Compiler Construction

Lecture 13: optimisation

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2023

Optimisation

What'’s an optimisation?

(LUIIEELERI A compiler optimisation changes the code generated for a program to:
P improve its space usage
reduce its size
introduce parallelism
reduce energy usage
reduce allocation
improve locality
reduce stack usage
(etc.)

Optimisations preserve program semantics, but improve program pragmatics.

What does it mean to preserve program semantics?

Optimisation

Which optimisations are valid?

An optimisation is valid if its input and output have equivalent semantics.

We might use the definition of eq

uivalence from Semantics (slide 256):

We say that typed L3 programs

for every context C such that

(Ca],{}) —*
(Clea], {}) —

S1

2. for some we have

(Clea], {}) — (skip, s1)
s2 (Clea], {}) = (skip, 52)

FelzT
FI—eQ:T
~|‘C[El]l
-+ Cleg) :

are contextually equivalent if

unit .
. we have either
unit

(Note: as we shall see, optimisations can

actually reduce the set of possible behaviours of a program)

https://www.cl.cam.ac.uk/teaching/2223/Semantics/materials.html

What does it mean to preserve program semantics?

Optimisation L))
The definition of contextual equivalence needs adjustment for larger languages.

SI0S For example, it makes all non-terminating programs equal, regardless of effects.

This is not what we want: consider

let rec repeat_say msg = let rec repeat_say msg =
print_endline msg; print_endline msg;
repeat_say () repeat_say ()

let () = say "Hello" let () = say "Goodbye"”

We'll use the following (very informal) definition:
the same effects

An optimisation is valid if the output program has the same termination behaviour .
the same return value.

Quiz: valid or invalid?

el Are the following optimisations valid in general?

let _=g2inf3 ~ f3

Quiz: valid or invalid?

el Are the following optimisations valid in general?

let _=g2inf3 ~ f3

invalid: g 2 may perform effects

Quiz: valid or invalid?

el Are the following optimisations valid in general?

let _=g2inf3 ~ f3

invalid: g 2 may perform effects

let x=g2inf3+x ~ f3+g?2

Quiz: valid or invalid?

el Are the following optimisations valid in general?

let _=g2inf3 ~ f3
0000

’ invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

Quiz: valid or invalid?

el Are the following optimisations valid in general?

let _=g2inf3 ~ f3
0000

’ invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

Quiz: valid or invalid?

el Are the following optimisations valid in general?
let _=g2inf3 ~ f3
0000

’ invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

’ invalid if f and g perform (non-commuting) effects ‘

Quiz: valid or invalid?

el Are the following optimisations valid in general?
let _=g2inf3 ~ f3
0000

’ invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

’ invalid if f and g perform (non-commuting) effects ‘

if true then el else e2 ~> el

Quiz: valid or invalid?

el Are the following optimisations valid in general?
let _=g2inf3 ~ f3
0000

’ invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

’ invalid if f and g perform (non-commuting) effects ‘

if true then el else e2 ~> el

Quiz: valid or invalid?

Are the following optimisations valid in general?

let _=g2inf3 ~ f3
0000 ’ invalid: g 2 may perform effects ‘

Optimisation

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

’ invalid if f and g perform (non-commuting) effects ‘

if true then el else e2 ~> el

let rec loop () = loop () in ~s let rec loop () = loop () in
(loop(); print_endline "done") (loop(); ()

Quiz: valid or invalid?

Are the following optimisations valid in general?

let _=g2inf3 ~ f3
0000 ’ invalid: g 2 may perform effects ‘

Optimisation

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

’ invalid if f and g perform (non-commuting) effects ‘

if true then el else e2 ~> el

let rec loop () = loop () in ~s let rec loop () = loop () in
(loop(); print_endline "done") (loop(); ()

valid

Optimisation

Quiz: valid or invalid?

Are the following optimisations valid in general?
let _=g2inf3 ~ f3

’ invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

’ invalid if f and g perform (non-commuting) effects ‘

if true then el else e2 ~> el

let rec loop () = loop () in ~s let rec loop () = loop () in
(loop(); print_endline "done") (loop(); ()

valid

fold_right f 1 u ~> fold_left (fun x y — f y x) u (rev 1)

Optimisation

Quiz: valid or invalid?

