
Taking a Long Look at QUIC
An Approach for Rigorous Evaluation of Rapidly Evolving Transport Protocols

Arash Molavi Kakhki
Northeastern University

arash@ccs.neu.edu

Samuel Jero
Purdue University
sjero@purdue.edu

David Choffnes
Northeastern University
choffnes@ccs.neu.edu

Cristina Nita-Rotaru
Northeastern University
c.nitarotaru@neu.edu

Alan Mislove
Northeastern University
amislove@ccs.neu.edu

ABSTRACT
Google’s QUIC protocol, which implements TCP-like properties at
the application layer atop a UDP transport, is now used by the vast
majority of Chrome clients accessing Google properties but has
no formal state machine specification, limited analysis, and ad-hoc
evaluations based on snapshots of the protocol implementation in
a small number of environments. Further frustrating attempts to
evaluate QUIC is the fact that the protocol is under rapid develop-
ment, with extensive rewriting of the protocol occurring over the
scale of months, making individual studies of the protocol obsolete
before publication.

Given this unique scenario, there is a need for alternative tech-
niques for understanding and evaluating QUIC when compared
with previous transport-layer protocols. First, we develop an ap-
proach that allows us to conduct analysis across multiple versions
of QUIC to understand how code changes impact protocol effec-
tiveness. Next, we instrument the source code to infer QUIC’s state
machine from execution traces. With this model, we run QUIC in
a large number of environments that include desktop and mobile,
wired and wireless environments and use the state machine to
understand differences in transport- and application-layer perfor-
mance across multiple versions of QUIC and in different environ-
ments. QUIC generally outperforms TCP, but we also identified
performance issues related to window sizes, re-ordered packets,
and multiplexing large number of small objects; further, we identify
that QUIC’s performance diminishes on mobile devices and over
cellular networks.

CCS CONCEPTS
• Networks→ Transport protocols; Network measurement;

KEYWORDS
QUIC, transport-layer performance

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
IMC ’17, November 1–3, 2017, London, United Kingdom
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Com-
puting Machinery.
ACM ISBN 978-1-4503-5118-8/17/11. . . $15.00
https://doi.org/10.1145/3131365.3131368

ACM Reference Format:
Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru,
and Alan Mislove. 2017. Taking a Long Look at QUIC. In Proceedings of IMC
’17, London, United Kingdom, November 1–3, 2017, 14 pages.
https://doi.org/10.1145/3131365.3131368

1 INTRODUCTION
Transport-layer congestion control is one of the most important
elements for enabling both fair and high utilization of Internet
links shared by multiple flows. As such, new transport-layer proto-
cols typically undergo rigorous design, analysis, and evaluation—
producing public and repeatable results demonstrating a candidate
protocol’s correctness and fairness to existing protocols—before
deployment in the OS kernel at scale.

Because this process takes time, years can pass between devel-
opment of a new transport-layer protocol and its wide deployment
in operating systems. In contrast, developing an application-layer
transport (i.e., one not requiring OS kernel support) can enable rapid
evolution and innovation by requiring only changes to application
code, with the potential cost due to performance issues arising from
processing packets in userspace instead of in the kernel.

The QUIC protocol, initially released by Google in 2013
[10], takes the latter approach by implementing reliable, high-
performance, in-order packet delivery with congestion control at
the application layer (and using UDP as the transport layer).1 Far
from just an experiment in a lab, QUIC is supported by all Google
services and the Google Chrome browser; as of 2016, more than 85%
of Chrome requests to Google servers use QUIC [36].2 In fact, given
the popularity of Google services (including search and video),
QUIC now represents a substantial fraction (estimated at 7% [26])
of all Internet traffic. While initial performance results from Google
show significant gains compared to TCP for the slowest 1% of con-
nections and for video streaming [18], there have been very few
repeatable studies measuring and explaining the performance of
QUIC compared with standard HTTP/2+TCP [17, 20, 30].

Our overarching goal is to understand the benefits and trade-
offs that QUIC provides. However, during our attempts to evaluate
QUIC, we identified several key challenges for repeatable, rigor-
ous analyses of application-layer transport protocols in general.
First, even when the protocol’s source code is publicly available, as
QUIC’s is, there may be a gap between what is publicly released
and what is deployed on Google clients (i.e., Google Chrome) and

1It also implements TLS and SPDY, as described in the next section.
2Newer versions of QUIC running on servers are incompatibile with older clients, and ISPs some-
times block QUIC as an unknown protocol. In such cases, Chrome falls back to TCP.

https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3131365.3131368

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

servers. This requires gray-box testing and calibration to ensure
fair comparisons with code running in the wild. Second, explaining
protocol performance often requires knowing formal specifications
and state machine diagrams, which may quickly become stale due
to code evolution (if published at all). As a result, we need a way to
automatically generate protocol details from execution traces and
use them to explain observed performance differences. Third, given
that application-layer protocols encounter a potentially endless
array of execution environments in the wild, we need to carefully
select and configure experimental environments to determine the
impact of network conditions, middleboxes, server settings, and
client device configurations on end-to-end performance.

In this work, we address these challenges to properly evaluate
QUIC and make the following key contributions.

First, we identify a number of pitfalls for application-layer pro-
tocol evaluation in emulated environments and across multiple
QUIC versions. Through extensive calibration and validation, we
identify a set of configuration parameters that fairly compare QUIC,
as deployed by Google, with TCP-based alternatives.

