and blue colour
0.9
08 | oy, o iTuR BT.20%0 - | 1
0.55:. g 0.8 HDR: PQ :
i E 0.6 :
w \ ] |
Ooat E 0.4 :
0.3} 4§ & i 1 :
0.21 ‘ ____———_'__.""_'.'-ffjf |
01 ﬁEﬂJT.E]-l_I H_hmﬂ: | ””””1 | Ilﬂ - Im'ilﬂﬂl 1lfJIL'JG | IIIIIE.]IGUE]
Luminance [cd/m?] / Radiance [W sr'1 m™]

0.8

CIE x



How to transform between linear
RGB colour spaces?

RGB — — RGB
ITU-R709 |«— XYZ < | ITU-R 2020
SDR Device-independent HDR

» From ITU-R 709 RGB to XY/Z:

X 0.4124 0.3576 0.1805 'R
Y[=10.2126 0.7152 0.0722 |G
Z 10.0193 0.1192 0.95051r709t0xyz LB1R709
Relative XYZ  Relative XYZ Relative XYZ Relative RGB
of the red of the green of the blue (0-1) in the

primary primary primary R709 space

38



How to transform between
RGB colour spaces?

» From ITU-R 709 RGB to ITU-R 2020 RGB:
R R
G = Mxyztor2020 * MRr709t0xvz * |G
BlRr2020 LB1Rr709
» From ITU-R 2020 RGB to ITU-R 709 RGB:
o~ P
G = Mxyztor709 * MR2020t0xvZ * |G
Blgp709 Blgr2020

» Where:

0.4124 0.3576 0.1805
Mg7ootoxyz = |0.2126  0.7152  0.0722| and Mxyzt0r709 = MRr700t0xv2
0.0193 0.1192 0.9505
0.6370 0.1446 0.1689
Mgoo20toxyz = [0.2627  0.6780 0.0593| and Myyz:0r2020 = MR2020t0x72
0.0000 0.0281 1.0610
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Representing colour

» We need a way to represent colour in the computer by some
set of numbers
A) preferably a small set of numbers which can be quantised to a fairly
small number of bits each
Gamma corrected RGB, sRGB and CMYK for printers
B) a set of numbers that are easy to interpret
Munsell’s artists’ scheme

HSV, HLS

C) a set of numbers in a 3D space so that the (Euclidean) distance in

that space corresponds to approximately perceptually uniform colour
differences

CIE Lab, CIE Luv

41



RGB spaces

» Most display devices that output light mix red, green and blue
lights to make colour

televisions, CRT monitors, LCD screens

» RGB colour space
Can be linear (RGB) or display-encoded (R'G’B’)
Can be scene-referred (HDR) or display-referred (SDR)

» There are multiple RGB colour spaces
ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3

Each using different primary colours

And different OETFs (gamma, PQ, etc.)
» Nominally, RGB space is a cube

42




RGB 1in CIE XYZ space

» Linear RGB colour values can be

Q
transformed into CIE XYZ &
cC Q
. . e . 7))
by matrix multiplication 5 s
because it is a rigid transformation % 2
. . (@)
the colour gamut in CIE XYZ is 0
a rotate and skewed cube < %
» Transformation into Yxy
is non-linear (non-rigid)
. . >
colour gamut is more complicated &
c
5 3
>
e 3 o
% (D 0.4 -
0 3 N
m 8 0.1
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CMY space

» printers make colour by mixing coloured inks
» the important difference between inks (CMY) and lights (RGB)
is that, while lights emit light, inks absorb light
cyan absorbs red, reflects blue and green

magenta absorbs green, reflects red and blue

yellow absorbs blue, reflects green and red
» CMY is, at its simplest, the inverse of RGB

» CMY space is nominally a cube
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CMYK space

& ik

4 Mo < *hb‘.‘p': N
\ e’ 1 Sros Serad 4% Sy s )
L e el e
’-«.'-),‘“‘. WP

L

 C+M+Y+K

» in real printing we use black (key)
as well as CMY

» why use black?

inks are not perfect absorbers
mixing C + M + Y gives a muddy grey,
not black

lots of text is printed in black: trying to
align C, M and Y perfectly for black text
would be a nightmare
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Munsell’s colour classification system

» three axes

hue > the dominant colour B T
value » bright colours/dark colours —
chroma > vivid colours/dull colours —

can represent this as a 3D graph
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Munsell’s colour classification system

» any two adjacent colours are a standard “perceptual” distance
apart
worked out by testing it on people
a highly irregular space

e.g. vivid yellow is much brighter than vivid blue

A white 5Y 5PB

| i
«  HINNNNNREREREAD
B IRERERERERARERER
INNRERENRERERER
3
2
1

value

<, 8 ! |
/ .
7y, 1086 g P\
AT IR

20 "6 M2 /8 4 0 /4 8 12 16 20

47
invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours



Colour spaces for user-interfaces

» RGB and CMY are based on the physical devices which
produce the coloured output

» RGB and CMY are difficult for humans to use for selecting
colours

» Munsell’s colour system is much more intuitive:
hue — what is the principal colour?
value — how light or dark is it?

chroma — how vivid or dull is it?

» computer interface designers have developed basic
transformations of RGB which resemble Munsell’s human-
friendly system
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HSTV: hue saturation value

» three axes, as with Munsell
hue and value have same meaning

the term “saturation” replaces the Cyan €—
term “chroma”

simple conversion from gamma-
corrected RGB to HSV

¢ designed by Alvy Ray Smith in 1978

¢ algorithm to convert HSV to RGB and
back can be found in Foley et al.,
Figs 13.33 and 13.34
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HLS: hue lightness saturation

a simple variation of HSV '
¢ hue and saturation have same ‘-%W““e
meaning
+ the term “lightness” replaces the
term “value”

designed to address the
complaint that SV has all pure
colours having the same
lightness/value as white

¢ designed by Metrick in 1979

¢ algorithm to convert HLS to RGB

and back can be found in Foley et
al., Figs 13.36 and 13.37




Perceptual uniformity

» MacAdam ellipses & visually indistinguishable colours

520 530 340
0.6 P—=l—/=5504
510nn
GO0
G102
500nm 623 640 680
0.5f

0.5

y - chromaticity coordinate

630 "m“ CIE 1976 «'v'
o1l chromaticity
diagram
0.0 i | | i | i |
0.0 0.1 0.2 ﬂ.3: 04 0.5 0.6
I
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
380 nm chromaticity coordinate
In CIE xy chromatic coordinates In CIE u’v’ chromatic coordinates
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CIE L'uv: and uv’

» Approximately perceptually uniform

» uV' chromacity

' 4X

T X+ 15Y +3Z
! 9Y

YT X +15Y + 32

» CIE LUV

u

3
[ Lightness L e (2) v/v.,

= LA (.
[ Chromacity }“ =13L" - (u' — )

coordinates 7 v = 13L" - (v —v},)

» Hue and chroma

Civ = \/(u* }2 + (v* )2

h'!.l.'r.r = atanz(,u*.’ u*)?

52

4z
2z + 12y + 3
Yy
—2z+12y +3

Y /Y, < (%)3

3
116(Y/Y,)Y® —16, Y/Y, > (%)

Colours less
distinguishable
when dark

]




CIE L’a’b” colour space

100

» Another approximately perceptually
uniform colour space

L* =116f (%) — 16 Trichromatic \
DX v values of the
a* = 500 (f (E) -f (?n white point, e.g.
. Y Z Xﬂ_ = 95-0471
vem(s(y)(2)) | K-
Z, = 108.883 /
£#) Vvt if t > §°
= t 4 R
2 + 355 otherwise
6
§=— —
29

» Chroma and hue

a

C* = +\/a*? +b*2, h® = arctan(b—*)

Adobe RGB
gamut in CIELAB
space, top view
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Lab space

» this visualization shows those
colours in Lab space which a
human can perceive

» again we see that human
perception of colour is not
uniform

perception of colour diminishes at
the white and black ends of the L

axis

the maximum perceivable chroma
differs for different hues
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Colour - refterences

» Chapters ,,Light” and ,,Colour” in
Shirley, P. & Marschner, S., Fundamentals of Computer Graphics

» Textbook on colour appearance

Fairchild, M. D. (2005). Color Abpearance Models (second.). John Wiley &
Sons.

» Comprehensive review of colour research

Wyszecki, G., & Stiles,W.S. (2000). Color science: concepts and methods,
quantitative data, and formulae (Second ed.). John Wiley & Sons.
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Many graphics/display solutions are
motivated by visual perception

M.204

MPEG-4/AVC

Image & video
compression

Camera’s
Bayer pattern

i (B oW 0E ol ol ol
SRS L N L L
8

8
S L T BT T BT T B

i M O o 0 o OE vl
1 T BT BT T BT T T
i W CB ol CB ol CB ol
oL BT T BT ST WL T
8

Display’ s subpixels
Halftonning Color wheel in DLPs



Luminance (again)

» Luminance — measure of light weighted by the response
of the achromatic mechanism. Units: cd/m?

700

Luminance

— I, = j KL(DV(A)dA

-

[v]
05

k = 683.002

Light spectrum (radiance)

L

350 400 450 500 550 600 650 700 Y50 800

Wavelength [nm]

Luminous efficiency function
(weighting)

400 500 600 700




Steven’ s power law for brightness

» Stevens (1906-1973) measured the perceived magnitude
of physical stimuli

Loudness of sound, tastes, smell, warmth, electric shock and

brightness

Using the magnitude estimation methods

Ask to rate loudness on a scale with a known reference

» All measured stimuli followed the power law:

Perceived
magnitude

7

O(1)= kI’

AN

Constant

—

Exponent

Physical
stimulus

» For brightness (5 deg target in dark),a = 0.3
4



Steven’s law for brightness

Perceived brightness
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Steven’s law vs. Gamma correction

Stevens’ law
a=0.3

Gamma function

=22

Gamma

Perceived brightness

100

80 r

60 -
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..........\.....
-
....\...
- -
20 40 B0 a0 100
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Detection thresholds

» The smallest detectable difference between
the luminance of the object and

the luminance of the background



Threshold versus intensity (t.v.i.)
function

» The smallest detectable difference in luminance for a
given background luminance

w

AL

N

—

o

I
—

log, , detection threshold AL [cd/m?]

Lo

-2 0 2 4
log, , background luminance [cd/m?]



