
Hoare logic and Model checking
Part II: Model checking

Lecture 9: Temporal logic (continued)

Christopher Pulte cp526
University of Cambridge

CST Part II – 2022/23



In the last lecture we saw LTL and how we can use it to specify
safety and liveness properties of temporal models. LTL can express
properties of linear paths in a temporal model, but cannot express
properties of the different possible paths out of a state/the
branching structure in the temporal model.

In this lecture we will define CTL, which allows expressing such
properties, and CTL* that combines the expressive power of LTL
and CTL.

1



Tea & coffee machines

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

Mnice Mbad

A good property about Mnice: “Following payment, it is possible
to receive coffee in the next state”. We cannot say this in LTL.

2



CTL: computation tree logic

Formally stating this property requires the ability to specify
properties of the tree of possible paths out of a state of the model,
not just an individual linear path.

In CTL time is “tree-shaped”: it considers for each state/point in
time the set of possible futures. Properties of temporal models are
specified in formulas that can quantify over possible futures.

3



Syntax of CTL

Given a fixed set of atomic propositions AP ,

ψ ∈ StateProp ::= φ ∈ PathProp ::=

⊥ | false
> | true
¬ψ | negation
ψ1 ∧ ψ2 | conjunction
ψ1 ∨ ψ2 | disjunction
ψ1 → ψ2 | implication
injp p | atomic proposition
A φ | universal
E φ | existential

X ψ | neXt
F ψ | future
G ψ | generally
ψ1 U ψ2 | until

We usually omit injp.
4



Informal semantics of CTL

• A CTL formula is a state property.
• A temporal model satisfies a CTL formula, if all its initial

states satisfy the formula.

5



Informal semantics of CTL

State properties:

• ⊥ holds for no state
• > holds for any state
• ¬ψ: ψ does not hold
• ψ1 ∧ ψ2: ψ1 holds and ψ2 holds
• ψ1 ∨ ψ2: ψ1 holds or ψ2 holds
• ψ1 → ψ2: ψ1 does not hold or ψ2 holds
• injp p: the current state satisfies atomic proposition p
• A φ: every outgoing path satisfies path property φ
• E φ: some outgoing path satisfies path property φ

6



Informal semantics of CTL

Path properties:

• X ψ: the tail of the current path satisfies state property ψ
• F ψ: some suffix of the current path satisfies state property
ψ

• G ψ: every suffix of the current path satisfies state property
ψ

• ψ1 U ψ2: some suffix of the current path satisfies ψ2, and all
the suffixes of the current path of which that path is a suffix
satisfy ψ1

7



Notation

Note: the literature sometimes uses alternative notation for the
temporal operators:

• ∀ instead of A
• ∃ instead of E
• © instead of X
• � instead of F
• � instead of G

8



Semantics of CTL – Examples

s0 : {a, b, c}

s1 : {b}

s3 : {c, d}

s2 : {c}

Consider the state s1. Then:

• s1 satisfies E X d
• s1 satisfies A X c
• s1 does not satisfy A F a
• s1 does not satisfy E G c
• s1 satisfies A G E F a

9



Semantics of CTL – Examples

s0 : {a, b}

s1 : {b, c}

s3 : {c, d}

s2 : {c}

Consider the state s1. Then:

• s1 satisfies E F A G c
• s1 satisfies A F b
• s1 does not satisfy A (b U d)
• s1 satisfies A G A F c
• s1 satisfies A (⊥ U (E X d))

10



Semantics of CTL

What does it mean for a temporal model to satisfy a CTL formula?
Instead of defining CTL now, we later define the semantics of
CTL* formally.

11



Tea & coffee machines

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

Mnice Mbad

A G (£ → E X �): “For all paths, at every state (along the path)
in which money has been paid, there exists a path from this state
in which, in the next state, the machine has produced coffee.”

LTL cannot distinguish between the good and the bad coffee
machine.

12



CTL Examples: Elevator

• “If it is possible to answer a call to level 2 in the next step,
then the elevator does that.”

A G ((Call2 ∧ E X Loc2) → A X Loc2)

• “From every state the elevator can reach the second floor.”

A G E F Loc2

(This does not mean the elevator will necessarily go there.)

13



LTL vs. CTL

The examples of the coffee and tea machine and the elevator show
some properties CTL can express that LTL cannot: properties
related to the set of possible paths out of some state.

Is CTL strictly more expressive than LTL?

14



LTL vs. CTL

No: the LTL formula (F p) → (F q) has no CTL equivalent. E.g.
these are not equivalent to the LTL formula:

• (A F p) → (A F q)
• A G (p → A F q)

CTL formulas are state properties; embedding path properties
always requires path quantification using A or E .

(See Huth and Ryan. “Logic in Computer Science – Modelling and
Reasoning about Systems”, Chapter 3.5)

15



CTL*

CTL* combines the expressive power of LTL and CTL, by dropping
from CTL the requirement that path properties have to be
associated with path quantification, which allows us to express
properties such as the following, that have no LTL or CTL
equivalent:

E G F p: “there exists a path such that p holds infinitely often”

16



Syntax of CTL*. Updated wrt handout

Given a fixed set of atomic propositions AP ,

ψ, . . . ∈ StateProp ::= φ, . . . ∈ PathProp ::=

⊥ | false
> | true
ψ1 ∧s ψ2 | conjunction
ψ1 ∨s ψ2 | disjunction
ψ1 →s ψ2 | implication
injp p | atomic predicate
A φ | universal
E φ | existential