Are the following optimisations valid in general?
let _=g2inf3 ~ f3

invalid: g 2 may perform effects ‘

let x=g2inf3+x ~ f3+g?2

’ depends on the order of operand evaluation ‘

map f (map g 1) ~> map (fun x —f (g x)) 1

invalid if f and g perform (non-commuting) effects ‘

if true then el else e2 ~> el

let rec loop () = loop () in ~s let rec loop () = loop () in
(loop(); print_endline "done") (loop(); ()

valid
fold_right f 1 u ~> fold_left (fun x y — f y x) u (rev 1)

valid

Specialisations

Inlining: examples

Inlining replaces a variable with its definition (typically a function):

let succ x = x + 1
let f = map (fun y — succ y)
[1;253]

— inline —

let succ x =
let f =

x + 1
map (fun y — y + 1)
152531

Note: care with free variables is needed:

let £y =
let addy x = x + y in
map (fun y — addy y) [1;2;3]

let f y =
let addy x = x + y in
map (fun y — y + y) [1;2;3]

Inlining: examples

Inlining replaces a variable with its definition (typically a function):

let succ x = x + 1 let succ x = x + 1
let f = map (fun y — succ y) — inline =% let f = map (fun y —
[1;2;3] [1;2;3]

Note: care with free variables is needed:

g
let fy = -

let addy x = x + y in
map (fun y — addy y) [1;2;3] —

inline — let £y =
let addy x = x + y in
map (fun z — z + y) [1;2;3]

Inlining: questions

Inlining is an enabling transformation that exposes optimisation opportunities.

Inlining can sometimes be a pessimisation. Questions to consider in each case:
e Does inlining duplicate code?
e Does inlining duplicate work?

e Does inlining expose further optimisation opportunities?

Note: inlining recursive bindings is significantly harder.

Lots of details:

Secrets of the Glasgow Haskell Compiler inliner (1999)
Simon Peyton Jones and Simon Marlow

https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/

Monomorphisation (MLton)

parameterised types with unparameterised types

Monomorphisation replaces
P P polymorphic functions with monomorphic functions

type t1 = T1 of int

type t2 = T2 of int *x int
let f1 (x: int) = T1 x

— monomorphise — let f2 (x: int x int) = T2 x
let a f1 1

let b f1 2

let z f2 (3, 4)

nmimnn—~o

Monomorphisation: benefits

Monomorphisation is also an enabling transformation.
The compiler can subsequently specialise representations, e.g. flattening tuples:

[TT1]

int * (float * bool) flatten — int * float * bool

Monomorphisation is used in Mlton, a whole-program-optimising ML compiler:

Whole-Program Compilation in MLton (2006)
Stephen Weeks

http://mlton.org/
http://www.mlton.org/References.attachments/060916-mlton.pdf

Contification

Contification turns a function into a continuation.

Contification applies when a function is always passed the same continuation.

let gy =y -1
let f b =
(if b then g 13 else g 15) + 1
[
CPS conversion
N
k (y - 1) let f b k

| ™ . let k' x k (x + 1) in
k (x + 1) in contification —» let gy = k' (y - 1) in

g 13 k' else g 15 k' if b then g 13 else g 15
[
inlining
¥

let f b k =
if b then k 13 else k 15

Contification is also used in Mlton:

Contification Using Dominators (2001)
Matthew Fluet Stephen Weeks

where it was found to
e have minimal effects on compile-time (2-4%)

e significantly reduce run-time (up to 86%)

e reduce executable size (up to 12%)

Contification in MLton

http://mlton.org/
https://dl.acm.org/doi/10.1145/507635.507639

Other optimisations

arithmetic
simplification

Arithmetic simplification

Inlining may expose opportunities for arithmetic simplification.

Care needed: e * @ ~~ 0 only valid if e has no effects.

Care needed: very few arithmetic laws apply to floating-point numbers.

