
01. Introduction
Ch. 1, 2



Course Structure

Part I Structures [RMM]
01 Introduction
02 Protection
Part II CPU [EK]
03 Processes
04 Scheduling
05 Scheduling Algorithms
Part III Memory [RMM]
06 Memory Management

Part III Memory (continued) [RMM]
07 Paging
08 Virtual Memory
Part IV Input/Output and Storage [EK]
09 I/O Subsystem
10 File Management
Part V Case Study [RMM]
11 Unix 1
12 Unix 2

01. Introduction 2



Objectives

• To describe the basic organisation of computer systems
• To give an abstract view of the operating system
• To introduce some key concepts in (operating) systems
• To give a brief tour of the major functions of the operating system

• Recall Part 2 of Introduction to Microprocessors in IA Digital 
Electronics
• Fetch-Decode-Execute cycle, Pipelining

01. Introduction 3



Outline

• System organisation
• System operation
• Concepts
• What is an Operating System?

01. Introduction 4



Outline

• System organisation
• Hardware resources
• Fetch-execute cycle
• Buses

• System operation
• Concepts
• What is an Operating System?

01. Introduction 5



4 Chapter 1 Introduction

user
1

user
2

user
3

computer hardware

operating system

system and application programs

compiler assembler text editor database
system

user
n…

…

Figure 1.1 Abstract view of the components of a computer system.

1.1 What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into four
components: the hardware, the operating system, the application programs,
and the users (Figure 1.1).

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and Web browsers—define the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an environment within which other programs can do
useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor,
keyboard, mouse, and system unit. Such a system is designed for one user

Computer system organisation

1. Hardware provides basic 
computing resources: CPU, 
memory, I/O devices

2. Operating system controls and 
coordinates use of those 
resources

3. Application programs define 
how those resources are used to 
solve the computing problems 
of the users

4. Users motivate the whole thing!

01. Introduction 6



Hardware resources

• Processor (CPU) executes programs 
using
• Memory to store both programs & data, 

effectively a large byte-addressed array,
• Devices for input and output, and
• Bus to transfer information between 

• CPUs operate on data obtained from 
input devices and held in memory
• CPUs and devices are concurrently 

active, competing for memory cycles and 
bus access

• Computer logically 
• Reads values from main memory into 

registers,
• Performs operations, and 
• Stores results back 

01. Introduction 7

Control
Unit

 e.g. 1 GByte
2^30 x 8 =

8,589,934,592bits

Address Data Control

Processor

Reset

Bus

Memory
Execution

Unit

Register File 
(including PC)

Sound Card

Framebuffer

Hard Disk

Super I/O

Mouse Keyboard Serial



Fetch-Execute Cycle

• CPU repeatedly
• Fetches & decodes next instruction, 
• Generating control signals and operand 

information 
• Inside the Execution Unit (EU), control 

signals select the Functional Unit (FU) 
(“instruction class”) and operation
• If Arithmetic Logic Unit (ALU), read one/two registers, perform operation, 

(probably) write result back
• If Branch Unit (BU), test condition and (maybe) add value to PC
• If Memory Access Unit (MAU), generate address (“addressing mode”) and use 

bus to read/write value

01. Introduction 8

Control Unit

IBDecode

Execution Unit

R
e
g
i
s
t
e
r
 
F
i
l
e

PC

+

MAU

BU

ALU



Buses

• Shared communication wires
• Don’t need wires everywhere!
• Low cost, versatile 
• Potential bottleneck

• Typically comprises:
• address lines determine how many devices on bus, 
• data lines determine how many bits transferred at once, and 
• control lines indicate target devices and selected operations

• Operates in a initiator-responder manner, e.g., 
• Initiator decides to read data
• Initiator puts address onto bus and asserts read 
• Responder reads address from bus, retrieves data, and puts onto bus
• Initiator reads data from bus 

01. Introduction 9

Processor Memory

Other Devices

ADDRESS

 DATA 

CONTROL



Bus hierarchy

• Different buses with different characteristics
• E.g., data width, max number of devices, max 

length
• Most are synchronous, i.e. share a clock signal

• Processor bus is the fastest and often the 
widest for CPU to talk to cache 

• Memory bus to communicate with memory 
• PCI buses to communicate with devices 

• Other legacy buses also seen: ISA, EISA etc
• Bridges forwards from one side to the other