Second, we develop a methodology that automatically generates
network traffic to QUIC- and TCP-supporting servers in a way that
enables head-to-head comparisons. Further, we instrument QUIC to
identify the root causes behind observed performance differences
and to generate inferred state machine diagrams. We make this
code (and our dataset) publicly available at http://quic.ccs.neu.edu.

Third, we conduct tests using a variety of emulated network
conditions, against our own servers and those run by Google, from
both desktop and mobile-phone clients, and using multiple histori-
cal versions of QUIC. This analysis allows us to understand how
QUIC performance evolved over time, and to determine how code
changes impact relevant metrics. In doing so, we produce the first
state machine diagrams for QUIC based on execution traces.

Our key findings are as follows.
• In the desktop environment, QUIC outperforms TCP+HTTPS
in nearly every scenario. This is due to factors that include
0-RTT connection establishment and recovering from loss
quickly—properties known to provide performance benefits.
• However, we found QUIC to be sensitive to out-of-order packet
delivery. In presence of packet re-ordering, QUIC performs
significantly worse than TCP in many scenarios. This occurs
because QUIC interprets such behavior as loss, which causes
it to send packets more slowly.
• Due to its reliance on application-layer packet processing and
encryption, we find that all of QUIC’s performance gains are
diminished on phones from 2013 and late 2014. It is likely that
even older phones will see worse performance with QUIC.
• QUIC outperforms TCP in scenarios with fluctuating band-
width. This is because QUIC’s ACK implementation eliminates
ACK ambiguity, resulting in more precise RTT and bandwidth
estimations.
• We found that when competing with TCP flows, QUIC is unfair
to TCP by consuming more than twice its fair share of the
bottleneck bandwidth.
• QUIC achieves better quality of experience for video streaming,
but only for high-resolution video.

• A TCP proxy can help TCP to shrink the performance gap with
QUIC in low latency cases and also under loss. Furthermore, an
unoptimized QUIC proxy improves performance under loss for
large objects but can hurt performance for small object sizes
due to lack of 0-RTT connection establishment.
• QUIC performance has improved since 2016 mainly due to a
change from a conservative maximum congestion window to
a much larger one.
• We identified a bug affecting the QUIC server included in
Chromium version 52 (the stable version at the time of our
experiments), where the initial congestion window and Slow
Start threshold led to poor performance compared with TCP.

2 BACKGROUND AND RELATEDWORK
In this section, we provide background information on QUIC and
detail work related to our study.

2.1 Background
Google’s Quick UDP Internet Connections (QUIC) protocol is an
application-layer transport protocol that is designed to provide high
performance, reliable in-order packet delivery, and encryption [10].
The protocol was introduced in 2013, and has undergone rapid
development by Google developers. QUIC is included as a separate
module in the Chromium source; at the time of our experiments,
the latest stable version of Chrome is 60, which supports QUIC
versions up to 37. 12 versions of QUIC have been released during
our study, i.e., between September 2015 and January 2017.3

QUICmotivation. The design of QUIC is motivated largely by
two factors. First, experimenting with and deploying new transport
layers in the OS is difficult to do quickly and at scale. On the other
hand, changing application-layer code can be done relatively easily,
particularly when client and server code are controlled by the same
entity (e.g., in the case of Google). As such, QUIC is implemented
at the application layer to allow Google to more quickly modify
and deploy new transport-layer optimizations at scale.

Second, to avoid privacy violations as well as transparent proxy-
ing and content modification by middleboxes, QUIC is encrypted
end-to-end, protecting not only the application-layer content (e.g.,
HTTP) but also the transport-layer headers.

QUIC features. QUIC implements several optimizations and
features borrowed from existing and proposed TCP, TLS, and
HTTP/2 designs. These include:
• “0-RTT” connection establishment: Clients that have previously
communicated with a server can start a new session without
a three-way handshake, using limited state stored at clients
and servers. This shaves multiple RTTs from connection estab-
lishment, which we demonstrate to be a significant savings for
data flows that fit within a small number of packets.
• Reduced “head of line blocking” : HTTP/2 allowsmultiple objects
to be fetched over the same connection, using multiple streams
within a single flow. If a loss occurs in one stream when using
TCP, all streams stall while waiting for packet recovery. In

3Throughout this paper, unless stated otherwise, we use QUIC version 34, whichwe found to exhibit
identical performance to versions 35 and 36. Changelogs and source code analysis confirm that none
of the changes should impact protocol performance.

http://quic.ccs.neu.edu

Taking a Long Look at QUIC IMC ’17, November 1–3, 2017, London, United Kingdom

PLT Experiments
Test

Environments5

QUIC
Version

Calib-
ration2

Root
Cause

Analysis3

of
Tested
Pages4

of
Emulated
Scenarios

Net.
type

Devices Fair-
ness

Video
QoE

Packet
Reorder.

Proxy-
ing

Megyesi [30] 20* ✗ ✗ 6 12 F D ✓ ✗ ✗ ✗

Carlucci1 [17] 21 ✗ ✗ 3 9 F D ✗ ✗ ✗ ✗

Biswal [16] 23 ✗ ✗ 20 10 F D ✗ ✗ ✗ ✗

Das [20] 23* ✗ ✗ 500† 100 (9)‡ F/C D ✗ ✗ ✗ ✗

This work 25 to 37 ✓ ✓ 13 18 F/C D/M ✓ ✓ ✓ ✓

Table 1: Overview of new and extended contributions compared to prior work, i.e., [16, 17, 20, 30]. 1This work studied impact
of FEC, which was removed from QUIC in early 2016. 2Lack of calibration in prior work led to misleading reports of poor
QUIC performance for high-bandwidth links and large pages. 3Prior work typically speculates on the reasons for observed
behavior. 4Our choice of pages isolate impact of number and size of objects. 5Mobile (M), desktop (D), fixed-line (F), cellular
(C). † Replay of 500 real web pages with no control over size/number of objects to isolate their impact. ‡ Das tested a total of
100 network scenarios, but details of only 9 are mentioned. *Based on specified Chromium version/commit#.

contrast, QUIC allows other streams to continue to exchange
packets even if one stream is blocked due to a missing packet.
• Improved congestion control: QUIC implements better estima-
tion of connection RTTs and detects and recovers from loss
more efficiently.