Blackwell 1946
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Psychophysics
Threshold experiments

Psychometric function

Al
ost P=0.75 /
£ 06[ JI
]
-§ .
& 04l
02 .
Detection
of threshold
10 10 10 10 10

Luminance difference AL



Luminance threshold AL

t.v.1 function / c.v.i. function / Sensitivity

» The same data, different representation

Threshold vs. intensity Contrast vs. intensity Sensitivity
10000 : - : : y 1000
; | 2 ; 100 —_——
1000 x = 100} o
; t.v.i. < : ~ 10
100¢ S 10} 5
5 G ? a4 4
10 3 o 1k =
i = g ‘g‘
3 £ o01f @ 01
i E \"“-a___h_h w
0.1 "E‘ 0.01 r— U1 p.01
0.01F | | | | Y | | | | | | | |
0.0001 0.01 1 100 10000 0.0001 0.01 1 100 10000 0.0001 0.01 1 100 10000
Luminance [Edfm2] Luminance [cd;’mzj Luminance [cd;’mEJ
AL 1 L
AL — Ldisk B Lbackground T - L S = ? = AL



Sensitivity to luminance

» Weber-law — the just-noticeable difference
is proportional to the magnitude of a

stimulus

The smallest
detectable
luminance
difference

Ernst Heinrich Weber
[From wikipedia]

Background
(adapting)
luminance

\i Constant

Typical stimuli:




Consequence of the Weber-law

Smallest detectable difference in luminance

AL For k=1% BN AR

L — k 100 cd/m?2 | cd/m?
| cd/m? 0.0l cd/m?

Adding or subtracting luminance will have different visual
impact depending on the background luminance

Unlike LDR luma values, luminance values are not
perceptually uniform!



How to make luminance (more)

perceptually uniform?

» Using “Fechnerian” integration

—(L)—

AL(L)
Derivative of
fEspeits Detection
threshold
Luminance R(L) fL i
transducer: — . AL(l)
min

response - R

P e e e e e ——————

luminance - L



Assuming the Weber law

AL _
=

» and given the luminance transducer

R(L) = 1dl
()—jm)

» the response of the visual system to light is:

1 1
R(L)= | —dL = — In(L
(L) /kL kn()+k1



Fechner law

R(L) = aln(L)

» Response of the visual system to luminance
is approximately logarithmic

Gustav Fechner
[From Wikipedia]



But...the Fechner law does not hold for
the full luminance range

» Because the Weber law does not hold either

» Threshold vs. intensity function:

&E 3
s | AL
L 2t
-
<
©
° 1t
£
8
s o The Weber law
(=} c
8 region
°
©
o
= 4
8 L
-3 . .
-4 -2 0

Iog1 0 background luminance [cd/m?]



Weber-law revisited

» If we allow detection threshold to vary with luminance
according to the t.v.i. function:

W

1AL wi(L)

L .

log, , detection threshold AL [cd/m’]

1%

- 0 2
Iog1 0 background luminance [cd/mz]

) we can get a more accurate estimate of the “response:

R(L)= | m’l(l) di




Fechnerian integration and Stevens’ law

2000|
R(L) - function P — Hyphotetical luminance response
derived from the ‘ ~ — - Brightness function {L'"%)
t.v.i. function ' ' '
1500

1000

Response

500F

1

o i) dl

i 0 _ . . . _

s 4 a3 2 4 0 1 2 3 4
Luminance [Ingm cdfmz]

R(L)= |




Applications of JND encoding — R(L)

» DICOM grayscale function

Function used to encode signal for medial
monitors

| 0-bit JND-scaled (just noticeable
difference)

Equal visibility of gray levels

» HDMI 2.0a (HDRI10)
PQ (Perceptual Quantizer) encoding
Dolby Vision

To encode pixels for high dynamic range
images and video

21

DOLBY
VISION

The Future of Vision
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Resolution and sampling rate

» Pixels per inch [ppi]

Does not account for vision

<t

W - screen wid:h [m]

» The visual resolution depends on r - screen resolution
screen size
screen resolution - viewing distance [m]

viewing distance 0

» The right measure

Pixels per visual degree [ppd]

In frequency space
Cycles per visual degree [cpd]
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Pixel value

Fourier analysis

» Every N-dimensional function (including images) can be
represented as a sum of sinusoidal waves of different

frequency and phase

%]

—
o
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—
o
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I
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[\]
T

1

0 200 400 600
Pixel position

each frequency

25
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S o o o o
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e e
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0
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Pixel position

» Think of “equalizer” in audio software, which manipulates

1000



Pixel value

1

o
o

o
)

o
~

o
o

o

Spatial frequency in images

4 Image space units: cycles per sample (or cycles per pixel)

/7\

N \//\

0

What are the screen-space frequencies of the red and green

sinusoid?

Plxel posulon

» The visual system units: cycles per degree

26

If the angular resolution of the viewed image is 55 pixels per

degree, what is the frequency of the sinusoids in cycles per

degree!
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Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency
signal that can be (uniquely) reconstructed

Sampling density — how many pixels per image/visual angle/...

: f f { f f

Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency

27



Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency
signal that can be (uniquely) reconstructed

0.5

Sampling density — how many pixels per image/visual angle/...

T
\

X

28

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow

infinitely high frequency

RVAVAVLY

Pixel position

9

10




Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency
signal that can be (uniquely) reconstructed

Sampling density — how many pixels per image/visual angle/...

1 T I I I I

Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency

29
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Fixel value

Nyquist frequency

» Sampling density restricts the highest spatial frequency
signal that can be (uniquely) reconstructed

Sampling density — how many pixels per image/visual angle/...

1 I I I

Pixel position

Any number of sinusoids can be fitted to this set of samples

It is possible to fit an infinite number of sinusoids if we allow
infinitely high frequency

30
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Nyquist frequency / aliasing

» Nuquist frequency is the highest frequency that can be
represented by a discrete set of uniform samples (pixels)

» Nuquist frequency = 0.5 sampling rate

For audio

If the sampling rate is 44100 samples per second (audio CD), then the
Nyquist frequency is 22050 Hz

For images (visual degrees)

If the sampling rate is 60 pixels per degree, then the Nyquist
frequency is 30 cycles per degree

» When resampling an image to lower resolution, the
frequency content above the Nyquist frequency needs to
be removed (reduced in practice)

Otherwise aliasing is visible
31



Modeling contrast detection

Lens Photoreceptors

Cornea
Retinal ganglion cells

— Visual
P
Cortex Detection
< Integration
Defocus & GI Colour opponency .
Aberrations = 2'¢ Luminance masking P & M visual pathways Contrast masking

Spectral sensitivity

Adaptation Spatial- / orientation- / temporal-

Selective channels

4

A

Contrast Sensitivity Function
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Spatial frequency [cycles per degree]

Contrast

y

33

A 4

Campbell & Robson contrast sensitivity chart






Contrast sensitivity function

Temporal frequency
Stimulus size

Spatial frequency \ \ Eccentricity

CSF =S(p,0,m,1,i’ de)

Orientation / /

Adapting luminance

Viewing distance

35



CSF as a function of spatial frequency
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T
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Sensitivity (L/AL)

L= 0.001 cd/m?

| | | | |
5 10 15 20 25 30
Spatial frequency [cpd]
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CSF as a function of background
luminance

100 - .
—~ 30 |
|
d
=
2>
=
2 10} |
3
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1 1 1 1 IIIIII 1 1 1 IIIII| 1 1 1 IIIIII l|||| 1 1 1 IIIII| 1 1 1 IIIIII 1 1 1 | I |
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Background luminance [cd/m2]
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Sensitivity (L/AL)

CSF as a function of spatial frequency
and background luminance
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—_
o
L |
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Contrast constancy

Experiment: Adjust the Match?
amplitude of one sinusoidal
grating until it matches the <:>
perceived magnitude of
another sinusoidal grating. Test Reference
0-003 [ . /
..---""#9 * G.D.S.
o — Aﬁ .
001 | 7/ p o
i
2 003 | '%/H\*\u
g g \o *
E 0-1 3% .
:,/'3 - .
03 |- 0/,/‘""“" .
B I S e .
025 05 1 2 5 5 10 15 20 25

Spatial frequency (c/deg)

39 From: Georgeson and Sullivan. 1975. J. Phsysio.






CSF and the resolution

» CSF PIOtted as the 1l HTCV|vePro ___________ ayea

detection contrast b 0 A

& —¢1
Ly

Expected
contrast in
natural images

» The contrast below eachg =~ - Yrm e
line is invisible b

Detection threshold AL/L

» Maximum perceivable R I I B
. 0 10 20 30 40 50 60
resolution depends on Spatial frequency [ope]

luminance

CSF models:
Barten, P. G. J. (2004).
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Spatio-chromatic CSF




Spatio-chromatic contrast sensitivity

» CSF as a function of luminance and frequency
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2169-2629.2020.28.1
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CSF and colour
ellipses

thresholds are shown 2x larger
Y = 2 [cd/m?]
frequency = 1 [cpd]
area = 3.14 [deg?]

0.7

=  Colour discrimination as a function of

Background colour and luminance
[LMS]

Spatial frequency [cpd]
Size [deg]

thresholds are shown 2x larger
Y = 100 [cd/m?]
frequency = 0.5 [cpd]
area = 3.14 [degz]

thresholds are shown 2x larger
Y =100 [cd/m?]
frequency = 0.5 [cpd]
area = 3.14 [degz]

084
0.7
0.6

0.5

0.5
~ 04t > &
0.4 '
0.3} 681
0.2} 85k
0.1F 0.1
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blur in red-green blur in blue-yellow

Visibility of blur

. blur in light-dark
. s e . - P .
_' _. red-green ’
. blue- 3
| yellow -

» The same amount of blur was introduced into light-dark,
red-green and blue-yellow colour opponent channels

h
.‘ .v

» The blur is only visible in light-dark channel

» This property is used in image and video compression

Sub-sampling of colour channels (4:2:1)
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Mach Bands — evidence for band-pass
visual processing

“Overshooting” along edges
— Extra-bright rims on bright sides
— Extra-dark rims on dark sides
Due to “Lateral Inhibition®

lighg

A
H
)
II'
!
1
X
]
H

i
W

@ Brightness

O
=

Distance from left edge

N
~N



Centre-surround (Lateral Inhibition)

» “Pre-processing” step within the retina G
. . . . receptive fields
Surrounding brightness level weighted negatively (groups of

A: high stimulus, maximal bright inhibition photoreceptors)

B: high stimulus, reduced inhibition & stronger response

D: low stimulus, maximal inhibition

C: low stimulus, increased inhibition &
weaker response




Centre-surround: Hermann Grid

Dark dots at crossings

Explanation
— Crossings (A)

* More surround stimulation

(more bright area)
= Less inhibition
= Weaker response

— Streets (B)

* Less surround stimulation

— More inhibition
— Greater response

Simulation

— Darker at crossings, brighter in streets
— Appears more steady

— What if reversed ?