• E.g., to access a device on ISA bus, CPU 
generates magic [physical] address which is 
sent to memory bridge, then to PCI bridge, and 
then to ISA bridge, and finally to ISA device

01. Introduction 10

Sound
Card

Bridge

512MByte
DIMM

Processor

C
a
c
h
e
s

512MByte
DIMM

Framebuffer

B
r
i
d
g
e

SCSI
Controller

PCI Bus (33/66Mhz)

Memory Bus (400Mhz)Processor 
Bus

ISA Bus (8Mhz)



Outline

• System organisation
• System operation
• Booting
• Interrupts
• Storage

• Concepts
• What is an Operating System?

01. Introduction 11



Booting the computer

• Bootstrap program (bootloader) executes when machine powered on
• Traditionally ROM containing BIOS, now more complex UEFI 
• Initialises all parts of the system: memory, device controllers
• Finds, loads, and executes the kernel, possibly in stages

• Operating system starts in stages
• Kernel enables processes to be 

created, devices to be read/written,
file system to be accessed
• Then system processes start, 

beginning with init on Unix

01. Introduction 12

56 Chapter 2 Operating-System Structures

user and other system programs

services

operating system

hardware

system calls

GUI batch

user interfaces

command line

program
execution

I/O
operations

file
systems communication resource

allocation accounting

protection
and

security

error
detection

Figure 2.1 A view of operating system services.

task easier. Figure 2.1 shows one view of the various operating-system services
and how they interrelate.

One set of operating system services provides functions that are helpful to
the user.

• User interface. Almost all operating systems have a user interface (UI).
This interface can take several forms. One is a command-line interface
(CLI), which uses text commands and a method for entering them (say,
a keyboard for typing in commands in a specific format with specific
options). Another is a batch interface, in which commands and directives
to control those commands are entered into files, and those files are
executed. Most commonly, a graphical user interface (GUI) is used. Here,
the interface is a window system with a pointing device to direct I/O,
choose from menus, and make selections and a keyboard to enter text.
Some systems provide two or all three of these variations.

• Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a
file or an I/O device. For specific devices, special functions may be desired
(such as recording to a CD or DVD drive or blanking a display screen). For
efficiency and protection, users usually cannot control I/O devices directly.
Therefore, the operating system must provide a means to do I/O.

• File-system manipulation. The file system is of particular interest. Obvi-
ously, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and
list file information. Finally, some operating systems include permissions
management to allow or deny access to files or directories based on file
ownership. Many operating systems provide a variety of file systems,
sometimes to allow personal choice and sometimes to provide specific
features or performance characteristics.



System operation

• I/O devices and CPU execute 
concurrently
• Each device controller 

• responsible for a particular device type
• has a local buffer

• CPU moves data from/to main 
memory to/from local buffers
• I/O is from the device to local buffer of 

controller

• Device controller informs CPU that it 
has finished its operation by raising 
an interrupt
• OS is interrupt driven

1.3 Computer-System Architecture 13

thread of execution
instructions

and
data

instruction execution
cycle

data movement

DMA

memory

interrupt

cache

data

I/O
 request

CPU (*N)

device
(*M)

Figure 1.5 How a modern computer system works.

can categorize roughly according to the number of general-purpose processors
used.

1.3.1 Single-Processor Systems

Until recently, most computer systems used a single processor. On a single-
processor system, there is one main CPU capable of executing a general-purpose
instruction set, including instructions from user processes. Almost all single-
processor systems have other special-purpose processors as well. They may
come in the form of device-specific processors, such as disk, keyboard, and
graphics controllers; or, on mainframes, they may come in the form of more
general-purpose processors, such as I/O processors that move data rapidly
among the components of the system.

