05. Scheduling Algorithms

oth ed: Ch. 6
10t ed: Ch. 5

Objectives

« To understand how to apply several common scheduling
algorithms

FCFS, SJF, SRTF

Priority

Round Robin

Multilevel Queues

« To understand use of measurement and prediction for
unknown scheduling parameters

05. Scheduling Algorithms

Outline

* First-Come First-Served (FCFS)
* Shortest Job First (SJF)
 Shortest Remaining Time First (SRTF)

* Priority scheduling
e Round Robin (RR)

Outline

* First-Come First-Served (FCFS)

* Convoy effect

First-Come First-Served (FCFS)

* Schedule depends purely on the order in which processes arrive
* Simplest possible scheduling algorithm
* Not terribly robust to different arrival processes

* E.g., suppose processes with the following burst times arrive in the
order Py, P,, P;

Process | BurstTime.
P, 24
P, 3

P3 3

05. Scheduling Algorithms

First-Come First-Served (FCFS)

* Then the Gantt chart is

Pl P2

0 24 27
process | Burst Time | Wating Time

* The waiting times are p, 24 0
P, 3 24
P3 3 27

L L 0424427
* This gives an average per-process waiting time of = 17

05. Scheduling Algorithms

30

The Convoy Effect

* Now suppose the same processes arrive in the order P,, P;, P,
* Then the Gantt chart and waiting times are:

P P P

2 3 1

0 3 6

30
process | Burst Time | Waitng Time
* Gives an average per-process waiting time p, 24 6
of(6+0+3)/3=3 P, 3 0

* First case is an example of the Convoy Effect P; 3 3
* Short-run processes getting stuck behind long-run processes
* Consider one CPU-bound and many |0-bound processes

05. Scheduling Algorithms 7

Outline

e Shortest Job First (SJF)

Shortest Job First (SJF)

* Associate length of next CPU burst with each process
* Schedule the process with the shortest next burst

* Optimality: SJF gives the least possible waiting time for a given set of
processes

* But how can you know the length of the next CPU burst?
* Ask the user?
* Ask the developer?
* Measure and predict?

Shortest Job First (SJF)

e Consider the following arrivals process and resulting Gantt chart:

rocess | Burst Time
P, 6

P, 8

P 7 | P P, P P

Py 3 o 3 9 16 24
34164940

* Gives an average per-process waiting time of ” = 7

05. Scheduling Algorithms 10

Outline

* Shortest Remaining Time First (SRTF)
* Predicting the future
* Exponential averaging

Shortest Remaining Time First (SRTF)

e Simply a pre-emptive version of SJF

* Pre-empt current process if a new one arrives with a shorter predicted burst
length than the remaining time of the current process

* Distinguish arrival time and burst length, e.g., m

e Gives Gantt chart

P, 1 4
P | P, P, P P, P, 2 9
P, 3 5

0 1 5 10 17 26

(10—1)+(1—1):(17—2)+(5—3) _ 26 _ 61/,

* Average waiting time is now

05. Scheduling Algorithms 12

Optimality in the future

* If SJF is optimal given a known set of processes (demand), then surely
SRTF is optimal in the face of new runnable processes arriving?

* No! Why?

* Context switches are not free, so if short burst processes keep arriving
the OS will start thrashing the CPU, so no useful work gets done

* More fundamentally,
how can we know the length of a future burst?

Predicting burst lengths

* Assume the next burst will not be too different from the previous
* Then

* measure burst lengths as processes are scheduled,
* predict next burst length, and
* choose the process with the shortest predicted burst length

* E.g., exponential averaging on length of previous bursts
* Set t, to be the measured length of the nt" CPU burst
* Define 7,41, predicted length of n + 1t burstas 7,1 = at,, + (1 — a)1,

Examples of exponential averaging

* Expanding this formula gives
Tper =ty + o+ (A —a)at,_; + ..+ (1 —a)" 1,
where 7, is some constant

e Asbotha,1 —a < 1, each term has less weight than its predecessor

* Choose value of a according to our belief about the system, e.g,
* If we believe past history irrelevant, choose ¢ = 1 and thengett,,,1 = t,
* If we believe recent history irrelevant, choose a = 0 and then get7,,,1 = T,

* Exponential averaging is often a good predictor if the variance is small

* NB. Also should consider load, else (counter-intuitively) priorities increase
with the load