49
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Spatial-frequency selective channels

» The visual information is
decomposed in the visual cortex

into multiple channels

The channels are selective to spatial
frequency, temporal frequency and
orientation

Each channel is affected by different
,noise” level

The CSF is the net result of

information being passed in noise-
affected visual channels

Sensitivity

Spatial frequency

From: Wandell, 1995
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Multi-scale decomposition

Steerable pyramid
decomposition




Multi-resolution visual model

» Convolution kernels R, soale i T
are band-pass, OOO ; é e
orientation selective o
filters (m . é i
Noise
Stimulus [ g
"Il" Q%% 4’/‘ g
o=
. b
Noise E
/ Noise g
» The filters have the 000 . / %
shape of an oriented § Noise
Gabor function //% / %U

From: Wandell, 1995
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Predicting visible differences with CSF

» We can use CSF to find the probability of spotting a
difference beween a pair of images X; and X,:

p(f[X1] = f[X2] 1Xy, Xp, CSF)  fIX]d Theperen

of image X

— Background
- AL ) 4 Lb Lb ALthr w R )
decomposition — / -*\ P detection
Py Corrlp“tte Psychometric  \avelet
== contras function  reconstruction
SN C S F

(simplified) Visual Difference Predictor Daly, 5. (1993).
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Applications of multi-scale models
» JPEG2000

Wavelet decomposition

» JPEG / MPEG

Frequency transforms

» Image pyramids
Blending & stitching
Hybrid images

55 Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
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Light and dark adaptation

adaptation to light e—
adaptation to dark e—

sudden change in illumination

» Light adaptation: from dark to bright
» Dark adaptation: from bright to dark (much slower)

57



Threshold (log,,(td))

Time-course of
adaptation

58

0.0
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: Dark Adaptation:
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Temporal adaptation mechanisms

» Bleaching & recovery of photopigment
Slow assymetric (light -> dark, dark -> light)
Reaction times (1-1000 sec)
Separate time-course for rods and cones
» Neural adaptation
Fast
Approx. symmetric reaction times (10-3000 ms)
» Pupil
Diameter varies between 3 and 8 mm

About |:7 variation in retinal illumunation
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Night and daylight vision

Vision mode: SCOTOPIC MESOPIC PHOTOPIC
rod activity / cone activity
[ ! } $ \: } } { Luminance [log cd/m?]
6 4 ‘ 2 0 2 4 6 8
night light office light daylight
Mode properties: monochromatic vision good color perception

limited visual acuity good visual acuity

Rod\A Cone
V1(A) V(A)

Luminous efficiency

60 400 500 600 700
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Simultaneous contrast




High-Level Contrast Processing

63



High-Level Contrast Processing

Checker-shadow illusion:
The squares marked A and B
are the same shade of gray.

Edward H. Adelson
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Shape Perception

<
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« Depends on surrounding primitives
— Directional emphasis
— Size emphasis

65 http://www.panoptikum.net/optischetaeuschungen/index.html



Shape Processing: Geometrical Clues

ﬂm http://www.panoptikum.net/optischetaeuschungen/index.html

* Automatic geometrical interpretation
— 3D perspective
— Implicit scene depth

66



Impossible Scenes

» Escher et.al.

— Confuse HVS by presenting
contradicting visual clues

— Local vs. global processing

http://www.panoptikum.net/optischetaeuschungen/index.html
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Law of closure

69



References

» Wandell, B.A. (1995). Foundations of vision. Sinauer
Associates.

Available online:
» Mantiuk, R. K., Myszkowski, K., & Seidel, H. (2015). High

Dynamic Range Imaging. In Wiley Encyclopedia of Electrical
and Electronics Engineering.Wiley.

Section 2.4

Available online:

70



GRAPHICS gelelV]y

Advanced Graphics and Image Processing

High dynamic range and tone mapping

Part 1/2 - context, the need for tone-mapping
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Cornell Box: need for tone-mapping in
graphics

Rendering Photograph



Real-world scenes are more challenging

» The match could not be
achieved if the light source in
the top of the box was visible

» The display could not
reproduce the right level of
brightness




Dynamic range

Luminance
== max L

min L
T

(for SNR>3)




Dynamic range (contrast)

» As ratio: L

C — max
L

Usually written as C: I, for example 1000:1.

min

» As “orders of magnitude”

or logl0 units: max

C,, =log 7

min

» As stops:

One stop is doubling
L of halving the amount of light

C, =log,



High dynamic range (HDR)

J |

1|0'6 1|0'4 1|0'2

100

Luminance [cd/m?]

1= N

102

xl

-
- Ty

FN

Dynamic
Range

1000:1

1500:1

30:1



Tone-mapping problem

Moonless Sky Full Moon

-5 2 3 2
3«10 cd/m 6«10 cd/m

4 6 8
10 10 0.01 1 100 10 10 10 10
luminance range [cd/m2]

&) 7 | | simultaneously
| |

. 1 adapted

conventional display




Why do we need tone mapping?

S

» To reduce dynamic range ~Trwg

» To customize the look

colour grading

» To simulate human vision

for example night vision

» To adapt displayed images to a display and viewing
conditions

» To make rendered images look more realistic
» To map from scene- to display-referred colours

» Different tone mapping operators achieve different goals

8




From scene- to display-referred colours

» The primary purpose of tone mapping is to transform an
image from scene-referred to display-referred colours

10000 F———rrm T ——rrrry T
i HOR display maximum luminance B
.-"'---..-
1000 | g
F -{/__,
P

w >3
E SDR display maxim«dm luminance
m 100 ¢ e e ———
= b Py e 3
S _
E e
= =
o 10 ¢ Z
D. F -~
LN -
™
o =l
= 1F P : S5 ;

: L o SDR display minimum luminance

0.1 k"
4 HOR display minimum luminance
0.0001 0.01 1 100 10000 1000000

log scene luminance



Tone-mapping in rendering

LDR illumination HDR illumination
No tone-mapping Tone-mapping

» Any physically-based
rendering requires tone-
mapping

» “HDR rendering” in games is

pseudo-physically-based
rendering

» Goal:to simulate a camera or
the eye

» Greatly enhances realism

Linear

Rendering ) RGB f Tone ] RGB f Display] ~‘N
engine 1 mappingJ 'L encodingJ ] =g

SDR:; Gammé-encoded
HDR: PQ-encoded

Simulate /@G




Basic tone-mapping and display coding

» The simplest form of tone-mapping is the

exposure/brightness adjustment:
R Scene-referred
S

Display-referred red value Rd =
Lwhite Scene-referred

lumi f whit
R for red, the same for green and blue Hminance of white

No contrast compression, only for a moderate dynamic range

» The simplest form of display coding is the “gamma”
1

Prime (‘) denotes a R’ = (Rd)7

gamma-corrected value Typically y=2.2

For SDR displays only
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Techniques

» Arithmetic of HDR images
» Display model

» Tone-curve

» Colour transfer

» Base-detail separation

» Glare



Arithmetic of HDR images

» How do the basic arithmetic operations
Addition

Multiplication

Power function
affect the appearance of an HDR image?
» We work in the luminance space (NOT luma)

» The same operations can be applied to linear RGB

Or only to luminance and the colour can be transferred



Multiplication — brightness change

Resulting Input
luminance luminance
T(Lp) =B-Lp
o | Brightness change
. Mu'ltlphcatuor'\ - bnghtljless charTge parameter
25}
T ofee » Multiplication makes the
: image brighter or darker
= 17
g os » It does not change the
g Bal, v dynamic range!
g -05f
a
2 Al B=0.5
15} B=1
| - —-—-B=2
- . .
-2 -1 0 1 2 3

Scene luminance [log 46 cd/m?]



Power function — contrast change

Contrast change
(gamma)

L C
T(Lp) = ( z )
white , Luminance of
white
Power function — contrast change
3 . - - -
257+
= L
e 2 [—hask re
7
?) 1 B //
(= S ,/'/ 4
=3 P
2 1y v g
y /
2Cg 0.5 P
g e /
£ 0 i ///
3 | Loiaacttran /
& -05¢
&
5 _1 L ) C=0.7
=1
{5 =
bRl i I 4
-2

* |
N

-1 0 1 2 3
Scene luminance [log, cd/m?)

» Power function stretches or
shrinks the dynamic range
of an image

» It is usually performed
relative to a reference white
colour (and luminance)

» Side effect: brightness of the
dark image part will change

» Slope on a log-log plot
explains contrast change



Addition — black level

» Addition elevates black

T(Lp)=L,+F ?;Izi:’lfgge)l level, adds ,,fog” to an
Image

Addition - black level

| » It affects mostly darker
. | tones

N
(3]

;

Display luminance [log - od/m2]
o
o (4] B
|
I
I
|

» It reduces image dynamic
range

(&)}
|
\
\
\

» Subtraction can
05/ — 1|  compensate for ambient
light (shown next)

white

-2 . . - Lwhitef| 0 a
-2 -1 0 T Z 3
Scene luminance [log, cd/m?)




Techniques

» Arithmetic of HDR images
» Display model

» Tone-curve

» Colour transfer

» Base-detail separation

» Glare



Display-adaptive tone mapping

» Tone-mapping can account for the physical model of a

display

How a display transforms pixel values into emitted light

Useful for ambient light compensation

.

(Forward) display model ﬁ
-

Digital signal Light
pixel values . Display | colorimetric values — Human Visual System
sRGB XYZ trichromatic values
luma luminance
& 4 < 7
p Inverse display model (—J

Has a similar role as display encoding, but
can account for viewing conditions




(Forward) Display model

] Display
» GOG: Gain-Gamma-Offset black level
Luminance Peak Screen
luminance Gamma reflections

L= (Lpeak — Lblack) VY + Lblack + Lre fl

Gain Pixecl) Vla.lue Offset
Reflectance
factor (0.01)
L?‘efl — ;Earmb

Ambient illumination
20 (in lux)



Inverse display model

Symbols are the same as for the forward display model

(L — Lpiack — Lrefl) (/1)
V =
Lpeak - Lbl ack

Note: This display model does not address any colour
issues. The same equation is applied to red, green and blue
color channels. The assumption is that the display
primaries are the same as for the sRGB color space.

21



Ambient illumination compensation

Non-adaptive TMO

Display adaptive TMO
g v M ey

.I.-'; I 'f __’l.. o
5 ) I S W ‘. -p-‘
N
s el 8
p | l -‘I
. a
F) |
-I'l. LS




Ambient illumination compensation




Example: Ambient light compensation

» We are looking at the screen in bright light
Lpear = 100 [cd - m=2] k = 0.005 ﬁ Modern screens have

_ reflectivity of around 0.5%
Lblack = 0.1 [Cd ‘m 2] Y

E mp = 2000 [lux] Lyesr =

5
—2000 = 3.183 [cd - m ]

» We assume that the dynamic of the input is 2.6 (=400:1)

Lpeak

T = 2.6 Tout = 10810 = 1.77
Lblac

k +'Lrefl

» First, we need to compress contrast to fit the available
dynamic range, then compensate for ambient light

Tout — The resulting value is in luminance,
[ Lin \Tin must be mapped to display luma /
Lout'— _'Lrefl
Ly gamma corrected values
— (display encoded)

Simplest, but not the
best tone mapping

24




Techniques

» Arithmetic of HDR images
» Display model

» Tone-curve

» Colour transfer

» Base-detail separation

» Glare

25



Tone-curve

~

Best tone-

mapping is the
. ©°ne which does
at ] not do anything,
i.e. slope of the
tone-mapping
curves is equal

to .

N J

log displayed luminance

(.

Image histogram

log input luminance factor (HDR image)

26



Tone-curve

27

log displayed luminance

Display peak luminance

But in practice
contrast (slope)
must be limited
due to display

log input luminance factor (HDR image)

\ limitations.