Other features include forward error correction4 and improved
privacy and flow integrity compared to TCP.

Most relevant to this paper are the congestion and flow control
enhancements over TCP, which have received substantial attention
from the QUIC development team. QUIC currently5 uses the Linux
TCP Cubic congestion control implementation [35], and adds with
several new features. Specifically, QUIC’s ACK implementation
eliminates ACK ambiguity, which occurs when TCP cannot dis-
tinguish losses from out-of-order delivery. It also provides more
precise timing information that improves bandwidth and RTT es-
timates used in the congestion control algorithm. QUIC includes
packet pacing to space packet transmissions in a way that reduces
bursty packet losses, tail loss probes [22] to reduce the impact of
losses at the end of flows, and proportional rate reduction [28] to
mitigate the impact of random loss on performance.

Source code. The QUIC source code is open and published as
part of the Chromiumproject [3]. In parallel with deployment, QUIC
is moving toward protocol standardization with the publication of
multiple Internet drafts [5, 9, 11].

Current deployment. Unlike many other experimental
transport-layer protocols, QUIC is widely deployed to clients
(Chrome) and already comprises 7% of all Internet traffic [26]. While
QUIC can in theory be used to support any higher-layer protocol
and be encapsulated in any lower-layer protocol, the only known
deployments6 of QUIC use it for web traffic. Specifically, QUIC is
intended as a replacement for the combination of TCP, TLS, and
HTTP/2 and runs atop UDP.

Summary. QUIC occupies an interesting place in the space of
deployed transport layers. It is used widely at scale with limited

4This feature allows QUIC to recover lost packets without needing retransmissions. Due to poor
performance it is currently disabled [37].
5Google is developing a new congestion control called BBR [19], which is not yet in general
deployment.
6These include the Chromium source code and Google services that build on top of it.

repeatable analyses evaluating its performance. It incorporates
many experimental and innovative features and rapidly changes the
enabled features from one version to the next.While the source code
is public, there is limited support for independent configurations
and evaluations of QUIC. In this paper, we develop an approach
that enables sound evaluations of QUIC, explains the reasons for
performance differences with TCP, and supports experimentation
with a variety of deployment environments.

2.2 Related Work

Transport-layer performance. There is a large body of pre-
vious work on improving transport-layer and web performance,
most of it focusing on TCP [21, 22, 28] and HTTP/2 (or SPDY [39]).
QUIC builds upon this rich history of transport-layer innovation,
but does so entirely at the application-layer. Vernersson [38] uses
network emulation to evaluate UDP-based reliable transport, but
does not focus specifically on QUIC.

QUIC security analysis. Several recent papers explore the
security implications of 0-RTT connection establishment and the
QUIC TLS implementation [23, 25, 27], and whether explicit con-
gestion notification can be used with UDP-based protocols such as
QUIC [29]. Unlike such studies, we focus entirely on QUIC’s end-to-
end network performance and do not consider security implications
or potential extensions.

Google-reported QUIC performance. The only large-scale
performance results for QUIC in production come from Google.
This is mainly due to the fact that at the time of writing, Google
is the only organization known to have deployed the protocol in
production. Google claims that QUIC yields a 3% improvement in
mean page load time (PLT) on Google Search when compared to
TCP, and that the slowest 1% of connections load one second faster
when using QUIC [18]. In addition, in a recent paper [26] Google
reported that on average, QUIC reduces Google search latency by
8% and 3.5% for desktop and mobile users respectively, and reduces
video rebuffer time by 18% for desktop and 15.3% for mobile users.
Google attributes these performance gains to QUIC’s lower-latency
connection establishment (described below), reduced head-of-line
blocking, improved congestion control, and better loss recovery.

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

In contrast to our work, Google-reported results are aggregated
statistics that do not lend themselves to repeatable tests or root
cause analysis. This work takes a complementary approach, using
extensive controlled experiments in emulated and operational net-
works to evaluate Google’s performance claims (Sec. 5) and root cause
analysis to explain observed performance.

QUIC emulation results. Closely related to this work, several
papers explore QUIC performance. Megyesi et al. [30] use emulated
network tests with desktop clients running QUIC version 20 and
Google Sites servers. They find that QUIC runs well in a variety of
environments, but HTTP outperforms QUIC in environments with
high bandwidth links, high packet loss, and many large objects.
Biswal et al. [16] find similar results, except that they report QUIC
outperforms HTTP in presence of loss.

Carlucci et al. [17] investigate QUIC performance (in terms of
goodput, utilization, and PLT) using QUIC version 21 running on
desktop machines with dummy QUIC clients and servers connected
through emulated network environments. They find that FECmakes
QUIC performance worse, QUIC unfairly consumes more of the
bottleneck link capacity than TCP, QUIC underperforms when web
pages have multiple objects due to limited numbers of parallel
streams, and QUIC performs worse than TCP+HTTP when there
are multiple objects with loss. We do not study FEC because it was
removed from QUIC in early 2016.

