Exercises for Hoare Logic

Jean Pichon-Pharabod
2019/2020

This exercise sheet is based on previous exercise sheets by Kasper Svend-
sen and by Mike Gordon. Mike Gordon’s exercise sheet also contains addi-
tional exercises: https://www.cl.cam.ac.uk/teaching/1516/HLog+ModC/
MJCG-HL-Exercises.pdf.

Recommended exercises metatheory: 1, 22; practice: 2, 9, 35; speci-
fications: 24, 25, 27; invariants: 12, 36, 37, 41; representation predicates:
47.

All the proof invariant exercises that do not involve separation logic can
be formalised in Why3: http://why3.1lri.fr/try/.

Exercise 1. Give a program C' such that the following partial correctness
triple holds, or argue why such a C' cannot exist:

{(X=xANY =yAzx#y} C {x=y}

Exercise 2. Show that the alternative assignment axiom

{P} X := E{P[E/X]}
is unsound by providing P and E such that
—(F{P} X := E{P[E/X]})

Exercise 3 (Soundness of Floyd’s assignment axiom). Show that the alter-
native assignment axiom

x ¢ FV(P)
(P} X := E {3z. E[z/X] = X A Plz/X]}

is sound.

Exercise 4 (Relative completeness of Floyd’s assignment axiom). Show that
if we replace the assignment axiom by the following alternative assignment
axiom
x ¢ FV(P)
{P} X :=F {32. Flz/X]| = X N Plz/X]}

then the original assignment axiom is derivable.

Exercise 5. Show the soundness of the following rule:

F{rrc{Qy H{P}C{R}
F{P} C {Q AR}

Exercise 6. Show the soundness of the following rule:

F{Py C{R} H{Q} C{R}
F{PVvQ} C{R}

Exercise 7. Give a sound and relatively complete rule for a repeat C' until B
command (which is syntactic sugar for C'; while not B do C).

Exercise 8. Prove that the following backwards reasoning sequenced assign-
ment rule is derivable from the normal proof rules of Hoare logic:

{P} C{QIE/X]}
{P} C; X == E{Q}

Exercise 9. Prove or give a counterexample for the following triple:

{X=zANY =y}
X=X+Y, Y =X-YV; X =X-Y
{Y=2AX=y}

Exercise 10. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

(X=2AY =yAY >0}
whileY >0do (X =X +1,Y:=Y —1)
(X =2+y;

Exercise 11. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 12. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{X=xzAY =yAY >0}

Z =0

A:=1,

while A<Y do (Z:=Z+X;A:=A+1)
{Z =2xy}

Exercise 13. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 14. Recall that

F V. ged(z,x) = x
=V, y. ged(z,y) = ged(y, v)
FVz,y.x >y = ged(z,y) = ged(z — y,y)

Give a proof outline, and in particular a loop invariant, for the following
partial correctness triple:

{X=2zAY =yAz>0Ay >0}
while X #Y do (if X > Y then X ;=X —Y elseY :=Y — X)
{X =Y ANX = ged(z,y)}

Exercise 15. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 16. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{X=zAY =y}
Z = 0;
while not (X =0) do
(if X mod 2 =1then Z := Z +Y else skip);

Y =Y x2
X :=Xdiv2
{Z =z xy}

Hint: X = (X div 2+ X div 2+ X mod 2).

3

Exercise 17. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 18 (Fast exponentiation). Give a proof outline, and in particular
a loop invariant, for the following partial correctness triple:

{X=2zAN=nAn>0}
Z =1
while N > 0 do
(if N mod 2 =1 then Z := Z x X else skip);

N := N div 2;
X =XxX
{Z2=2a"}

Exercise 19. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 20 (Turing’s large routine). Give a proof outline, and in particular
loop invariants, for the following partial correctness triple:

{N=nAn2>0}

R :=0;

U:=1;

while R < N do
S:=1V:=U,

while S < R do
(U:zU—i—V;S:zS—i—l);
R =R+ 1;
{U = fact(n)}

Exercise 21. Give variants to obtain a total correctness triple for the same
pre- and postcondition and command.