/




Tone-curve

28

log displayed luminance

Display peak luminance

Display black level

e N

Global tone-

mapping is a

compromise
between clipping

and contrast
compression.

log input luminance factor (HDR image)

A




Sigmoidal tone-curves

» Very common in
digital cameras

» Mimic the response
of analog film

» Analog film has been
engineered over many
years to produce
good tone-reproduction

» Fast to compute

29

2.0

1.5

Density

1.0

0.5

0

25 -20 -15 -1.0 -05 0.0 05 1.0 1.5
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Sigmoidal tone mapping

» Simple formula for a sigmoidal tone-curve:

b
Ry) = —p 22

(En) + Rexyy?

where L, is the geometric mean (or mean of logarithms):

1
L, = exp (ﬁ z In(L(x, )’D)

(x,y)

and L(x, y) is the luminance of the pixel (x, y).

g : @ 1
¢ o
% 0.8 & 0.8
o
a
0.6 +

v 0.6 F

/ N -
0 2 i V] V]

0(.)001 0.01 0.1 '1 '10 1'00 1000 0.001 0.01 0.1 1 10 100 1000
Linear RGB Linear RGB

o
B

o
N

Gamma corrected
o
Y

Gamma corre
o
N

w
o



Sigmoidal tone mapping example

a=0.25

a=1

31



Histogram equalization

> I.Compute normalized cummulative image histogram

Zh (I —1)+ Nh(I)

» For HDR, operate in the log domain

» 2.Use the cummulative histogram as a tone-mapping function

out _C( ) |

» For HDR, map the log-10 values
to the [-dr,,,; O] range

» where dr,, is the target dynamic

range (of a display)

out ’

log Output luminance

001

32

01k

1 HD 1DD 1600 10600
log Input [uminance



Histogram equalization

» Steepest slope for strongly
represented bins

» If many pixels have the same
value - enhance contrast

» Reduce contrast, if few pixels

log Output luminance

» Histogram Equalization
distributes contrast
distortions relative to the
“importance” of a
brightness level

100 1000 1DIDDD
log Input luminance

33



CLAHE: Contrast-Limited Adaptive
Histogram Equalization

» [Pizer et al. Adaptive histogram equalization and its variations. Comput Vision, Graph Image Process 1987],
[Larson et al. 1997, [EEETVCG]

Linear mapping Histogram equalization CLAHE

34



CLAHE: Contrast-Limited Adaptive
Histogram Equalization

» Truncate the bins that exceed the ceiling;
» Distribute the removed counts to all bins;

» Repeat until converges

T T T T
Th ‘ .......................... ., ...........

Y IR R & B B o 2

Ceiling, based on
the maxiumum
5 permissibble
e contrast

0otk e . A __._.____.;_.____._.____é_.___._/\

log Output luminance

1 I1 0 1IDE| 1DIE|IZ| 1DIE|IZ|D
log Input luminance
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CLAHE: Contrast-Limited Adaptive
Histogram Equalization

» Truncate the bins that exceed the ceiling;

» Distribute the removed counts to all bins;

» Repeat until converges

1
®
O
c
I
£
£ o1
=
4
5
o
=
5
O
(o))
o

36
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Ceiling, based on
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contrast

\

|
1 10
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CLAHE: Contrast-Limited Adaptive
Histogram Equalization

» Truncate the bins that exceed the ceiling;

» Distribute the removed counts to all bins;

» Repeat until converges

1

0.1

log Output luminance

37

DWWI IIéII 0T I|§II | ||’ﬂ

ety

Ceiling, based on
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permissibble
contrast
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Techniques

» Arithmetic of HDR images
» Display model

» Tone-curve

» Colour transfer

» Base-detail separation

» Glare

38



Colour transfer in tone-mapping

» Many tone-mapping operators work on luminance, mean or
maximum colour channel value
For speed

To avoid colour artefacts

» Colours must be transferred later form the original image

» Colour transfer in the linear RGB colour space:

N
§— Saturation
Output color Rin arameter
channel (red) Rout — - L i

L out
in Resulting
luminance

» The same formula applies to green (G) and blue (B) linear
colour values

39



Sample of pixels

Colour transfer: out-of-gamut problem

» Colours often
fall outside the
colour gamut
when contrast
is compressed

40

Colours before/after processing

Original image

Luminance

' » Reduction in
saturation is
needed to
bring the
colors into

Qriginal
Contrast compressed

gamut

Saturation reduced
I

Red channel

™~

Gamut boundary

Saturation reduced (s=0.6)



Colour transfer: alternative method

» Colour transfer in linear RGB will alter resulting
luminance

» Colours can be also transferred, and saturation adjusted
using CIE u’v’ chromatic coordinates

Luminance
\/
HDR | Y [ Tone mapped
Linear RGB) » RGB ->Yu'v *l Tone mapping » Yu'v-> RGB =\ Linear RGB

1,0 1

uv

Colour |
Chroma of the white

» To correct saturation: u,,, = (ul, —u,)-s+u, u),=0.1978

Desaturate

Vout = Win =) s+, p! =0.4683

41



Techniques

» Arithmetic of HDR images
» Display model

» Tone-curve

» Colour transfer

» Base-detail separation

» Glare

42



[llumination &
reflectance separation

[llumination

Input

| Reﬂectanc ot




[Ilumination and reflectance

» White = 90%
» Black = 3%

» Dynamic range < 100:|

» Reflectance critical for
object & shape detection

44

Sun = 10° cd/m?

Lowest perceivable
luminance = 10 cd/m?

Dynamic range 10,000:1 or
more

Visual system partially
discounts illumination



Retlectance & Illumination TMO

» Hypothesis: Distortions in reflectance are more apparent
than the distortions in illumination

» Tone mapping could preserve reflectance but compress

illumination
[llumination

L;=R-T()

Tone-mapped image

Te ) .
Reflectance one-mapping

» for example:

L, =R-(I/L, )L

white white

45



How to separate the two?

» (Incoming) illumination — slowly changing

» except very abrupt transitions on shadow boundaries

» Reflectance — low contrast and high frequency variations

46



Gaussian filter

» First order approximation

» Blurs sharp boundaries

» Causes halos

Tone mapping =
result L&

47



Bilateral filter ™ ks £

» Better preserves sharp edges

» Still some blurring on the
edges

» Reflectance is not perfectly
separated from illumination

near edges
48 [Durand & Dorsey, SIGGRAPH 2002]




Weighted-least-squares (WLS) filter

» Stronger smoothing and still distinct edges

Tone mapping result

» Can produce stronger effects
with fewer artifacts

» See ,,Advanced image processing”
lecture

[Farbman et al., SIGGRAPH 2008]
49



Retinex

» Retinex algorithm was initially intended to separate
reflectance from illumination [Land 1964]
» There are many variations of Retinex, but the general principle

is to eliminate from an image small gradients, which are
attributed to the illumination

1 step: compute 2nd step: set to O 31 step: reconstruct an
gradients in log domain gradients less than the image from the vector
A, 1, 1, threshold field

|

| O R .

i ; V?'] =divG

| g g g ‘VG out

vy lyly For example by solving the

Poisson equation

VG

in

50



Retinex examples

From:-hitp:/[dragenilarcnasa.goviretinex/ 757/

From:http://www.ipol.im/pub/algo/Imps_retinex_ poisson_equation/#ref 1

original Image Retinex result with t=3 Retinex result with t=5 Retinex result with t=10




Gradient domain HDR compression

. - = [Fattal et al.,
SIGGRAPH 2002]

» Similarly to Retinex, it operates on log-gradients

» But the function amplifies small contrast instead of removing it

) £ " = Contrast
é B § ) compression
g o = achieved by global
e 2 contrast reduction
S |
D . | | | = Enhance
00 1 2 3 4 0 1 2 3 4
vG, | 7G| reflectance, then
COMPress

everything



Techniques

» Arithmetic of HDR images
» Display model

» Tone-curve

» Colour transfer

» Base-detail separation

» Glare
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“Alan Wake” © Remedy Entertainment

54



Glare Illusion

Photography

55 Computer Graphics
HDR rendering in games



Scattering of the light in the eye

Photoreceptors

Collector Cells

maximum
sensitivity

Direction of
photoreceptor's

Magnification of Retina

Agueous Humor

Crystalline Lens

Retina

¢’ Inco ming ray

Scattered ray

From: Sekuler, R., and Blake, R. Perception, second ed. McGraw- Hill, New York, 1990



Ciliary corona and lenticular halo

3.8°
a0

" 3.2° Lenticular

2.9°
5 6° Halo

- 2.3°
g‘.[fl“
Ciliary

Corona

|

From: Spencer, G. et al.
1995. Proc. of
SIGGRAPH. (1995)
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Examples of simulated glare

[From Ritschel et al, Eurographics 2009]
58



Temporal glare

Dynamic glare

59 [From Ritschel et al, Eurographics 2009]



Point Spread Function of the eye

|

Green — daytime (photopic) | @)

Red

N

— night time (scotopic) | | (b) —

log f

10 8 6 4 2 0 2 4 6 8 10

Visual Angle [degrees]

» What portion of
the light is
scattered
towards a certain
visual angle

» To simulate:

construct a
digital filter

convolve the
image with that
filter

From: Spencer, G. et al. 1995.
60 Proc. of SIGGRAPH. (1995)



Relative luminance

Relative luminance

Selective application of glare

100

10F

1

01F

0.01

0.001

100

10F

01F

0.01

0.001

61

1 1
— Image
— Image + glare|,

50 100 150 200 250 300 350 400 450
Pixel position

1 1
— Image
— Image + glare|,

50 100 150 200 250 300 350 400 450
Pixel position

» A) Glare applied to the
entire image Glare kernel
L. =1%G (PSF)
9
» Reduces image
contrast and sharpness

B) Glare applied only to
the clipped pixels

Ig =1+ Icliped * G — Icliped

I forl>1

where [ jjpeq = {0 otherwise

Better image quality



Selective application of glare

A) Glare applied to
the entire image

Original image |

B) Glare applied to
clipped pixels only

62



Glare (or bloom) in games

» Convolution with large, non-separable filters is too slow

» The effect is approximated by a combination of Gaussian
filters
Each filter with different “sigma”

» The effect is meant to look good, not be be accurate
model of light scattering

» Some games simulate
camera rather than the eye

63



Does the exact shape of the PSF
matter?

» The illusion of increased 50 —

_ od | (Gaussian)
brightness works even if % «f Method | (Spencer etal]
the PSF is very different £ |
from the PSF of the eye 3 . e

E _/'/?: r‘ -

4 b

s 19

:

E of a

g Stimuli
red - Gaussian green - accurate

[Yoshida et al., APGV 2008]
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HDR rendering — motion blur

65

<l

.