All of these special-purpose processors run a limited instruction set and
do not run user processes. Sometimes, they are managed by the operating
system, in that the operating system sends them information about their next
task and monitors their status. For example, a disk-controller microprocessor
receives a sequence of requests from the main CPU and implements its own disk
queue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems
or circumstances, special-purpose processors are low-level components built
into the hardware. The operating system cannot communicate with these
processors; they do their jobs autonomously. The use of special-purpose
microprocessors is common and does not turn a single-processor system into

01. Introduction 13



Interrupts

• Device controllers communicate 
with CPU via interrupts
• Controller controls interaction 

between device and local buffer
• CPU moves data between main 

memory and device buffer

• Interrupts decouple CPU requests from device responses 
• Reading a block of data from a hard-disk might take 2ms, which could be 

5 × 106 clock cycles!

• Controller informs CPU it is finished by raising an interrupt

01. Introduction 14

8 Chapter 1 Introduction

user
process
executing

CPU

I/O interrupt
processing

I/O
request

transfer
done

I/O
request

transfer
done

I/O
device

idle

transferring

Figure 1.3 Interrupt timeline for a single process doing output.

this goal, the bootstrap program must locate the operating-system kernel and
load it into memory.

Once the kernel is loaded and executing, it can start providing services to
the system and its users. Some services are provided outside of the kernel, by
system programs that are loaded into memory at boot time to become system
processes, or system daemons that run the entire time the kernel is running.
On UNIX, the first system process is “init,” and it starts many other daemons.
Once this phase is complete, the system is fully booted, and the system waits
for some event to occur.

The occurrence of an event is usually signaled by an interrupt from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may trigger an interrupt by executing a special operation called a system call
(also called a monitor call).

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A timeline of this operation is shown in Figure 1.3.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.
The straightforward method for handling this transfer would be to invoke
a generic routine to examine the interrupt information. The routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first hundred or so locations). These locations hold the addresses
of the interrupt service routines for the various devices. This array, or interrupt
vector, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for



Interrupt handling

• A raised interrupt must be handled
• Transfer control to the interrupt service routine (ISR) via 
• The interrupt vector, a table containing addresses of all the ISRs
• Interrupt architecture saves the address of the interrupted instruction
• After reading from device, CPU resumes using a special instruction, e.g., rti

• Interrupts can happen at any time 
• Typically deferred to an instruction boundary
• ISRs must not trash registers, and must know where to resume
• CPU thus typically saves values of all (or most) registers, restoring on return

• A trap or exception is a software-generated interrupt 
• Can be caused either by an error or a deliberate user request

01. Introduction 15



Storage definitions

• Basic unit of computer storage is the bit, containing either 0 or 1
• A byte (or octet) is 8 bits, typically the smallest convenient chunk of storage

• E.g., most computers can move a byte in memory but not a single bit
• A word is a given computer architecture’s native unit of data, one or more bytes

• E.g., a computer with 64-bit registers and 64-bit memory addressing typically has 64-bit (8-
byte) words

• Storage generally measured and manipulated collections of bytes
• A kilobyte (KB) is 1,024 bytes
• A megabyte (MB) is 1,0242 bytes
• A gigabyte (GB) is 1,0243 bytes
• A terabyte (TB) is 1,0244 bytes
• A petabyte (PB) is 1,0245 bytes

• Manufacturers often round so a megabyte is 1 million bytes and a gigabyte is 1 
billion bytes

01. Introduction 16



Storage hierarchy

• Storage systems organized in hierarchy
• Speed, cost, volatility

• Main memory that the CPU can access 
directly
• Large, random access, typically volatile

• Secondary storage extends main memory 
• Very large, non-volatile
• Hard disks (HDs), rigid metal or glass 

platters covered with magnetic recording 
material divided logically into tracks, which 
are subdivided into sectors

• Solid-state disks (SSDs), faster than hard 
disks, non-volatile

• Device Driver for each device controller to 
manage I/O provides a uniform interface 
between controller and kernel

01. Introduction 17

1.2 Computer-System Organization 11

registers

cache

main memory

solid-state disk

magnetic disk

optical disk

magnetic tapes

Figure 1.4 Storage-device hierarchy.

tape and core memories, are relegated to museums now that magnetic tape and
semiconductor memory have become faster and cheaper. The top four levels
of memory in Figure 1.4 may be constructed using semiconductor memory.