In an M.S. thesis from 2014, Das [20] evaluates QUIC perfor-
mance using mahimahi [32] to replay 500 real webpages over emu-
lated network conditions. The author found that QUIC performs
well only over low-bandwidth, high-RTT links. Das reported that
when compared to TCP, QUIC improved performance for small
webpages with few objects, but the impact on pages with large
numbers of objects was inconclusive. Unlike this work, we focus
exclusively on QUIC performance at the transport layer and isolate
root causes for observed differences across network environments
and workloads. Along with models for complex web page depen-
dencies, our results can inform metrics like page-interactive time
for webpage loads (as done in the Mobilyzer study [33]).

Our contributions. This work makes the following new and
extended contributions compared to prior work (summarized in
Table 1).
• Recent, properly configured QUIC implementations. Prior work
used old QUIC versions (20–23, compared with 34 in this work),
with the default conservative maximum allowed congestion
window (MACW). As we discuss in Sec. 4.1, using a small
MACW causes poor performance for QUIC, specifically in
high-bandwidth environments. This led to misleading reports
of poor QUIC performance for high bandwidth links and large
pages in prior work. In contrast, we use servers that are tuned
to provide nearly identical performance to Google’s QUIC
servers7 and demonstrate that QUIC indeed performs well
for large web pages and high bandwidth.
• Isolation of workload impact on performance. Previous work con-
flates the impact of different workloads on QUIC performance.
For example, when [20] studies the effect of multiplexing, both
the number of objects and the page size changes. This conflates

7This required significant calibration and communicationwith Google, as described in the following
section.

Client's machine Server

Internet

Router (running

network emulator)

Figure 1: Testbed setup. The server is an EC2 virtualmachine
running both a QUIC and an Apache server. The empirical
RTT from client to server is 12ms and loss is negligible.

QUIC’s multiplexing efficiency with object-size efficiency. In
contrast, we design our experiments so that they test one work-
load factor at a time. As a result, we can isolate the impact of
parameters such as number and size of objects, or the benefit
of 0-RTT connection establishment and proxies.
• Rigorous statistical analysis. When comparing QUIC with TCP,
most prior work do not determine if observed performance
differences are statistically significant. In contrast, we use sta-
tistical tests to ensure reported differences are statistically
significant; if not, we indicate that performance differences are
inconclusive.
• Root cause analysis. Prior work typically speculates on the rea-
sons for observed behavior. In contrast, we systematically iden-
tify the root causes that explain our findings via experiment
isolation, code instrumentation, and state-machine analysis.
• More extensive test environments.We consider not only more
emulated network environments than most prior work, but
we also evaluate QUIC over operational fixed-line and cellular
networks. We consider both desktop and mobile clients, and
multiple QUIC versions. To the best of our knowledge, we
are the first to investigate QUIC with respect to out-of-order
packet delivery, variable bandwidth, and video QoE.

3 METHODOLOGY
We now describe our methodology for evaluating QUIC, and com-
paring it to the combination of HTTP/2, TLS, and TCP. The tools
we developed for this work and the data we collected are publicly
available.

3.1 Testbed
We conduct our evaluation on a testbed that consists of a device
machine running Google’s Chrome browser8 connected to the In-
ternet through a router under our control (Fig. 1). The router runs
OpenWRT (Barrier Breaker 14.07, Linux OpenWrt 3.10.49) and in-
cludes Linux’s Traffic Control [7] and Network Emulation [6] tools,
which we use to emulate network conditions including available
bandwidth, loss, delay, jitter, and packet reordering.

Our clients consist of a desktop (Ubuntu 14.04, 8 GB memory,
Intel Core i5 3.3GHz) and two mobile devices: a Nexus 6 (Android
6.0.1, 3 GB memory, 2.7 GHz quad-core) and a MotoG (Android
4.4.4, 1 GB memory, 1.2 GHz quad-core).

Our servers run onAmazon EC2 (Kernel 4.4.0-34-generic, Ubuntu
14.04, 16 GB memory, 2.4 GHz quad-core) and support HTTP/2 over
TCP (using Cubic and the default linux TCP stack configuration) via
Apache 2.4 and over QUIC using the standalone QUIC server pro-
vided as part of the Chromium source code. To ensure comparable
8The only browser supporting QUIC at the time of this writing.

Taking a Long Look at QUIC IMC ’17, November 1–3, 2017, London, United Kingdom

Parameter Values tested
Rate limits (Mbps) 5, 10, 50, 100
Extra Delay (RTT) 0ms, 50ms, 100ms

Extra Loss 0.1%, 1%
Number of objects 1, 2, 5, 10, 100, 200
Object sizes (KB) 5, 10, 100, 200, 500, 1000, 10,000, 210,000

Proxy QUIC proxy, TCP proxy
Clients Desktop, Nexus6, MotoG

Video qualities tiny, medium, hd720, hd2160
Table 2: Parameters used in our tests.

results between protocols, we run our Apache and QUIC servers on
the same virtual machine and use the same machine/device as the
client. We increase the UDP buffer sizes if necessary to ensure there
are no networking bottlenecks caused by the OS. As we discuss in
Sec. 4, we configure QUIC so it performs identically to Google’s
production QUIC servers.