=— =
-_—

From LDR pixels

=

From HDR pixels
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From Virtual Reality course: http://stanford.edu/class/ee267/




vpl research




S training visualization & entertainment remote control of vehicles, e.g. drones

=

virtualtravel a trip down the rabbit hole



Vision treatment in VR

» Treatment of amblyopia

Training the brain to use the
“lazy” eye

Images courtesy of c \asmn



Exciting Engineering Aspects of VR/AR

e cloud computing
» shared experiences

-+ CPU, GPU
2 - IPU, DPU?

e compression,

s’

streaming sensors & imaging
computer vision

scene understanding

«  photonics / waveguides

«  human perception * HCI

©od Vi | i applications
VR cameras ﬂ'g&acys | Y'SU8|, auditory, vestibular,  app




Where We Want It To Be




Personal Computer Laptop Smartphone
e.g. Commodore PET 1983 e.g. Apple MacBook e.g. Google Pixel

AR/VR

e.g. Microsoft Hololens



A Brief History of Virtual Reality

Stereoscopes VR & AR Nintendo VR explosion
Wheatstone, Brewster, ... lvan Sutherland Virtual Boy Oculus, Sony, HTC, MS, ...

he
iy

1838 1968 1995 2012-2018 /



[van Sutherland’s HMD

« optical see-through AR, including:
« displays (2x 17 CRTs)
* rendering
* head tracking

* Interaction

* model generation

e computer graphics

* human-computer interaction

|. Sutherland “A head-mounted three-dimensional display”, Fall Joint Computer Conference 1968

9



Nintendo Virtual Boy

e computer graphics & GPUs were not ready yet!

Game: Red Alarm




Where we are now

IFIXIT teardown



Virtual Image

Problems:

» fixed focal plane

* no focus cues ®

e cannot drive
accommodation

with rendering!

 |imited resolution



A dual-resolution display

» High resolution image in the
centre, low resolution fills
wide field-of-view

» Two displays combined using a
beam-splitter

» Image from: https://varjo.com/bionic-display/
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Pepper’s Ghost 1862




Optical see-through AR / head-up displays

e -

Magic Leap 2 Microsoft Hololens 2

/‘ |

Meta 2 Intel Vaunt
(not the current Meta/Facebook)

Google Glass

16



(Some) challenges of
optical see-through AR

» Transparency, lack of opacity

Display light is mixed with environment light
» Resolution and field-of-view
» Eye-box
The volume in which the pupil needs to see the image
Brightness and contrast
Blocked vision — forward and periphery (safety)

Power efficiency

v v VvV v

Size, weight and weight distribution

50 grams are comfortable for long periods
» Social issues, price, vision correction, individual variability...

More resources:



Video pass-through AR: ARCore, ARKit,
ARToolKit, ...




Video pass-through AR

Pros: Cons:

» Better virtual image quality » Vergence-accommodation conflict
» Occlusions are easy (see next lecture)

> Simpler, less expensive optics » Lower brightness, dynamic range

: . and resolution than real-world
» Virtual image not affected by

ambient light » Motion to photon delay
» AR/VR in one device » Real-world images must be
warped for the eye position

(artifacts)

» Peripheral vision is occluded
Or display if affected by ambient light

Meta Project Cambria (Quest Pro)



VR /AR challenges

» Latency (next lecture)

» Tracking

» 3D Image quality and resolution

» Reproduction of depth cues (last lecture)
» Rendering & bandwidth

» Simulation/cyber sickness

» Content creation
Game engines

Image-Based-Rendering

20



Simulation sickness

» Conflict between vestibular
and visual systems

When camera motion
inconsistent with head motion

Frame of reference (e.g.
cockpit) helps
Worse with larger FOV

Worse with high luminance
and flicker

21
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Overview

4
Latency in VR
Eye-movement
Hold-type blur

» 2D displays
2D spatial light modulators
High dynamic range displays



Latency in VR

» Sources of latency in VR » Target latency
IMU ~1 ms Maximum acceptable: 20ms
Inertial Measurement Unit Much smaller (5ms) desired
sensor fusion, data transfer for interactive applications

rendering: depends on complexity of

scene & GPU — a few ms » Example
data transfer again 16 ms (CIISPI&)’) + 16 ms
Display (rendering) + 4 ms
60 Hz = 16.6 ms; (orientation tracking) = 36
70 Hz = I I.] ms; ms latency total
120 Hz = 8.3 ms. At 60 deg/s head motion,

| Kx 1K, 100deg fov display:

|9 pixels error

Too much



Post-rendering image warp (time warp)
» To minimize end-to-end latency
» The method:

get current camera pose

render into a larger raster than the
screen buffer

get new camera pose

warp rendered image using the latest
pose, send to the display

2D image translation

2D image warp

3D image warp

» Original paper from Mark et al.
1997, also Darsa et al. 1997

Meta: Asynchronous Time Warp



Eye movement - basics

Fixation

. “  Drift: 0.15-0.8 deg/s



Eye movement - basics

Saccade

160-300 deg/s



Eye movement - basics

Smooth Pursuit Eye Motion (SPEM)

Up to 80 deg/s

The tracking is imperfect

- especially at higher velocities
- and for unpredictable motion



Retinal velocity

> The eye tracks moving Spatio-velocity contrast sensitivity

objects N
Smooth Pursuit Eye Motion =
(SPEM) stabilizes images on the L]

. D— 30
retina »
But SPEM is imperfect 28 ¥

e, o 8 ‘.lq:) 320
» Loss of sensitivity mostly e £
. > - — S
caused by imperfect SPEM T o el
SPEM worse at high velocities 29 10
¥ © e [N

10 20 30 4() 50 60
spatial frequency (cpd)

Kelly’s model [1979]
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Motion sharpening

» The visual system “sharpens” objects moving at speeds of 6
deg/s or more

Potentially a reason why VR appears sharper than it actually is



Real-world

Hold-type blur

» The eye smoothly follows a moving object

» But the image on the display is “frozen” for /60t of a second

Physical image + eye motion + temporal integration
time ¢

A

Perfect motion

position x
>




Hold-type blur

» The eye smoothly follows a moving object

» But the image on the display is “frozen” for /60t of a second

Physical image + eye motion + temporal integration

60 Hz display
S S S S



Original scene With hold-type blur



Black frame insertion

Hold-type blur

» The eye smoothly follows a moving object

» But the image on the display is “frozen” for /60t of a second

Physical image + eye motion + temporal integration

VAV AV A A A S Sy



Low persistence displays

4

Most VR displays flash an
image for a fraction of
frame duration

This reduces hold-type
blur

And also reduces the
perceived lag of the
rendering

HTC Vive

luminance (relative units)
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Black frame insertion

» Which invader appears sharper?

» A similar idea to low-persistence displays in VR

» Reduces hold-type blur

|5



Flicker

» Ciritical Flicker Frequency

The lowest frequency at which
flickering stimulus appears as a
steady field

Measured for full-on / off
presentation

Strongly depends on luminance
— big issue for HDR VR headsets

Increases with eccentricity
and stimulus size

It is possible to detect flicker
even at 2kHz

For saccadic eye motion

1°digmeter
sinusoidal, m=0.72
subject LB, re
ngs , hor

- 70 cd/m2

i

-
s
o

7
0.7
Q07
0.007

0 20 30 40 50 60 70
eccentricity [deg]

[Hartmann et al. 1979]



Overview

» Temporal aspects
Latency in VR
Eye-movement

Hold-type blur

2D spatial light modulators
High dynamic range displays

17



Cathode Ray Tube

Metal mask —

glass face plale

[from wikipedia]



Spectral Composition

» three different phosphors

4500
4000 -
3500
3000 -

€
3 2500 A

ty (counts)

S 2000
@

Int

1500 A

1000 +

500 -

0 4
350 400 450 500 550 600 650 700 750
Wavelength (nanometers)

» saturated and natural colors
» inexpensive [from wikipedia]

» high contrast and brightness

19



Liquid Chrystal Displays (LCD)

Polarizer Twisted Nematic Cell Polarizer

Incident

A

Light

Incident

Polarizer

/ |Blocked

Light

20

Twisted Nematic Cell

e Light

Polarizer

2] Transmitted
< Light

From: http://computer.howstuffworks.com/monitor5.htm




Twisted neumatic LC cell
TN Cell

Polarization
filter \

Liquid
crystal
(LC)

&

=
1 4

White / No voltage applied Black / Vollage applied

Figure from: High Dynamic Range Imaging by E. Reinhard et al.

21



In-plane switching cell (IPS)

T =
==-““-'-"=‘

#

Figure from: High Dynamic Range Imaging by E. Reinhard et al.

White/no voltage applied Black/vollage applied

22



LCD

Back Light
TNLCD _ . Polarizer
Glass
Molecular - T e
Layers — Electrodes
Glass
~———Polarizer

» color may change with the viewing angle
» contrast up to 3000:|
» higher resolution results in smaller fill-factor

» color LCD transmits only up to 8% (more often close to 4-
5%) light when set to full white

23



LCD temporal response

» Experiment on an IPS LCD screen

» WVe rapidly switched between two
intensity levels at 120Hz

» Measured luminance integrated
over s

luminance error

» The top plot shows the difference

It_1+1t) nd
2

between expected (

measured luminance

» The bottom plot: intensity

measurement for the full 0.6 | NIRARINIEIRIE
. . > Full brightness
brightness and half-brightness g 04 ‘ :
: . 3
display settings £ o2
= Dimme
o T
0] 81 162
time (ms)

24



Digital Micromirror Devices
(DMDs/DLP)

Mirror —10 deg

Mirror +10 deg

s

— —

Tkt 'oa’ | WRTSHS Tik on'

3 DAID KMecnom rmors

] A (A | T Wi
(Sl Vieew] i [ACtirs i)
b il ; --|k=-.__ -

Texas Instnuments

» 2-D array of mirrors
» Truly digital pixels

» Grey levels via Pulse-Width Modulation
25



Liquid Crystal on Silicon (LCoS)

1 Glass Layer

y |

~» Transparent Layer

<¢q8l1 paziie|od I
0 ¢, /I] ModulatedLight>

2 / -
- .
-y O

S <
% ':” N
N\~ # Liquid Crystal Layer

B

N\~
S
N

) Alignment Layer

% Reflective Layer

» CMOS

=) Control Layer

26

» basically a reflective LCD

» standard component in
projectors and head mounted

displays

» used e.g.in Google Glass



Scanning Laser Projector

» maximum contrast

» scanning rays

» very high power
lasers needed for
high brightness

http://elIm-chan.org/works/vip/report_e.html
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3-chip vs. Color Wheel Display
IOI | @ mom i

Color sagaraton Qg pass welary
Vi roiating Tizer .I-'Ihii Fma, combined Dy Ciiled bigak
wnee Groen & Blue Fuman visual g
ysiem
I i
e e lo e
A
L .
/’ h!
Gl sparitan Thigs TARD  Colers combarssd Srabiz, natursl W coler Breakug
Vid thghees pans by presen e I VEmers

MErTNS

» color wheel

cheap

time sequenced colors

color fringes with motion/video
» 3-chip

complicated setup

no color fringes
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OLED

» based on

OLED Structure

electrophosphorescence cethede
Emissive
» large viewing angle T
» the power consumption varies Conductive
Layer (Organic -
with the brightness of the Pomers)

Anode

image

» fast (< | microsec)

Substrate

» arbitrary sizes

» life-span can be short
Worst for blue OLEDs

29



Active matrix OLED

» Commonly used in mobile
phones (AMOLED)