In addition to differing in speed and cost, the various storage systems are
either volatile or nonvolatile. As mentioned earlier, volatile storage loses its
contents when the power to the device is removed. In the absence of expensive
battery and generator backup systems, data must be written to nonvolatile
storage for safekeeping. In the hierarchy shown in Figure 1.4, the storage
systems above the solid-state disk are volatile, whereas those including the
solid-state disk and below are nonvolatile.

Solid-state disks have several variants but in general are faster than
magnetic disks and are nonvolatile. One type of solid-state disk stores data in a
large DRAM array during normal operation but also contains a hidden magnetic
hard disk and a battery for backup power. If external power is interrupted, this
solid-state disk’s controller copies the data from RAM to the magnetic disk.
When external power is restored, the controller copies the data back into RAM.
Another form of solid-state disk is flash memory, which is popular in cameras
and personal digital assistants (PDAs), in robots, and increasingly for storage
on general-purpose computers. Flash memory is slower than DRAM but needs
no power to retain its contents. Another form of nonvolatile storage is NVRAM,
which is DRAM with battery backup power. This memory can be as fast as
DRAM and (as long as the battery lasts) is nonvolatile.

The design of a complete memory system must balance all the factors just
discussed: it must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile memory as possible. Caches can



Storage performance

Level

Name

Typical size

Implementation
technology

Access time (ns)

Bandwidth (MB/sec)

Managed by

Backed by

1

registers

< 1 KB

custom memory
with multiple
ports CMOS

0.25 - 0.5

20,000 - 100,000

compiler

cache

2

cache

< 16MB

on-chip or
o!-chip
CMOS SRAM

0.5 - 25

5,000 - 10,000

hardware

main memory

3

main memory

< 64GB

CMOS SRAM

80 - 250

1,000 - 5,000

operating system

disk

4

solid state disk

< 1 TB

"ash memory

25,000 - 50,000

500

operating system

disk

5

magnetic disk

< 10 TB

magnetic disk

5,000,000

20 - 150

operating system

disk or tape

01. Introduction 18



Outline

• System organisation
• System operation
• Concepts
• Layering, multiplexing
• Latency, bandwidth, jitter
• Caching, buffering
• Bottlenecks, tuning, 80/20 rule
• Data structures

• What is an Operating System?

01. Introduction 19



Layering, multiplexing

• Layering is a means to manage complexity by 
controlling interactions between components:
• arrange components in a stack and restrict a component 

at layer X from 
• relying on any other component except the one at layer 

X-1 and 
• providing service to any component except the one at 

layer X+1 
• Multiplexing is where one resource is being 

consumed by multiple consumers simultaneously 
• Traditionally, the combination of multiple (analogue) 

signals into a single signal over a shared medium

01. Introduction 20

Application

Application

Presentation

Session

Transport Transport

Internet Network

Physical
Data Link

Physical

Internet OSI



Latency, bandwidth, jitter

• Different metrics of concern to systems designers 
• Latency is how long something takes

E.g., “This read took 3ms”
• Bandwidth is the rate at which something occurs

• E.g., “This disk transfers data at 2Gb/s” 
• Jitter is the variation (statistical dispersal) in latency (frequency)

• E.g., “Scheduling was periodic with jitter 50 𝜇sec”

• Be aware
• is it the absolute or relative value that matters, and
• is the distribution of values also of interest 

01. Introduction 21



Caching, buffering

• Often need to handle two components operating at different speeds 
(latencies, bandwidths) – so-called impedance mismatch
• Caching, where a small amount of higher-performance storage is used to 

mask the performance impact of a larger lower-performance component. 
Relies on locality in time (finite resource) and space (non-zero cost) 
• E.g., CPU has registers, L1 cache, L2 cache, L3 cache, main memory 

• Buffering, where memory of some kind is introduced between two 
components to soak up small, variable imbalances in bandwidth
• E.g., A hard disk will have on-board memory into which the disk controller reads 

data, and from which the OS reads data out 
• No use if long-term average bandwidth of one component simply exceeds the other!