Exercise 22. Prove soundness of the separation logic heap assignment rule
by proving that

): {El — t} [El] = b, {El — EQ}

Exercise 23. Formalise and prove that if X +— t; AY > t9, then X and Y
alias, and t; and t, are equal.

Exercise 24. Give a triple specifying that a command C' orders the values
of X and Y, so that the smaller value ends in X, and the greater value in Y.

Exercise 25. Give a triple specifying that a command C' computes into Z
the sum of X and Y if R is 0, and their product otherwise.

Exercise 26. Give a triple specifying that a command C sorts a list starting
at X.

Exercise 27. Give a triple specifying that a command C' concatenates a list
starting at X with itself.

Exercise 28. Give a triple specifying that a command C appends the value
of V to the start of a list starting at X if R is 0, and to the end of a list at
Y (not X) otherwise.

Exercise 29. Give a proof outline, and in particular a loop invariant, for
the following partial correctness triple:

{N=nAn>0ANX=0AY =0}
while X < Ndo (X =X +1Y: =Y+ X)

{Y = Z?:l z}

Exercise 30. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 31 (Euclid’s algorithm). Give a proof outline, and in particular a
loop invariant, for the following partial correctness triple:

{X=2zAY =y}

R:=X;

Q@ = 0;

while Y < R do
(R=R-Y;Q:=0Q+1)

{rt=R+yxQANR<y}

Exercise 32. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 33 (Divisibility by 13). Give a proof outline, and in particular a
loop invariant, for the following partial correctness triple:

{X=2ANX >0}
while X > 52 do

X := (X div 10) +4 x (X mod 10);
ifX=0orX=13or X=260or X =39thenY :=1elseY :=0
{Y =12 mod 13 =0}

Exercise 34. Give a variant to obtain a total correctness triple (you might
need to strengthen the precondition and the invariant).

Exercise 35. Give a proof outline for the following separation logic partial
correctness triple:
{list(X,)}
if X = null then Y := null
else (F := [X]|; P :=[X +1];Y := alloc(FE, P); dispose(X); dispose(X + 1))
{list(Y,)}

Exercise 36. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:
{list(X,)}
Y := null;
while X # null do
(Z =[X+1;[X+1]:=Y;Y =X, X :=72)
{list(Y, rev(«))}

where rev is mathematical list reversal, so that

rev([]) =[]
rev([h]) = [h]
rev(a ++5) = rev(B) ++rev(a)

Exercise 37. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,)}

N :=0;

Y =X,

while Y # null do
(N:=N+1LY :=[Y +1])

{list(X,a) N N = length(«)}

6

Exercise 38. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{N =nAemp}
if N <0 then X :=null

X := alloc(0, null);

P.=X;
else | 1:=1;

while I < N do

(Q :=alloc(I,null); [P+ 1] :=Q;P:=Q;] :=1+1)

{list(X,0::...:n—=1=])AN=n}

Exercise 39. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,)}
Y :=alloc(0,null); Y’ :=Y;
Z = alloc(0,null); 7" := Z;
while X # null do

Y'+1 =XV = X; X = [X + 1];

if X # null then ([Z7'+ 1] := X;Z":= X; X := [X + 1]) else skip)
1] := null;
1] := null;
Y +1]; dlspose(Y) dispose(Y +1);Y := U,
[Z + 1]; dispose(Z); dispose(Z + 1);Y := U,
{3, ag. length(a) = length(ay) + length(as) A (1 st(Y, aq) * list(Z, az))}

Y’ +
Z"+
U=
U:=

Exercise 40. Give a proof outline, and in particular a loop invariant, for
the same separation logic partial correctness triple, but with the following
postcondition:

{3, ao. shuffle(a, oy, o) A (list(Y, o) * list(Z, as)) },

where
shuffle([,0,0) £ T

shuffle(z = a, B,7) £ (38" 6 = == B' A shuffle(a, §',7)) V
(F .y =z =9 A shuffle(a, 5,7))

Exercise 41. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,) A sorted(a) NY =y}
if X = null then X := alloc(Y, null)

P:=X;FE:=[P];

if Y < F then X := alloc(Y, X)
Q=P
while £ <Y and P # null do

else 1 Q:=P;P:=[P+1] ‘
else if P # null then E := [P)] else skip)’
R := alloc(Y, P);
Q+1]:=R
o= H ag A
0 < g :
S, . (Vi.0 <i < length(ay) = aqi] < y) A

(Vi. 0 < i < length(as) = y < as[i]) A
list(X, o1 H [y] H a2)

Exercise 42. Give a proof outline, and in particular a loop invariant, for
the following separation logic partial correctness triple:

{list(X,a)}
if X = null then Y := null

P:=X;FE :=[P];)Y :=alloc(E,null);Q :=Y; P :=[X +1];
else | while P # null do

(E :=[P]; Qs := alloc(E,null); [Q + 1] := Q2;Q := Qo; P := [P + 1])
{list(X,) * list(Y, o)}

Exercise 43 (Index search). Give a proof outline, and in particular a loop

invariant, for the following separation logic partial correctness triple:

{X =z ANz €ty anlist(Y,a)}
1:=0;,Z:=Y;5:=0;
while S = 0 do

E = |Z];

if £ = X then
S =1

else

(Z:=[Z+1;1:=1+1)
{a[l] =z A list(Y,a)}

where €, is list membership:

u
&

€

4L
(x=y)V (z €us B)

T Clst H
T Eyst (Y 2 B)

&
&

€

Exercise 44 (Prefix testing). Give a proof outline, and in particular a loop
invariant, for the following separation logic partial correctness triple:

{list(X,) = list(Y, 5) }

P=X;Q:=Y;5:=1,

while S =1 and P # null and @ # null do
B = [P F = [Q:

if £ = F then
(Pe=[P+1:Q:=[Q+1)
else
S:=0

{list(X,a) x list(Y,5) N (S =0 =(aC fVELLCa))}
where C is prefix relation:

[EB=T
haCTBE3Iy.f=huyAalxy

Exercise 45 (Substring testing). Give a proof outline, and in particular a

loop invariant, for the following separation logic partial correctness triple:
{list(X,) x list(Y, 5) }
S=1P=X;Q:=Y,;
while (S =1 and P # null) do
if = null then S :=0
else
B =[P} F = [Q)
if £ = F then P := [P + 1]
else skip;

Q:=[Q+1]
{(S=0s (aEPB)) A (list(X,a) list(Y,)}

where [is the (not-necessarily-contiguous) substring relation:
[eg=T
heaEf¥3y.6=h:yAaEy)V @i,v.8=i:7Ah:aEn)

Exercise 46 (Bubble sort). Give a proof outline, and in particular loop
invariants, for the following separation logic partial correctness triple:

{list(X,)}

D :=0;

while D =0 do
S:=1P:=X;
while P # null do

Q:=[P+1];
if @ # null then
E:=[P]; F = [Q];

if £ < F then
P:=Q ;
else
(S = 0;[P] = F3[Q] = B)
else
skip

if S =1 then D :=1 else skip
{3B. sorted(5) N permutation(c, B) A list(X, B)}

Exercise 47. Give a representation predicate btree(t,7) for binary trees,
given a mathematical representation 7 ::= Leaf | Node n 1 75, where n is an

integer.

10

Exercise 48. Give a representation predicate clist(t, «) for circular lists.

Exercise 49. Give a representation predicate list’(¢,) for doubly-linked
lists.

Exercise 50. Give a representation predicate array(t, «) for arrays starting
at location t, the contents of which is represented by the mathematical list

Q.

11