» Very good contrast

But the screen more
affected by glare than LCD

» But limited brightness

The brighter is OLED, the
shorter is its live-span

30




Temporal characteristic

A single uniform white frame @24/25/30 Hz

Full gain (255) Low gain (10)
I I
bLP H H ﬂ
| |
LCD
» [ l »
L ) t A t
I I
CRT /k S
RS R A R
4 t A t
| |
Plasma H
L ) t= , t=
| |
theater
N i Y N R
t t

} 31 From: http://en.wikipedia.org/wiki/Comparison_of _display_technology



Bird-bath optics for near-eye

200 VIEWING REGION 235
N AMBIENT SCENE A
SIDE 201 [ h
ILLUMINATION REGION 230
)

LEDs - 240 2l \

e ]
Google Glass
Pros:
/A « Simple, efficient design
EYE-WARD Cons:
obE 202 e Cannot be scaled up

easil
More reading: https://kguttag.com/2017/03/03/near-eye-bird-bath- y
optics-pros-and-cons-and-immys-different-approach/
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Diffractive waveguides

US 2016/0116739

24
72 |
\ 1240 \ 1250 1‘752 1254

/ N\ = ¢
L B Sy,
7 BRI T P
T N S AP AN N 2NN O
24 / 1234) 12)4 1){21 B

FIG. [IB

Magic Leap

rder 2

~ Order 3

experiments_new/
alBackground.html
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Z

US 2016/0231568  Fig. 3B

Microsoft Hololens

| A0 0000 OO0 O
US 20160231568A1
a9 United States

a2 Patent Application Publication o) Pub. No.: US 2016/0231568 A1

Saarikko et al. (43) Pub. Date: Aug. 11, 2016
(54) WAVEGUIDE (52) US.CL

CPC .o G02B 27/0172 (2013.01); GO2B 6/0035

(71) Applicant: Microsoft Technology Licensing, LLC, (2013.01); GO2B 5/1842 (2013.01); GO2B

Redmond, WA (US) 2027/011 (2013.01); GO2B 2027/0178

(2013.01)

(72) Tnventors: Pasi Saarikko, Espoo (F1); Pasi

Kostamo, Espoo (FT) 57 ABSTRACT

A waveguide has a front and a rear surface, the waveguide for
a display system and arranged to guide light from a light

(21)  Appl. No.: 14/617,697 engine onto an eye of a user to make an image visible to the
user, the light guided through the waveguide by reflection at
(22) TFiled:  Feb.9,2015 the front and rear surfaces. A first portion of the front or rear

surface has a structure which causes light to change phase
upon reflection from the first portion by a first amount. A
Publication Classification second portion of the same surface has a different structure

which causes light to change phase upon reflection from the

(51) Int.CL second portion by a second amount different from the first
G02B 2701 (2006.01) amount. The first portion is offset from the second portion by
G02B 5/18 (2006.01) a distance which substantially matches the difference
F21V 8/00 (2006.01) between the second amount and the first amount.




Electronic Paper

www.eink.com
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Cross Section of Electronic-Ink Microcapsules

Tap Transparent Subcapsule addressing

Electrode enables high-resolution
display capability
Positively _— Meaqati
gatively
ly / e
8
plgment [ | pigment
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i \ Bott
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Projector

Fresnel Lens and Diffuser

S

-

0
Dual-VGA Grap%

Card in PC

35

L b

W’/

e

LCD
Controller

From [Seetzen et al. SIGGRAPH 2004]



Cambridge experimental HDR display

» 35,000 cd/m? peak luminance

» 0.0l cd/m?black level Projector
» LCD resolution: 2048x1536

» Backlight (DLP) resolution:
1024x768

» Geometric-calibration with a
DSLR camera

» Display uniformity compensation

» Bit-depth of DLP and LCD
extended to |10 bits using spatio-
temporal dithering LCD

Fresnel lens
|Diffuser

LCD pixel-
DLP pixel

36



Modern HDR displays

* Modulated LED array
« Conventional LCD
* Image compensation

Low resolution X High resolution _ High Dynamic
LED Array Colour Image Range Display

37



HDR Display

» Two spatial modulators
| st modulator contrast 1000: |
2nd modulator contrast 1000:1 HDR

Combined contrast 1000,000: |

» ldea: Replace constant backlight of LCD panels with an array of
LEDs
Very few (about 1000) LEDs sufficient
Every LED intensity can be set individually
Very flat form factor (fits in standard LCD housing)

» lIssue:
LEDs larger than LCD pixels

This limits maximum local contrast

38



Veiling Luminance

10000 -

S— Receive Image

1000 A

100 { Drive LED

10

Divide Image by
» LED light field to
obtain LCD values

1
0.1 A

0.01 4

Output Luminance
is the product of
LED light field and
LCD transmission
Position on Sereen (om (modest error)

0.001 4

0.0001 A

0.00001 -
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Veiling Luminance

10000 -

S Receive Image

1000 A
100 1

Drive LED

10

Divide Image by
o LED light field to
obtain LCD values

1

0.1 A

0.01 4

Output Luminance
is the product of
LED light field and
LCD transmission
Position on Screen (cm) (Problematic error)

0.001 4

0.0001 A

0.00001 -
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Veiling Luminance

» Maximum perceivable contrast
Globally very high (5-6 orders of magnitude)

That is why we create these displays!

Locally can be low: 150:1

» Point-spread function of
human eye

Refer to ,,HDR and .01 |
tone mapping”’ lecture

ity

B.8681

Consequence: high
contrast edges :
cannot be perceived

at full contrast |

ative

R

B.0881 -
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Veiling Glare (Camera

42



Veiling Luminance

10000 -

1000 A

100 1

Veiling Luminance
masks imperfection

10 A

1

0.1 1

0.01 ~

0.001

0.0001 -

0.00001 -

Position on Screen (cm)
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HDR rendering algorithm - high level

LCD
Fresnel lens
Diffuser

LCD pixel-
DLP pixel

e

Desired DLP blur
T (h Subiject to:
argm1n||l(x y) — g * D(x,y)L(x, y)|| V(:l:‘, Y) L < L(;C,y) o T

L,D
V(Qﬁ', y) Dmin < D(SB, y) < Dmax
DLP image LCD image




Simplified HDR rendering algorithm
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Rendering Algorithm
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Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

The slides in this section are the courtesy of
Piotr Didyk (http://people.mpi-inf.mpg.de/~pdidyk/)



Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence




Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...



Cues sensitivity

Personal Action .
Vista space

space space
0.001 +

Relative size

Relative density

Depth contrast

100 1000 10000
Depth [meters]

“Perceiving layout and knowing distances: The integration, relative potency,
and contextual use of different information about depth”
by Cutting and Vishton [1995]



Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...

Challenge:
Consistency is
required!



Simple conflict example

Present cues:

« Size
« Shadows
« Perspective

e Occlusion




Disparity & occlusion conflict

W &*
Objects in front ‘7"/

’;\’

S—
-—



Disparity & occlusion conflict

Disparity & occlusion
conflict



Depth perception

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity .
: » Require 3D space

Ocular depth cues: We cheat our Visual System!
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...

>~ Reproducible on a flat displays




Cheating our HVS

iAccommodationi
Screen ! (-Eal plane)!
1 1
1 |
] i-g - Object in right eye
) = | s
AN ‘
8
I
i
1

Object perceived in 3

o i




Single Image Random Dot Stereograms

rd

.'. s ; 3 i Ly . -f:t" . ;i - ._._,#,.. o £, 1

» Fight the vergence vs. accommodation conflict to see the
hidden image



Viewing discomiort
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Comfort zones

Comfort zone size depends on:

* Presented content
* Viewing condition

Simple scene

0.3-0.5m 2—-20m

70 cm
“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zones

Comfort zone size depends on:

* Presented content
* Viewing condition
Simple scene, user allowed to look away
from screen

0.2-0.3 0.5-2m

@O

70 cm
“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zones

Comfort zone size depends on:

* Presented content
* Viewing condition

O
g

Difficult scene

10-30cmb——— |I—l 8—-15cm

70 cm
“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zones

Comfort zone size depends on:

* Presented content
* Viewing condition

Difficult scene, user allowed to look away from screen

11 cm F— 6-15cm

70 cm
“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zones

Comfort zone size

depends on:
 Presented content
* Viewing condition
« Screen distance

Other factors:

« Distance between eyes
» Depth of field
 Temporal coherence

“The zone of comfort: Predicting visual discomfort with stereo displays” by Shibata et al. 2011

30

Viewing distance (m)
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—
o

—
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— — — Mobile — —
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Reproduced depth



Depth manipulation
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Stereoscopic displays ﬁ
f
Anaglyps (red & cyan glasses) o %

» Stereoscopic (with glasses)

Shutter glasses: most TV sets
Circular polarization: RealD 3D cinema, 3D displays from LG

Interference filters: Dolby 3D cinema
» How do they work?
» Which method suffers from:
reduced brightness;

distorted colours;
cross-talk between the eyes;

cost (to manufacture)?



Stereoscopic displays

» Auto-stereoscopic (without glasses) Screen_
- Parallax _ _ 3
Parallax barrier barrier

Example: Nintendo 3DS, some laptops
and mobile phones

Switchable 2D/3D Left eye Q
Lenticular lens Right eye

Better efficiency Screen__

Non-switchable Lenticular-._



Light field Displays
» integral photography, e. g. [Okano98]

» micro lens-array in front of screen

» screen at focal distance of micro lenses
Parallel rays for each pixel

Each eye sees a different pixel

L LLA LR RRARE

Wmttﬁﬂw CLLEEE
i i i S J
; "’;ﬁ?. L

image
GG I\,lpa int lenslet
| B

\/ »

@

o

| #

.' __;;fl-l ’

f ’
e

ﬁ”ImJLmant¢%m}bbﬁ&w@mm%@aiﬁﬂasmraﬂWu



Light field Displays

integral photograph close-up

=
-
£

et |

ARt -

W
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F'.
e ‘
4
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A
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¥
.
’
k

0 need high resolution images
0 taken with micro lens array
0 screen is auto-stereoscopic

- no glasses, multiple users

Dl A - ""\-_h I

one particular view
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Put on Your 3D Glasses Now!

The slides used in this section are the courtesy of Gordon Wetzstein.
From Virtual Reality course: http://stanford.edu/class/ee267/



woo1saquid




Anaglyph Stereo - Monochrome

« render L & Rimages, convert to grayscale

* merge into red-cyan anaglyph by assigning I(r)=L, I(g,b)=R (I is anaglyph)




-y A
L2 R Q-ﬂk,-‘
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Anaglyph Stereo — Full Color

« render L & Rimages, do not convert to grayscale

« merge into red-cyan anaglyph by assigning I(r)=L(r), I(g,b)=R(g,b) (I is anaglyph)

from movie “Bick Buck Bunny”






Open Source Movie: Big Buck Bunny

Rendered with Blender (Open Source 3D Modeling Program)

http://bbb3d.renderfarming.net/download.html






left

right

Parallax

» Parallax is the relative distance of a 3D point projected

into the 2 stereo images

Positive parallax

case 1

Projection
plane
(screen)

»
Point being projected

is behind the
projection plane

left

right

Zero parallax

Point being
projected is at the
projection plane

case 2

Projection
plane
(screen)

http://paulbourke.net/stereographics/stereorender/

left

right

Negative parallax

Point being projected
is in front of the
projection plane

case 3

Projection
plane
(screen)



http://paulbourke.net/stereographics/stereorender/

Parallax
» visual system only uses horizontal parallax, no vertical
parallax!
» naive toe-in method creates vertical parallax and visual
discomfort p
rojection Projection
pljanes leane
(screej) (screen)
A 9 _ A - -
eye. eye
separation separation
r|gh-t right .
Toe-in = incorrect! Off-axis = correct!