QUIC uses HTTP/2 and encryption on top of its reliable transport
implementation. To ensure a fair comparison, we compare QUIC
with HTTP/2 over TLS, atop TCP. Throughout this paper we refer
to such measurements that include HTTP/2+TLS+TCP as “TCP”.

Our servers add all necessary HTTP directives to avoid any
caching of data. We also clear the browser cache and close all
sockets between experiments to prevent “warmed up” connections
from impacting results. However, we do not clear the state used for
QUIC’s 0-RTT connection establishment.

3.2 Network Environments
We compare TCP and QUIC performance across a wide range of net-
work conditions (i.e., various bandwidth limitations, delays, packet
losses) and application scenarios (i.e., web page object sizes and
number of objects; video streaming). Table 2 shows the scenarios
we consider for our tests.

We emulate network conditions on a separate router to avoid
erroneous results when doing so on an endpoint. Specifically, we
found that when tc and netem are used at an endpoint directly,
they result in undesired behavior such as bursty traffic. Further, if
loss is added locally with tc, the loss is immediately reported to
the transport layer, which can lead to immediate retransmission
as if there was no loss—behavior that would not occur outside the
emulated environment.

We impose bandwidth caps using token bucket filters (TBF) in tc.
We conducted a variety of tests to ensure that we did not use settings
leading to unreasonably long or short queues or bucket sizes that
benefit or harm QUIC or TCP. Specifically, for each test scenario we
run experiments to determine whether the network configuration
negatively impacts the protocols independent of additional delay
or loss, and pick settings that allow the flows to achieve transfer
rates that are close to the bandwidth caps.

Our tests on cellular networks use client devices that are directly
connected to the Internet.

3.3 Experiments and Performance Metrics

Experiments. Unless otherwise stated, for each evaluation
scenario (network conditions, client, and server) we conduct at
least 10 measurements of each transport protocol (TCP and QUIC).

 0

 500

 1000

 1500

 2000

Our server unadjusted GAE Our server adjusted

T
im

e
 (

m
s
)

Receive Wait

Figure 2: Google App Engine (GAE) vs. our QUIC servers on
EC2 before and after configuring them. Loading a 10MB im-
age over a 100Mbps link. The bars show the wait time (red)
and download time (blue) after the connection is established
and the request has reached the server (averaged over 10
runs). GAE (middle) has a high wait time.

To mitigate any bias from transient noise, we run experiments in
10 rounds or more, each consisting of a download using TCP and
one using QUIC, back-to-back. We present the percent differences
in performance between TCP and QUIC and indicate whether they
are statistically significant (p < 0.01). All tests are automated using
Python scripts and Chrome’s debugging tools. We use Android
Debug Bridge [1] for automating tests running on mobile phones.

Applications. We test QUIC performance using two applica-
tions that currently integrate the protocol: the Chrome browser
and YouTube video streaming.

For Chrome, we evaluate QUIC performance using web pages
consisting of static HTML that references JPG images (various num-
ber and sizes of images) without any other object dependencies or
scripts. While previous work demonstrates that many factors im-
pact load times and user-perceived performance for typical, popular
web pages [4, 33, 39], the focus of this work is only on transport
protocol performance. Our choice of simple pages ensures that page
load time measurements reflect only the efficiency of the transport
protocol and not browser-induced factors such as script loading and
execution time. Furthermore, our simple web pages are essential
for isolating the impact of parameters such as size and number of
objects on QUIC multiplexing. We leave investigating the effect of
dynamic pages on performance for future work.

In addition, we evaluate video streaming performance for content
retrieved from YouTube. Specifically, we use the YouTube iFrame
API to collect QoE metrics such as time to start, buffering time, and
number of rebuffers.

Performance Metrics. We measure throughput, “page load
time” (i.e., the time to download all objects on a page), and video
quality metrics that include time to start, rebuffering events, and
rebuffering time. For web content, we use Chrome’s remote debug-
ging protocol [2] to load a page and then extract HARs [34] that
include all resource timings and the protocol used (which allows
us to ensure that the correct protocol was used for downloading an
object9). For video streaming, we use a one-hour YouTube video
that is encoded in all quality levels (i.e., from “tiny” to 4K HD).

9Chrome “races” TCP and QUIC connections for the same server and uses the one that establishes
a connection first. As such, the protocol used may vary from the intended behavior.

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

4 EVALUATION FRAMEWORK
Our testbed provides a platform for running experiments, but does
not alone ensure that our comparisons between QUIC and TCP are
sound, nor does it explain any performance differences we see. We
face two key challenges in addressing this.

First, Google states that the public version of QUIC is not “per-
formant" and is for integration testing purposes only [8]. To ensure
our findings are applicable to Google’s deployment environment,
we must configure our QUIC servers to match the performance of
Google’s QUIC servers.

Second, QUIC is instrumented with a copious amount of de-
bugging information but no framework that maps these logs into
actionable information that explains performance. While there is a
design document, there is no state machine to compare with.

We now describe how we address these challenges in our evalu-
ation framework.

4.1 Calibration
At first glance, a simple approach to experimenting with QUIC
as configured by Google would simply be to use Google’s servers.
While this intuition is appealing, it exhibits two major issues. First,
running on Google servers, or any other servers that we do not
control, prevents us from instrumenting and altering the protocol
to explain why performance varies under different network en-
vironments. Second, our experience shows that doing so leads to
highly variable results and incorrect conclusions.