01. Introduction 22



Bottlenecks, tuning, the 80/20 rule

• The bottleneck is typically the most constrained resource in a system
• Performance optimisation and tuning focuses on determining and 

eliminating  bottlenecks
• Often introducing new ones in the process

• A perfectly balanced system has all resources simultaneously 
bottlenecked
• Impossible to actually achieve 
• Often find that optimising the common case gets most of the benefit anyway 

• Means that measurement is a prerequisite to performance tuning! 
• The 80/20 rule — 80% time spent in 20% code
• No matter how much you optimise a very rare case, it will make no difference 

01. Introduction 23



Common data structures
17

35

146 14 40326

12

0 1 . . n

value

hash map

hash_function(key)

data data data null

• ••

data null nulldata data data

• ••

data data data data

• ••

Binary tree

Hash map

Linked list

Doubly-linked list

Circularly-linked list

01. Introduction 24



Outline

• System organisation
• System operation
• Concepts
• What is an Operating System?
• Resource protection
• CPU, memory, I/O

01. Introduction 25



What is an Operating System?

• Just a program – a piece of software that (efficiently) provides
• Control, over the execution of all other programs
• Multiplexing, of resources between programs
• Abstraction, over the complexity and low-level details
• Extensibility, enabling evolution to meet changing demands and constraints 

• Typically involves libraries and tools provided as part of the OS
• Kernel – but also a libc, a language runtime, a web browser, … 
• Thus no-one really agrees precisely what the OS is
• In this course we will focus on the kernel 

• OS provides mechanisms that are used to implement policies
• Policies may be deliberately designed, or accidents of implementation

01. Introduction 26



Resource management

• Running program executes instructions sequentially to completion using resources
• CPU

• OS multiplexes many running programs (threads) over the CPU(s)
• Lifecycle management, synchronisation, communication

• Memory
• Running programs require code and data in memory
• Tracking memory ownership, managing de/allocation

• Storage
• Abstracting different storage media and their characteristics
• Creating, deleting, manipulating files, directories and free space

• I/O Subsystem
• Abstracting peculiarities of different devices
• Providing device drivers, managing I/O buffering, caching, spooling

01. Introduction 27



Protecting the CPU

• Need to ensure that the OS stays in control, able to prevent any 
application from “hogging” the CPU the whole time 
• Means using a timer, usually a countdown timer, e.g., 
• Set timer to initial value (e.g. 0xFFFF)
• Every tick (nowadays programmable), timer decrements value 
• When value hits zero, interrupt 

• Ensures the OS runs periodically provided 
• only OS can load timer, and 
• timer interrupt cannot be masked

• Also enables implementation of time-sharing

01. Introduction 28



Protecting memory

• Define a base and a limit for each program, and 
protect access outside allowed range 
• Have hardware check every memory reference: 
• Access out of range causes exception, vectored into 

OS 
• Only allow update of base and limit registers by OS
• Can disable memory protection in kernel mode 

(but this is a bad idea) 

• In reality, more complex protection 
hardware is used 

01. Introduction 29

Operating
System

Job 1

Job 2

Job 3

Job 4

0x0000

0x3000

0x5000

0x9800

0xD800

0xFFFF

0x5000

0x4800

limit register

base register

CPU

vector to OS (address error)

yes

no

yes

no

base base+limit

M
em

o
ry



Protecting I/O

• Initially, tried to make IO instructions privileged: 
• Applications can’t mask interrupts (that is, turn one or many off) 
• Applications can’t control IO devices 

• Unfortunately, some devices are accessed via memory, not special 
instructions 
• Applications can rewrite interrupt vectors 

• Hence protecting IO relies on memory protection mechanisms

01. Introduction 30



Summary

• System organisation
• Hardware resources
• Fetch-execute cycle
• Buses

• System operation
• Booting
• Interrupts
• Storage

• Concepts
• Layering, multiplexing
• Latency, bandwidth, jitter
• Caching, buffering
• Bottlenecks, tuning, 80/20 rule
• Data structures

• What is an Operating System?
• Resource protection
• CPU, memory, I/O

01. Introduction 31