[ 1




Parallax — well done

e bt gt A

-




1862
“Tending wounded Union soldiers at
Savage's Station, Virginia, during the
Peninsular Campaign”,
Library of Congress Prints and
Photographs Division



Parallax — not well done (vertical parallax = unnatural)
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Advanced Graphics and Image Processing -
Lecture notes

Rafal Mantiuk
Lent term 2018/19

1 Contrast- and gradient-based methods

Many problems in image processing are easier to solve or produce better
results if operations are not peformed directly on image pixel values but on
differences between pixels. Instead of altering pixels, we can transform an
image into gradient field and then edit the values in the gradient field. Once
we are done with editing, we need to reconstruct an image from the modified
gradient field.

A few examples of gradient-based methods are shown in Figures 1 and 2.

In one common case such differences between pixels represent gradients:
for image I, a gradient at a pixel location (z,y) is computed as:

— Ix+1,y - Ix,y
v-[r,y N |:[a:,y+1 - Ix,y ' (1>

The equation above is obviously a discrete approximation of a gradient, as
we are dealing with discrete pixel values rather than a continous function.
This particular approximation is called forward difference, as we take the dif-
ference between the next and current pixel. Other choices include backward
differences (current minus previous pixel) or central differences (next minus
previous pixel).

Once a gradient field is computed, we can start modifying it. Usually
better effects are achieved if the magnitude of gradients is modified and the
orientation of each gradient remains unchanged. This can be achieved by



(b) Details enhanced (c) Cartoonized image

Figure 1: Two examples of gradient-based processing. Texture details in the
original image were enhanced to produce the result shown in (b). Contrast
was removed everywhere except at the edges to produced a cartoonized image
in (c).

multiplying gradients by the gradient editing function f():

F IV Lyl
Gyy=VI,,  ———""" 2
where || - || operator computes the magnitude (norm) of the gradient.

We try to reconstruct pixel values, which would result in a gradient field
that is the closest to our modifed gradient field G = [G®™) GW®]'. In par-
ticular, we can try to minimize the squared differences between gradients in
actual image and modified gradients:

arg minz [(Im+1,y — Ly — G%)z + (Im,y-i—l — 1y — G;y;)Z] ) (3)



(a) Naive image copy & paste (b) Gradient-domain copy & paste

Figure 2: Comparison of naive and gradient domain image copy & paste.

X,y-1

x-1,y |xy| x+1y

X,y+1

Figure 3: When using forward-differences, a pixel with the coordinates (z, y)
is referred to in at moost four partial derivates, two along z-axis and two
along y-axis.

where the summation is over the entire image. To minimize the function
above, we need to equate its partial derivatives to 0. As we optimze for pixel
values, we need to compute partial derivates with respect to I, ,. Fortunately,
most terms in the sum will become 0 after differentiation, as they do not
contain the differentiated variable I,,. For a given pixel (z,y), we need
to consider only 4 partial derivates: two belonging to the pixel (z,y), x-
derivative for the pixel on the left (z — 1,y) and y-derivative for the pixel in
the top (z,y — 1), as shown in Figure 3. This gives us:

OF

51 = 2<Ix+1,y - Iw,y - chxg)/) - Q(Iw,yﬂ - Ix,y - G:(cyg)/)+ (4)
x7y
Loy — Loy — G )+ 2Ly — Ly —GY) ). (5)



After rearanging the terms and equating (S(;TFZ, to 0, we get:

Ixfl,y + Ia:Jrl,y + I:p,yfl + Ix,erl - 4Iz,y = GC(EQ»UE)/ - G;m,)l’y + G;’; - G(y) 1 - (6)

Z,Y—

In these few steps we derived a discrete Poisson equation, which can be found
in many engineering problems. The Poisson equation is often written as:

V21 = divG, (7)
where V21 is the discrete Laplace operator:
Vly=loc1y+ Lovry + Loy1 + Loy — 4oy, (8)
and divG is the divergence of the vector field:
divG,, = GW - G& + GV -GV . 9)

We can also write the equation using discrete convolution operators:

0 1 0 ~1
Ix |1 -4 1| =GWx[-1 1 0]+GWx|1]. (10)
0 1 0 0

Note that the covolution flips the order of elements in the kernel, thus the
row and column vectors on the right hand side are also flipped.
When equation 6 is satisfied for every pixel, it forms a system of linear
equations:
Iy

I,

A =b (11)

Inm
Here we represent an image as a very large column vector, in which image
pixels are stacked column-after-column (in an equivalent manner they can be
stacked row-after-row). Every row of matrix A contains the Laplace operator
for a corresponding pixel. But the matrix also needs to account for the

boundary conditions, that is handle pixels that are at the image edge and
therefore do not contain neighbour on one of the sides. Matrix A for a tiny



3x3 image looks like this:

2 1 0 1 0 0 0 0 0
1 -3 1 0 1 0 0 0 0
0 1 -2 0 0 1 0 0 0
1 0 0 -3 1 0 1 0 0

A=|0 1 0 1 -4 1 0 1 0 (12)

0o 0 1 0 1 -3 0 0 1
0 0 0 1 0 0 -2 1 0
o 0 0 0 1 0 1 -3 1

0 0 0 0 0 1 1 =2

Obviously, the matrix is enormous for normal size images. However, most
matrix elements are 0, so it can be easily stored using a sparse matrix rep-
resentation. Note that only the pixel in the center of the image (5th row)
contains the full Laplace operator; all other pixels are missing neighbours so
the operator is adjusted accordingly. Accounting for all boundary cases is
probably the most difficult and error-prone part in formulating gradient-field
reconstruction problem. The column vector b corresponds to the right hand
side of equation 6.

2 Solving linear system

There is a large number of methods and software libraries, which can solve
a sparse linear problem given in Equation 11. The Poisson equation is typi-
cally solved using multi-grid methods, which iteratively update the solution
at different scales. Those, however, are rarther difficult to implement and tai-
lored to one particular shape of a matrix. Alternatively, the solution can be
readily found after transformation to the frequency domain (discrete cosine
transform). However, such a method does not allow introducing weights,
importance of which will be discussed in the next section. Finally, conju-
gate gradient and biconjugate gradient [1, sec. 2.7] methods provide a fast-
converging iterative method for solving sparse systems, which can be very
memory efficient. Those methods require providing only a way to compute
multiplication of the matrix A and its transpose with an arbitrary vector.
Such operation can be realized in an arbitrary way without the need to store
the sparse matrix (which can be very large even if it is sparse). The conjugate
gradient requires fewer operations than the biconjugate gradient method, but



(a) Uniform weights (b) Higher weights at low contrast

Figure 4: The solution of gradient field reconstruction often contain ”pinch-
ing” artefacts, such as shown in figure (a). The artefacts can be avoided if
small gradient magnitudes are weighted more than large magnitudes.

it should be used only with positive definite matrices. Matrix A is not posi-
tive definite so in principle the biconjugate gradient method should be used.
However, in practice, conjugate gradient method converges equally well.

3 Weighted reconstruction

An image resulting from solving Equation 11 often contains undesirable
”pinching” artefacts, such as those shown in Figure 4a. Those artefacts are
inherent to the nature of gradient field reconstruction — the solution is just
the best approximation of the desired gradient field but it hardly ever exactly
matches the desired gradient field. As we minimize squared differences, tiny
inaccuracies for many pixels introduce less error than large inaccuracies for
few pixels. This in turn introduces smooth gradients in the areas, where the
desired gradient field is inconsistent (cannot form an image). Such gradients
produce "pinching” artefacts.



The problem is that the error in reconstructed gradients is penalized the
same regardless of whether the value of the gradient is small or large. This
is opposite to how the visual system perceives differences in color values:
we are more likely to spot tiny difference between two similar pixel values
than the same tiny difference between two very different pixel values. We
could account for that effect by introducing some form of non-linear metric,
however, that would make our problem non-linear and non-linear problems
are in general much slower to solve. However, the same can be achieved by
introducing weights to our objective function:

arg m1nz [ wy (Los1y — Loy — G%)Q + wi«; (Loys1 — Loy — GéZ)Q] ;

(13)
where wéz and wyy are the weights or importance we assign to each gradi-
ent, for horizontal and vertical partial derivatives respectlvel(y Usually the
weights are kept the same for both orientations, i.e. w %) = way. To account
for the contrast perception of the visual system, we need to assign a higher
weight to small gradient magnitudes. For example, we could use the weight:

1
z) oy — -
Yoy = Wew = 1G, T+ €

(y)

(14)

where ||G, || is the magnitude of the desired (target) gradient at pixel (z,y)
and e is a small constant (0.0001), which prevents division by 0.

4 Matrix notation

We could follow the same procedure as in the previous section and differ-
entiate Equation 13 to find the linear system that minimizes our objective.
However, the process starts to be tedious and error-prone. As the objective
functions gets more and more complex, it is worth switching to the matrix
notation. Let us consider first our original problem without the weights w,,,,
which we will add later. Equation 3 in the matrix notation can be written

as:
\V4 G@)
x I _
v, G
In the equation I, G® and G® are stacked column vectors, representing
columns of the resulting image or desired gradient field. The square brackets

(15)

arg min
I

7



denote vertical concatenation of the matrices or vectors. Operator ||-||* is
the Lo-norm, which squares and sums the elements of the resulting column
vector. V, and V, are differential operators, which are represented as N x N
matrices, where NV is the number of pixels. Each row of those sparse matrices
tells us which pixels need to be subtracted from one another to compute
forward gradients along horizontal and vertical directions. For a tiny 3x3
pixel image those operators are:

-1 0 0 1 0 0 000
0 -1 0 0 1 0 000
00 -1 0 0 1 000
0 0 0 -1 0 0 100
V.=][0 0 0 0 -1 0 010 (16)
0 0 0 0 0 —1001
0 0 0 0 0 0 000
0 0 0 0 0 0 000
(0 0 0 0 0 0 00 0
—1 1 0 0 0 0 0 0 0
0 -1 1.0 0 0 0 0 0
0 00 0 0 0 0 0 0
0 0 0 -1 1 0 0 0 0
V,=|0 0 0 0 —-11 0 0 0 (17)
0 00 0 0 0 0 0 0
0 00 0 0 0 -1 10
0 00 0 0 0 0 —11
(0 00 0 0 0 0 0 0

Note that the rows contain all zeros for pixels on the boundary, for which no
gradient can be computed: the last column of pixels for V, and the last row
of pixels for V,,.