Examples of exponential averaging

12 |
T, 10

8 F
i 6

_/
4k
oL
I
time —

CPU burst (t,-) 6 4 6 4 13 13 13

"guess” (t) 10 8 6 6 5 9 11 12

05. Scheduling Algorithms

16

Outline

* Priority scheduling
* Dynamic priorities
* Computed priorities

Priority scheduling

* Associate integer priority with process, and schedule the highest

priority (~ lowest number) process, e.g., Process | Priority | Burst Length
Py 3 10

P, P P, Ps 1Py P, 1 1
- 5 16 18 19 4 ’)
3
e . . . P4 5 1
¢ Average Waltlng time now P 2 5
5
14+54+0+(1+5+10)0+1+5+10+2)+1 41 1
- == =8 /5

* Consider: SJF as priority scheduling using inverse of predicted burst
length

05. Scheduling Algorithms 18

Dynamic priority scheduling

e Starvation can occur if low priority processes never execute

* Urban legend?
* When the IBM 7074 at MIT was shut down in 1973, low-priority processes
were found that had been submitted in 1967 and had not yet been run...
* This is the biggest problem with static priority systems!
* A low priority process is not guaranteed to run — ever!

* Solve by making priorities dynamic

e E.g., aging increases priority starting from a static base as time passes without
process being scheduled

Computed Priority

* E.g., traditional UNIX scheduler
* Priorities 0—127; user processes =2 PUSER =50
* Round robin within priorities, quantum e.g. 100ms

* Priority of process j at start of interval i is based on
* nice level, a user controllable parameter between -20 and 20, and
* load; the sampled average length of the run queue for process j

CPU; (i — 1)
4

P;(i) = Base; + + 2Xnice;

2><loadj

CPU; (D) = xload;) + 1

CPUJ(l — 1) + nicej

Outline

* Round Robin (RR)

* Multilevel queues
* Multilevel feedback queues

Round Robin

* A pre-emptive scheduling scheme for time-sharing systems
* Give each process a quantum (or time-slice) of CPU time e.g., 10— 100 milliseconds
* Once quantum elapsed, process is pre-empted and appended to the ready queue
* Timer interrupts every quantum to schedule next process

* Can be tricky to choose g correctly orocess time = 10 quantum context
* g too large degenerates into a 12 SW'tgheS
FIFO queue (~ FCFS) 0 10
* g too small makes the context switch 5 1
overhead too great 0 ! 10
* g usually 10ms to 100ms, : 9

while context switch < 10 usec 0 1 2 8 4 5 6 7 8 9 10

Round Robin

* Consider the first example again Process | Burst Time
P, 24
P1 P2 P3 P1 P1 P1 P1 P1 P, 3
0 4 7 10 14 18 22 26 30 P3 3

* For quantum g and n processes ready,
* Fair: each process gets /5, CPU time in chunks of at most g time units, and
* Live: no process ever waits more than (n — 1)qg time units

* Typically
* higher average turnaround time than SRTF, but
* better average response time

05. Scheduling Algorithms

23

Multilevel Queues

 Partition Ready queue into many queues

for different types of process, e.g.,
* Foreground/interactive processes
» Background/batch processes

* Each process is permanently assigned a
given queue

* Each queue runs its own scheduling
algorithm, e.g.,
* Foreground runs Round Robin
* Background runs First-Come First-Served

highest priority

—

system processes

—

interactive processes

—

interactive editing processes

—

batch processes

—

student processes

lowest priority

Multilevel Feedback Queues

* Now scheduling must be done between the queues:
 Fixed priority, e.g., serve all from foreground then from background, permits

starvation

* Time slice, each queue gets a certain amount of CPU time which it can schedule

amongst its processes, e.g., 80% to foreground in RR, 20% to background in FCFS

* A Process Can move between the various queues

Aging can be implemented this way

* Multilevel-feedback-queue scheduler defined by the following parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter when that process
needs service

Multilevel Feedback Queues

* Three queues:
* Q;— RR with time quantum 8 milliseconds

* Q; — RR time quantum 16 milliseconds
* Q,—FCFS

* Scheduling
* A new job enters queue Q, which is served FCFS
When it gains CPU, job receives 8 milliseconds

quantum = 8

quantum = 16

FCFS

If it does not finish in 8 milliseconds, job is moved to queue Q4
At Q, job is again served FCFS and receives 16 additional milliseconds
If it still does not complete, it is pre-empted and moved to queue Q,

Summary

* First-Come First-Served (FCFS)

e Convoy effect
e Shortest Job First (SJF)

* Shortest Remaining Time First
(SRTF)
* Predicting the future
* Exponential averaging

* Priority scheduling

* Dynamic priorities

* Computed priorities
* Round Robin (RR)

* Multilevel queues
* Multilevel feedback queues