For example, consider the case of Google App Engine (GAE),
which supports QUIC and allows us to host our own content for
testing. While the latency to GAE frontends was low and constant
over time, we found a variable wait time between connection estab-
lishment and content being served (Fig. 2, middle bar). We do not
know the origins for these variable delays, but we suspect that the
constant RTT is due to proxying at the frontend, and the variable
delay component is due to GAE’s shared environment without re-
source guarantees. The variability was present regardless of time
of day, and did not improve when requesting the same content
sequentially (thus making it unlikely that the GAE instance was
spun down for inactivity). Such variable delay can dominate PLT
measurements for small web pages, and cannot reliably be isolated
when multiplexing requests.

To avoid these issues, we opted instead to run our own QUIC
servers. This raises the question of how to configure QUIC pa-
rameters to match those used in deployment. We use a two-phase
approach. First, we extract all parameters that are exchanged be-
tween client and server (e.g., window sizes) and ensure that our
QUIC server uses the same ones observed from Google.

For parameters not exposed by the QUIC server to the client,
we use grey-box testing to infer the likely parameters being used.
Specifically, we vary server-side parameters until we obtain perfor-
mance that matches QUIC from Google servers.

The end result is shown in Fig. 2. The left bar shows that QUIC
as configured in the public code release takes twice as long to
download a large file when compared to the configuration that
most closely matches Google’s QUIC performance (right bar)10.

10We focus on PLT because it is themetric we use for end-to-end performance comparisons through-
out the paper.

State Description
Init Initial connection establishment
Slow Start Slow start phase
Congestion Avoidance (CA) Normal congestion avoidance
CA-Maxed Max allowed win. size is reached
Application Limited Current cong. win. is not being uti-

lized, hence window will not be
increased

Retransmission Timeout Loss detected due to timeout for
ACK

Recovery Proportional rate reduction fast re-
covery

Tail Loss Probe [22] Recover tail losses
Table 3: QUIC states (Cubic CC) and their meanings.

We made two changes to achieve parity with Google’s QUIC
servers. First, we increased the maximum allowed congestion win-
dow size. At the time of our experiments, this value was 107 by
default in Chrome. We increased this value to 430, which matched
the maximum allowed congestion window in Chromium’s devel-
opment channel. Second, we found and fixed a bug in QUIC that
prevented the slow start threshold from being updated using the
receiver-advertised buffer size. Failure to do so caused poor perfor-
mance due to early exit from slow start.11

Prior work did no such calibration. This explains why they ob-
served poor QUIC performance in high bandwidth environments
or when downloading large web pages [16, 20, 30].

4.2 Instrumentation
While our tests can tell us how QUIC and TCP compare to each
other under different circumstances, it is not clear what exactly
causes these differences in performance. To shed light on this, we
compile QUIC clients and servers from source (using QUIC versions
25 and 34) and instrument them to gain access to the inner workings
of the protocol.

QUIC implements TCP-like congestion control. To reason about
QUIC’s behavior, we instrumented our QUIC server to collect logs
that allow us to infer QUIC’s state machine from execution traces,
and to track congestion window size and packet loss detection.
Table 3 lists QUIC’s congestion control states.

We use statistics about state transitions and the frequency of
visiting each state to understand the root causes behind good or
bad performance for QUIC. For example, we found that the reason
QUIC’s performance suffers in the face of packet re-ordering is
that re-ordered packets cause QUIC’s loss-detection mechanism to
report high numbers of false losses.

Note that we evaluate QUIC as a whole, in lieu of isolating the im-
pact of protocol components (e.g., congestion avoidance, TLP, etc.).
We found that disentangling and changing other (non-modular)
parts of QUIC (e.g., to change loss recovery techniques, add HOL
blocking, change how packets are ACKed) requires rewriting sub-
stantial amount of code, and it is not always clear how to replace
them. This is an interesting topic to explore in future work.

11We confirmed our changes with a member of the QUIC team at Google. He also confirmed our
bug report.

Taking a Long Look at QUIC IMC ’17, November 1–3, 2017, London, United Kingdom

(a) QUIC’s Cubic CC (b) QUIC’s BBR CC

Figure 3: State transition diagram for QUIC’s CC.

 0
 1
 2
 3
 4
 5

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

QUIC TCP

(a) QUIC vs. TCP

 0
 1
 2
 3
 4
 5

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

QUIC TCP1 TCP2

(b) QUIC vs. two TCP flows

Figure 4: Timeline showing unfairness between QUIC and
TCP when transferring data over the same 5Mbps bottle-
neck link (RTT=36ms, buffer=30KB).

5 ANALYSIS
In this section, we conduct extensive measurements and analysis
to understand and explain QUIC performance. We begin by focus-
ing on the protocol-layer behavior, QUIC’s state machine, and its
fairness to TCP. We then evaluate QUIC’s application-layer per-
formance, using both page load times (PLT) and video streaming
as example application metrics. Finally, we examine the evolution
of QUIC’s performance and evaluate the performance that QUIC
“leaves on the table” by encrypting transport-layer headers that
prevent transparent proxying commonly used in cellular (and other
high-delay) networks.

5.1 State Machine and Fairness
In this section, we analyze high-level properties of the QUIC proto-
col using our framework.

State machine. QUIC has only a draft formal specification and
no state machine diagram or formal model; however, the source
code is made publicly available. Absent such a model, we took an
empirical approach and used traces of QUIC execution to infer the

Scenario Flow Avg. throughput
(std. dev.)