Equation 15 is in the format ||Az — b||?, which can be directly solved
by some sparse matrix libraries, such as SciPy.sparse or the ”\” operator
in matlab Matlab. However, to reduce the size of the sparse matrix and to
speed-up computation, it is worth taking one more step and transform the
least-square optimization into a linear problem. For overdetermined systems,
such as ours, the solution of the optimization problem:

arg min || Az — b||? (18)

8



can be found by solving a linear system:
A'Ax = A'b. (19)

Note that ' denotes a matrix transpose and A’A is a square matrix. If we
replace A and b with the corresponding operators and gradient values from
our problem, we get the following linear system:

v, G@
AARARNDE A AR (20

which, after multiplying stacked matrices, gives us:
(VoVe+V,V,) [ =V,G"+V, GY. (21)

Weights can be added to such a system by inserting a sparse diagonal ma-
trix W. For simplicity we use the same weights for vertical and horizontal
derivatives:

(VoW VYV, +V,WV,) =V, WG+ Vv, WGW. (22)

The above operations can be performed using a sparse matrix library (or
SciPy/Matlab), thus saving us effort of computing operators by hand.

There is still one problem remaining: our equation does not have a unique
solution. This is because the target gradient field contains relative informa-
tion about differences between pixels, but it does not say what the absolute
value of the pixels should be. For that reason, we need to constrain the
absolute value, for example by ensuring that a value of a first reconstructed
pixel is the same as in the source image (I.):

1 0 .. 0] I=1Iu.(1,1). (23)

If we denote the vector on the left-hand side of the equation as C, the final
linear problem can be written as:

(VLW V,+V,WV,+C'C) =V, WG +V, WGY + ' I.(1,1).

(24)

The resulting equation can be solved using a sparse solver in Python or
Matlab.
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1 Light field rendering using homographic trans-
formation

This section explains how to render a light field for a novel view position
using a parametrization with a focal plane. The method is explained on a
rather high level in [I]. These notes are meant to provide a practical guide
on how to perform the required calculations and in particular how to find a
homographic transformation between the virtual and array cameras.

The scenario and selected symbols are illustrated in Figure[I, We want to
render our light field ”as seen” by camera K. We have N images captured by
N cameras in the array (only 4 shown in the figure), all of which have their
apertures on the camera array plane C. We further assume that our array
cameras are pin-hole cameras to simplify the explanation. The novel view
is rendered assuming focal plane F'. The focal plane has a similar function
as the focus distance in a regular camera: objects on the focal plane will
be rendered sharp, while objects that and in front or behind that plane will
appear blurry (in practice they will appear ghosted because of the limited
number of cameras). The focal plane F' does not need to be parallel to
the camera plane; it can be titled, unlike in a traditional camera with a
regular lens. Because we have a limited number of cameras, we need to
use reconstruction functions Ay, ..., A; (only two shown) for each camera.
The functions shown contain the weights in the range 0-1 that are used to
interpolate between two neighboring views.

To intuitively understand how light field rendering is performed, imagine
the following hypothetical scenario. Each camera in the array captures the

1



3D object

F
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1 c
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Figure 1: Light field rendering for the novel view represented by camera K.
The pixels Pk in the rendered image is the weighted average of the pixels
values pi, ..., py from the images captured by the camera array.

image of the scene. Then, all objects in the scene are removed and you
put a large projection screen where the focal plane F' should be. Then, you
swap all cameras for projectors, which project the captured images on the
projection screen F'. Finally, you put a new camera K at the desired location
and capture the image of the projection screen. The projection screen (focal
plane) is needed to form an image. Ideally, to obtain a sharp image, we
would like to project the camera array images on a geometry. However, such
a geometry is not readily available when capturing scenes with a camera
array. In this situation a single plane is often a good-enough proxy, which
has its analogy in physical cameras (focal distance). More advanced light field
rendering methods attempt to reconstruct a more accurate proxy geometry
using multi-view stereo algorithms and then project camera images on that
geometry [3].

This simplified scenario misses one step, which is modulating each pro-
jected image by the reconstruction function A, as such modulation has no
physical counterpart. However, this scenario should give you a good idea
what operations need to be performed in order to render a light field from a



Data: Camera array images Ji, Jo, ..., Jy

Result: Rendered image I

for each pixel at the coordinates px in the novel view do
I(px)<0;

w(pK)<—0;

for each camera i in the array do

Find the coordinates p; in the i-th camera image

corresponding to the pixel pg ;

Find the coordinates p4 on the aperture plane A
corresponding to the pixel pg ;

I(pr)<1(px) + A(pa) Ji(pi) ;

W (px )W (px) + Alpa) ;

end

I(px)<1(px)/W(pPK) ;

end

Algorithm 1: Light field rendering algorithm

novel view position.

Now let us see how we can turn such a high-level explanation into a
practical algorithm. One way to render a light field is shown in Algorithm [I]
The algorithm iterates over all pixels in the rendered image, then for each
pixel it iterates over all cameras in the array. The resulting image is the
weighted average of the camera images that are warped using homographic
transformations. The weights are determined by the reconstruction functions
A;. The algorithm is straightforward, except for the mapping from pixel
coordinates in the novel view pg to coordinates in each camera image p; and
the coordinates on the aperture plane p4. The following paragraphs explain
how to find such transformations.

1.1 Homographic transformation between the virtual
and array cameras

The text below assumes that you are familiar with homogeneous coordinates
and geometric transformations, both commonly used in computer graphics
and computer vision. If these topics are still unclear, refer to Section 2.1 in
[4] (this book is available online) or Chapter 6 in [2].

We assume that we know the position and pose of each camera in the


http://szeliski.org/Book/

array, so that homogeneous 3D coordinates of a point in the 3D word co-
ordinate space w can be mapped to the 2D pixel coordinates p; of camera
i

where V' is the view transformation, P is the projection matrix and K is the
intrinsic camera matrix. Note that we will use bold lower case symbols to
denote vectors, uppercase bold symbols for matrices and a regular font for
scalars. The operation is easier to understand if the coordinates and matrices
are expanded:

V11 V12 V13 V4 X

Ty f 0 c| [1 0 0 O
yil=10 f ¢ 0100 U1 Vg Uzz Uaa| |Y (2)
w, 0 0 1|0 01 of v v vs v |Z

0o 0 0 1 1

The view matrix V translates and rotates the 3D coordinates of the 3D point
w so that the origin of the new coordinate system is at the camera centre,
and camera’s optical axis is aligned with the z-axis (as the view matrix in
computer graphics). This matrix can be computed using a LookAt function,
often available in graphics matrix libraries.

The projection matrix P may look like an odd version of an identity
matrix, but it actually drops one dimension (projects from 3D to 2D) and
copies the value of Z coordinate into the additional homogeneous coordinate
w;. Note that to compute Cartesian coordinates of the point from the homo-
geneous coordinates, we divide z;/w; and y;/w;. As w; is now equal to the
depth in the camera coordinates, this operation is equivalent to a perspec-
tive projection (you can refer to slides 88-92 in the Introduction to Graphics
Course).

The intrinsic camera matrix K maps the projected 3D coordinates into
pixel coordinates. f, and f, are focal lengths and ¢, and ¢, are the coordi-
nates of optical center expressed in pixel coordinates. We assume that the
intrinsic matrix is the same for all the cameras in the array.

Besides having all matrices for all cameras in the array, we also have a
similar transformation for our virtual camera K, which represents the cur-
rently rendered view:

Our first task is to find transformation matrices that could transform from
pixel coordinates px in the virtual camera image into pixel coordinates p;

4
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for each camera ¢. This is normally achieved by inverting the transformation
matrix for the novel view and combining it with the camera array transforma-
tion. However, the problem is that the product of K PV g is not a square
matrix that can be inverted — it is missing one dimension. The dimension is
missing because we are projecting from 3D to 2D and one dimension (depth)
is lost.

Therefore, to map both coordinates, we need to reintroduce missing in-
formation. This is achieved by assuming that the 3D point lies on the focal
plane F'. Note that the plane equation can be expressed as N-(w —wp) = 0,
where N is the plane normal, and wr specifies the position of the plane in
the 3D space. Operator - is the dot product. If the homogeneous coordinates
of the point w are [X Y Z 1], the plane equation can be expressed as

X
(4)

d:[nx Ny Ny —N-'wp]

- N <

where d is the distance to the plane and N = [nm Ny nz} . We can introduce
the plane equation into the projection matrix from Equation [2}

x; J. 0 0 ¢ L0 0 0 Vi1 V12 U1z Uiy
yi| _ |0 fy 0 ¢ 0o 1 0 0 Vg1 Uzg Va3 Uz
d; 000 1 0] [n nl? n9 —NOWI| v v vz va
w; 0 0 0 1 0 0 1 0 0o 0 0 1

(5)
The product of the matrices in above is a full 4x4 transformation matrix,
which is not rank-deficient and can be inverted. Note that the pixel coordi-
nates px and p; now have an extra dimension d, which should be set to 0
(because we constrain 3D point w to lie on the focal plane).

It should be noted that the normal and the point in the plane equation
have superscript (), which denotes that the plane is given in the camera co-
ordinate system, rather than in the world coordinate system. This is because
the point [X Y 7 1} is transformed from the world to the camera coordi-
nates by the view matrix V; before it is multiplied by our modified projection
matrix. This could be a desired behavior for the virtual camera, for example
if we want the focal plane to follow the camera and be perpendicular to the
camera’s optical axis. But, if we simply want to specify the focal plane in the

—N <



world coordinates, we have two options: either replace the third row in the
final matrix (obtained after multiplying the three matrices in Equation
with our plane equation in the world coordinate system; or to transform the
plane to the camera coordinates:

and o
N9 =V,N. (7)

V; is the "normal” or direction transformation for the view matrix V;, which
rotates the normal vector but it does not translate it. It is obtained by
setting to zero the translation coefficients wiy4, woy, and wsy.

Now let us find the final mapping from the virtual camera coordinates py
to the array camera coordinates p;. We will denote the extended coordinates
(with extra d) in Equation |5 as px and p;. We will also denote our new
projection and intrinsic matrices in Equation || as P and K. Given that, the
mapping from px to p; can be expressed as:

pi=K,PV, V2 P 'K pi. (8)
The position on the aperture plane w4 can be readily found from:
wa =V ' Py K 'pic (9)

where the projection matrix P, is modified to include the plane equation of
the aperture plane, the same way as done in Equation [5

1.2 Reconstruction functions

The choice of the reconstruction function A; will determine how images from
different cameras are mixed together. The functions shown in Figure [1] will
perform bilinear-interpolation between the views. Although this could be a
rational choice, it will result in ghosting for the parts of the scene that are
further away from the focal plane F. Another choice is to simulate a wide-
aperture camera and include all cameras in the generated view (set A; = 1).
This will produce an image with a very shallow depth of field. Another
possibility is to use the nearest-neighbor strategy and a box-shaped recon-
struction filter (the width of the boxes being equal to the distance between
the cameras). This approach will avoid ghosting but will cause the views
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to jump sharply as the virtual camera moves over the scene. It is worth
experimenting with different reconstruction startegies to choose the best for
a given application but also for the given angular resolution of the light field
(number of views).
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