

Integrating Scale Out and Fault Tolerance in Stream Processing using Operator State Management

with Raul Castro Fernandez*
Matteo Migliavacca+ and Peter Pietzuch*
*Imperial College London, +Kent University

Big data ...

... in numbers:

- 2.5 billions on gigabytes of data every day (source IBM)
- LSST telescope, Chile 2016, 30 TB nightly

... come from everywhere:

- web feeds, social networking
- mobile devices, sensors, cameras
- scientific instruments
- online transactions (public and private sectors)

... have value:

- Global Pulse forum for detecting human crises internationally
- real-time big data analytics in UK £25 billions → £216 billions in 2012-17
- recommendation applications (LinkedIn, Amazon)
 - processing infrastructure for big data analysis

A black-box approach for big data analysis

- users issue analysis queries with real-time semantics
- streams of data updates, time-varying rates, generated in real-time
- streams of result data
- ✓ processing in *near real-time*

Distributed Stream Processing System

- queries consist of operators (join, map, select, ..., UDOs)
- operators form graphs
- operators process streams of tuples on-the-fly
- operators span nodes

Elastic DSPSs in the Cloud

Real-time big data analysis challenge traditional DSPS:

- ? what about continuous workload surges?
- ? what about real-time resource allocation to workload variations?
- **?** keeping the state correct for stateful operators?

Massively scalable, cloud-based DSPSs [SIGMOD 2013]

- 1. gracefully handles **stateful** operators' state
- operator state management for combined scale out and fault tolerance
- 3. SEEP system and evaluation
- 4. related work
- 5. future research directions

Stream Processing in the Cloud

? How do we build a stream processing platform in the Cloud?

Intra-query parallelism:

- provisioning for workload peaks unnecessarily conservative
- dynamic scale out: increase resources when peaks appear

Failure resilience:

- active fault-tolerance needs 2x resources
- passive fault-tolerance leads to long recovery times
 - hybrid fault-tolerance: low resource overhead with fast recovery
- Both mechanisms must support stateful operators

Stateless vs Stateful Operators

operator state: a summary of past tuples' processing

7

State Management

- operator state is an external entity managed by the DSPS
- **primitives** for state management
- **mechanisms** (scale out, failure recovery) on top of primitives
- dynamic reconfiguration of the dataflow graph

State Management Primitives

takes snapshot of state and makes it externally available

moves copy of state from one operator to another

splits state in a semantically correct fashion for parallel processing

State Management Scale Out, Stateful Ops

How do we partition stateful operators?

Partitioning Stateful Operators

- 1. Processing state modeled as (key, value) dictionary
- 2. State partitioned according to key k of tuples
- 3. Tuples will be routed to correct operator as of k

Passive Fault-Tolerance Model

recreate operator state by replaying tuples after failure:

upstream backup: sends acks upstream for tuples processed downstream

may result in long recovery times due to large buffers:

system is reprocessing streams after failure → inefficient

Recovering using State Management (R+SM)

Benefit from state management primitives:

use periodically backed up state on upstream node to recover faster

state is restored and unprocessed tuples are replayed from buffer

same primitives for parallel recovery

State Management in Action: SEEP

- (1) dynamic Scale Out: detect bottleneck , add new parallelised operator
- (2) failure Recovery: detect failure, replace with new operator

Dynamic Scale Out: Detecting bottlenecks

The VM Pool: Adding operators

problem: allocating new VMs takes minutes...

Experimental Evaluation

Goals:

- investigate effectiveness of scale out mechanism
- recovery time after failure using R+SM
- overhead of state management

Scalable and Elastic Event Processing (SEEP):

implemented in Java; Storm-like data flow model

Sample queries + workload

- Linear Road Benchmark (LRB) to evaluate scale out [VLDB'04]
 - provides an increasing stream workload over time
 - query with 8 operators, 3 are stateful; SLA: results < 5 secs
- Windowed word count query (2 ops) to evaluate fault tolerance
 - induce failure to observe performance impact

Deployment on Amazon AWS EC2

- sources and sinks on high-memory double extra large instances
- operators on small instances

Scale Out: LRB Workload

scales to load factor L=350 with 50 VMs on Amazon EC2

(automated query parallelisation, scale out policy at 70%)

L=512 highest result [VLDB'12] (hand-crafted query on cluster)

-atency (milliseconds)

scale out leads to latency peaks, but remains within LRB SLA

SEEP scales out to increasing workload in the Linear Road Benchmark

Conclusions

Stream processing will grow in importance:

- handling the data deluge
- enables real-time response and decision making

Integrated approach for scale out and failure recovery:

- operator state an independent entity
- primitives and mechanisms

Efficient approach extensible for additional operators:

- effectively applied to Amazon EC2 running LRB
- parallel recovery