φ1 ∧p φ2 | conjunction
φ1 ∨p φ2 | disjunction
φ1 →p φ2 | implication
injs ψ | state property
X φ | next
F φ | future
G φ | generally
φ1 U φ2 | until

We almost always omit injp and injs. We encode negation:

• ¬s ψ
def
= ψ →s ⊥

• ¬p φ
def
= φ→p (injs ⊥)

17



Informal semantics of CTL*

• injp p: the current state satisfies atomic proposition p
• A φ: all paths starting from the current state satisfy φ
• E φ: some path starting from the current state satisfies φ
• injs ψ: the first state of the current path satisfies ψ
• G φ: every suffix of the current path satisfies φ
• F φ: some suffix of the current path satisfies φ
• X φ: the tail of the current path satisfies φ
• φ1 U φ2: some suffix of the current path satisfies φ2, and all

the suffixes of the current path of which that path is a suffix
satisfy φ1

18



Example propositions in CTL*: path quantification

• E G F p: “there exists a path on which p holds infinitely
often”

• E G A F p: “there exists a path such that all paths starting
from any state along that path eventually reach a state in
which p holds”

• E G E F p: “there exists a path such that from every state
along this path a state satisfying p can be reached”

19



Example propositions in CTL*: conjunctions

• E F (p ∧s q): there is a state reachable from the current state
that satisfies both p and q

• E ((F p) ∧p (F q)): there is a path from the current state,
along which there is a state satisfying p and a state satisfying
q

• (E F p) ∧s (E F q): there is a state reachable from the current
state that satisfies p and a reachable state that satisfies q

20



Example of path conjunction vs. state conjunction

“At Cambridge, you can row and study”

Mpessimistic

∅

{
Y

} {
P

}

(E FY) ∧s (E FP)

Moptimistic

∅

{
P,Y

}

E F
(
Y ∧sP

)

Mrealistic

∅

{
Y

} {
P

}

E ((FY) ∧p (FP))

21



Semantics of CTL*

We define whether M satisfies ψ,

À � Á ∈ TModel → StateProp → Prop
M � ψ

def
= ∀s ∈ M�S. M�S0 s → s �s

M ψ

using two auxiliary mutually inductive predicates

Á �s
À

Â ∈ (M ∈ TModel) → M�S → StateProp → Prop
Á �p

À Â ∈ (M ∈ TModel) → stream M�S → PathProp → Prop

We write the arguments that remain constant through recursive
calls in this shade of grey blue.

22



Semantics of CTL*: state properties. Updated wrt handout

s �s
M > def

= >
s �s

M ⊥ def
= ⊥

s �s
M ψ1 ∧s ψ2

def
=
(
s �s

M ψ1
)
∧
(
s �s

M ψ2
)

s �s
M ψ1 ∨s ψ2

def
=
(
s �s

M ψ1
)
∨
(
s �s

M ψ2
)

s �s
M ψ1 →s ψ2

def
= ¬

(
s �s

M ψ1
)
∨
(
s �s

M ψ2
)

s �s
M injp p def

= M�` s p (M�` s includes p)

s �s
M A φ

def
=

(
∀π ∈ stream M�S.

IsPath M π → π 0 = s → π �p
M φ

)

s �s
M E φ def

=

 ∃π ∈ stream M�S.
IsPath M π ∧ π 0 = s ∧
π �p

M φ


23



Semantics of CTL*: path properties

π �p
M injs ψ def

= (π 0) �s
M ψ

π �p
M φ1 ∧p φ2

def
=
(
π �p

M φ1
)
∧
(
π �p

M φ2
)

π �p
M φ1 ∨p φ2

def
=
(
π �p

M φ1
)
∨
(
π �p

M φ2
)

π �p
M φ1 →p φ2

def
= ¬

(
π �p

M φ1
)
∨
(
π �p

M φ2
)

π �p
M X φ

def
= (tailn M�S 1 π) �p

M φ

π �p
M F φ def

= ∃n ∈ N. (tailn M�S n π) �p
M φ

π �p
M G φ

def
= ∀n ∈ N. (tailn M�S n π) �p

M φ

π �p
M φ1 U φ2

def
=

∃n ∈ N.

(∀k ∈ N. 0 ≤ k < n → (tailn M�S k π) �p
M φ1

)
∧

(tailn M�S n π) �p
M φ2


24



CTL* is very expressive, but model checking CTL* is
computationally expensive.

25



CTL* fragments

• CTL: by forcing all uses of temporal operators to come with a
unique path quantifier

• LTL: (roughly) by enforcing that there is no path
quantification, just one implicit leading A quantifier at the
start of the formula

• ACTL*: the universal fragment of CTL*, where all A are
under an even number of negations, all E under an odd
number of negations

• ECTL*: the existential fragment of CTL*, dual to ACTL*

26



Quantifiers. Updated wrt handout

Unlike in Hoare logic, there are no “normal”/non-path quantifiers,
as they would make it difficult to mechanically check properties.

To partly make up for this, we can use property schemas with big
operators or bounded quantifiers, and indexed atomic propositions,
which stand for the expanded property.

For example
∧
i∈S

pi , for S = {1, 2, 3}, is expanded to p1 ∧ p2 ∧ p3.

This can done “by preprocessing”, without changing the language
of properties. As a result, this is not as general as quantifiers, as
the value of S has to be constant (it cannot depend on properties
of states, for instance).

27



Summary

Temporal logics can be used to specify temporal models. LTL
specifies temporal models in terms of properties of linear paths
through the model.

CTL can express properties about the sets of possible paths out of
states of a temporal model. The two logics are incomparable;
CTL* combines their expressive power.

28