QUIC vs. TCP QUIC 2.71 (0.46)
TCP 1.62 (1.27)

QUIC vs. TCPx2
QUIC 2.8 (1.16)
TCP 1 0.7 (0.21)
TCP 2 0.96 (0.3)

QUIC vs. TCPx4

QUIC 2.75 (1.2)
TCP 1 0.45 (0.14)
TCP 2 0.36 (0.09)
TCP 3 0.41 (0.11)
TCP 4 0.45 (0.13)

Table 4: Average throughput (5Mbps link, buffer=30 KB, av-
eraged over 10 runs) allocated to QUIC and TCP flows when
competing with each other. Despite the fact that both pro-
tocols use Cubic congestion control, QUIC consumes nearly
twice the bottleneck bandwidth than TCP flows combined,
resulting in substantial unfairness.

state machine to better understand the dynamics of QUIC and their
impact on performance.

Specifically, we use Synoptic [15] for automatic generation of
QUIC state machine. While static analysis might generate a more
complete state machine, a complete model is not necessary for
understanding performance changes. Rather, as we show in Sec-
tion 5.2, we only need to investigate the states visited and transitions
between them at runtime.

Fig. 3a shows the QUIC state machine automatically generated
using traces from executing QUIC across all of our experiment
configurations. The diagram reveals behaviors that are common
to standard TCP implementations, such as connection start (Init,
SlowStart), congestion avoidance (CongestionAvoidance), and
receiver-limited connections (ApplicationLimited). QUIC also
includes states that are non-standard, such as a maximum sending
rate (CongestionAvoidanceMaxed), tail loss probes, and propor-
tional rate reduction during recovery.

Note that capturing the empirical state machine requires in-
strumenting QUIC’s source code with log messages that capture
transitions between states. In total, this required adding 23 lines of

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

0

20

40

60

80

 0 10 20 30 40 50 60 70 80 90 100

C
o
n
g
.
W

in
.
(K

B
)

QUIC TCP

(a) QUIC vs. TCP

0

20

40

60

80

 20 21 22 23 24 25

C
o
n
g
.
W

in
.
(K

B
)

Time (s)

(b) 5-second zoom of above figure

Figure 5: Timeline showing congestion window sizes for
QUIC and TCPwhen transferring data over the same 5Mbps
bottleneck link (RTT=36ms, buffer=30KB).

code in 5 files. While the initial instrumentation required approxi-
mately 10 hours, applying the instrumentation to subsequent QUIC
versions required only about 30 minutes. To further demonstrate
how our approach applies to other congestion control implementa-
tions, we instrumented QUIC’s experimental BBR implementation
and present its state transition diagram in Fig. 3b. This instrumen-
tation took approximately 5 hours. Thus, our experience shows
that our approach is able to adapt to evolving protocol versions and
implementations with low additional effort.

We used inferred state machines for root cause analysis of per-
formance issues. In later sections, we demonstrate how they helped
us understand QUIC’s poor performance on mobile devices and in
the presence of deep packet reordering.

Fairness. An essential property of transport-layer protocols is
that they do not consume more than their fair share of bottleneck
bandwidth resources. Absent this property, an unfair protocol may
cause performance degradation for competing flows. We evaluated
whether this is the case for the following scenarios, and present
aggregate results over 10 runs in Table 4. We expect that QUIC and
TCP should be relatively fair to each other because they both use
the Cubic congestion control protocol. However, we find this is not
the case at all.
• QUIC vs. QUIC.We find that two QUIC flows are fair to each
other. We also found similar behavior for two TCP flows.
• QUIC vs. TCP. QUIC multiplexes requests over a single con-
nection, so its designers attempted to set Cubic congestion
control parameters so that one QUIC connection emulates N
TCP connections (with a default of N = 2 in QUIC 34, and
N = 1 in QUIC 37). We found that N had little impact on fair-
ness. As Fig. 4a shows, QUIC is unfair to TCP as predicted, and
consumes approximately twice the bottleneck bandwidth of
TCP even with N = 1. We repeated these tests using different
buffer sizes, including those used by Carlucci et al. [17], but
did not observe any significant effect on fairness. This directly

(a) Varying object size (b) Varying object count

Figure 6: QUIC (version 34) vs. TCP with different rate lim-
its for (a) different object sizes and (b) with different num-
bers of objects. Each heatmap shows the percent difference
between QUIC over TCP. Positive numbers—colored red—
mean QUIC outperforms TCP and has smaller page-load
time. Negative numbers—colored blue—means the opposite.
White cells indicate no statistically significant difference.

Figure 7: QUIC with and without 0-RTT. Positive numbers—
colored red—show the performance gain achieved by 0-RTT.
The gain is more significant for small objects, but becomes
insignificant as the bandwidth decreases and/or objects be-
come larger, where connection establishment is a tiny frac-
tion of total PLT.

contradicts their finding that larger buffer sizes allow TCP and
QUIC to fairly share available bandwidth.
• QUIC vs. multiple TCP connections. When competing
with M TCP connections, one QUIC flow should consume
2/(M + 1) of the bottleneck bandwidth. However, as shown in
Table 4 and Fig. 4b, QUIC still consumes more than 50% of the
bottleneck bandwidth even with 2 and 4 competing TCP flows.
Thus, QUIC is not fair to TCP even assuming 2-connection
emulation.

To ensure fairness results were not an artifact of our testbed, we
repeated these tests against Google servers. The unfairness results
were similar.