Tail-recursion modulo cons: motivation

Observation: It is difficult to implement map entirely satisfactorily:

Naive

CPS

Accumulator

let rec map f 1 =
match 1 with
| [1 — [1]
| x :: xs —
f x::map f xs

May run out of stack

let rec map f 1 k =
match 1 with
| [1 — k []
| X :: Xs —
f x (fun hd —
map f xs (fun tl —
k (hd::tl)))

let map f 1 =
map f 1 (fun x — x)

let rec map f 1 acc =
match 1 with
| [l — rev acc
| x :: xs —
map f xs (f x::acc)

let map f 1 = map f 1 []

Allocates frames on the heap

Traverses the list twice

Tail-recursion modulo cons: destination passing style

The TRMC optimisation transforms functions into destination-passing style:

Naive Destination-passing style

let rec map f 1 = let rec map f = function
match 1 with | [1 — [1
| [1 — [1] | x::xs — let y = f x in
| x :: xs — let dst =y :: <Hole> in
f x::map f xs map_dps dst 1 f xs;
dst
and map_dps dst i f = function
| [1 —
dst.i <- []
| x::xs — let y = f x in
let dst' =y :: <Hole> in
dst.[i] <- dst';
map_dps dst' 1 f xs

Idea: allocate a partially-constructed cons cell with an uninitialized tail.
Pass the cons cell (the “destination”) to recursive calls.
Write the result of each call to the tail field of the destination.

Optimisations and undefined behaviour

Optimising programs with undefined behaviour

Our optimisation correctness criterion is based on the behaviour of programs.

What optimisations are justified when a program’s behaviour is undefined?

Two principles:
1. There are no constraints on the behaviour of programs with undefined behaviour.

2. A compiler can therefore assume that programs do not have undefined behaviour.
Consequently, optimisation can change the observed behaviour of ill-defined programs.

Undefined
behaviour

Integer overflow

#include <stdio.h>
#include <limits.h>

int sum_range(int start, int len) {
int total = 0;
for (int i = start; i <= start + len;
return total;

3

i += 1) total += 1i;

int main() {

printf("%d %d\n", sum_range (10, 10), sum_range(INT_MAX-1, 2));
}

~— Without optimisation — ———— With optimisation
$ clang -o sum sum.c $ clang -03 -o sum sum.c
$./sum $./sum
Undefined 165 0 165 2147483646
behaviour

(Adapted from an example by Taras Tsugrii)

https://softwarebits.substack.com/p/impact-of-undefined-behavior-on-performance

Integer overflow: what is going on?

sum.c (excerpt)

int sum_range(int start, int len) {
int total = 0;
for (int i = start; i <= start + len; i += 1) total += i;
return total;

b

Some reasoning about arithmetic justifies a significant optimisation:

sum_range(start,len)

start + (start + 1) 4+ ... + (start + len)
start X (len+1)+1+... +len

start X (len 4+ 1) + (len x (len 4+ 1))/2

Undefined
behaviour This reasoning assumes that integer overflow cannot occur.
o0

Null pointers

#include <stdio.h>
static void (xaction)(void) = NULL;

int main(void) { action(void); }

static void erase_all_files(void) { puts(”deleting all files
void never_called(void) { action = erase_all_files; }

—— Without optimisation —— With optimisation

$ clang -o null null.c $ clang -03 -o null null.c
$./null $

./null
Segmentation fault

deleting all files
Undefined b

behaviour

(Adapted from an example by Krister Walfridsson)

https://kristerw.blogspot.com/2017/09/why-undefined-behavior-may-call-never.html

Null pointers: what is going on?

#include <stdio.h>
static void (xaction)(void) = NULL;

int main(void) { action(void); }

static void erase_all_files(void) { puts(”deleting all files
void never_called(void) { action = erase_all_files; }

following reasoning about the program justifies the “optimisation”:
There is only one assignment to action, setting it to erase_all_files
action must therefore equal either its initial value (NULL) or erase_all_files

Undefined if action is NULL, the program has undefined (unconstrained) behaviour
behaviour

Y so calling erase_all_files is valid for all possible values of action

Aliasing

alias.c

#include <stdio.h>

long read_write(long *p, int xq) {
*p = 3
*q:4;
return *p;

3

int main(void) {

long x;

printf("%1ld\n", read_write(&x, (int*)&x));
}

~——— Without optimisation ———— With optimisation ————

Undefined $ clang -o alias alias.c $ clang -03 -o alias alias.c

X $./alias $./alias
behaviour 4 3

Aliasing: what is going on?

alias.c (excerpt)

long read_write(long *p, int *q) {
4P = 33

*xq = 4;

return *p;

}

C forbids writing to the same object through both long * and int *.
The compiler assumes that writing to xq cannot affect the value at «p.

Undefined
behaviour

Next time: exceptions