We further investigate why QUIC is unfair to TCP by instrument-
ing the QUIC source code, and using tcpprobe [13] for TCP, to
extract the congestion window sizes. Fig. 5a shows the congestion
window over time for the two protocols. When competing with
TCP, QUIC is able to achieve a larger congestion window. Taking
a closer look at the congestion window changes (Fig. 5b), we find
that while both protocols use Cubic congestion control scheme,
QUIC increases its window more aggressively (both in terms of
slope, and in terms of more frequent window size increases). As a
result, QUIC is able to grab available bandwidth faster than TCP
does, leaving TCP unable to acquire its fair share of the bandwidth.

Taking a Long Look at QUIC IMC ’17, November 1–3, 2017, London, United Kingdom

(a) Varying object size,1% Loss (b) Varying object size, 112ms RTT (c) Varying object size, 112ms RTT with 10ms jitter that
causes packet reordering

(d) Varying #object, 1% Loss (e) Varying #object, 112ms RTT (f) Varying #object, 112ms RTT with 10ms jitter that
causes packet reordering

Figure 8: QUIC v34 vs. TCP at different rate limits, loss, and delay for different object sizes (a, b, and c) and different numbers
of objects (d, e, and f).

5.2 Page Load Time
This section evaluates QUIC performance compared to TCP for
loading web pages (i.e., page load time, or PLT) with different sizes
and numbers of objects. Recall from Sec. 3 that we measure PLT
using information gathered from Chrome, that we run TCP and
QUIC experiments back-to-back, and that we conduct experiments
in a variety of emulated network settings. Note that our servers
add all necessary HTTP directives to avoid caching content. We
also clear the browser cache and close all sockets between experi-
ments to prevent “warmed up” connections from impacting results.
However, we do not clear the state used for QUIC’s 0-RTT con-
nection establishment. Furthermore, our PLTs do not include any
DNS lookups. This is achieved by extracting resource loading time
details from Chrome and excluding the DNS lookups times.

In the results that follow, we evaluate whether the observed
performance differences are statistically significant or simply due
to noise in the environment. We use theWelch’s t-test [14], a two-
sample location test which is used to test the hypothesis that two
populations have equal means. For each scenario, we calculate the
p-value according to the Welch’s t-test. If the p-value is smaller
than our threshold (0.01), then we reject the null hypothesis that
the mean performance for TCP and QUIC are identical, implying
the difference we observe between the two protocols is statistically
significant. Otherwise the difference we observe is not significant
and is likely due to noise.

Desktop environment. We begin with the desktop environ-
ment and compare QUIC with TCP performance for different rates,
object sizes, and object counts—without adding extra delay or loss
(RTT = 36ms and loss = 0%). Fig. 6 shows the results as a heatmap,
where the color of each cell corresponds to the percent PLT dif-
ference between QUIC and TCP for a given bandwidth (vertical
dimension) and object size/number (horizontal direction). Red indi-
cates that QUIC is faster (smaller PLT), blue indicates that TCP is
faster, and white indicates statistically insignificant differences.

Our key findings are that QUIC outperforms TCP in every sce-
nario except in the case of large numbers of small objects. QUIC’s

performance gain for smaller object sizes is mainly due to QUIC’s
0-RTT connection establishment—substantially reducing delays
related to secure connection establishment that corresponds to a
substantial portion of total transfer time in these cases. To isolate
the impact of 0-RTT, we plotted performance differences between
QUIC with and without 0-RTT enabled in Fig. 7. As expected, the
benefit is relatively large for small objects and statistically insignif-
icant for 10MB objects.

To investigate the reason why QUIC performs poorly for large
numbers of small objects, we explored different values for QUIC’s
Maximum Streams Per Connection (MSPC) parameter to control
the level of multiplexing (the default is 100 streams). We found
there was no statistically significant impact for doing so, except
when setting the MSPC value to a very low number (e.g., 1), which
worsens performance substantially.

Instead, we focused on QUIC’s congestion control algorithm
and identified that in such cases, QUIC’s Hybrid Slow Start [24]
causes early exit from Slow Start due to an increase in the minimum
observed RTT by the sender, which Hybrid Slow Start uses as an
indication that the path is getting congested. This can hurt the
PLT significantly when objects are small and the total transfer time
is not long enough for the congestion window to increase to its
maximum value. Note that the same issue (early exit from Hybrid
Slow Start) affects the scenario with a large number of large objects,
but QUIC nonetheless outperforms TCP because it has enough time
to increase its congestion window and remain at high utilization,
thus compensating for exiting Slow Start early.12

Desktop with added delay and loss. We repeat the experi-
ments in the previous section, this time adding loss, delay, and jitter.
Fig. 8 shows the results, again using heatmaps.

Our key observations are that QUIC outperforms TCP under loss
(due to better loss recovery and lack of HOL blocking), and in high-
delay environments (due to 0-RTT connection setup). However,
in the case of high latency, this is not enough to compensate for

12We leave investigating the reason behind sudden increase in the minimum observed RTT when
multiplexing many objects to future work.

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

10

30

50

70

C
o
n
g
.
W

in
.
(K

B
)

QUIC

10

30

50

70

 1 2 3 4 5 6 7 8 9 10

C
o
n
g
.
W

in
.
(K

B
)

Time (s)

TCP

Figure 9: Congestion window over time for QUIC and TCP
at 100Mbps rate limit and 1% loss.

Figure 10: QUIC vs. TCP when downloading a 10MB page
(112ms RTT with 10ms jitter that causes packet reordering).
Increasing the NACK threshold for fast retransmit allows
QUIC to cope with packet reordering.

QUIC’s poor performance for large numbers of small objects. Fig. 9
shows the congestion window over time for the two protocols at
100Mbps and 1% loss. Similar to Fig. 5, under the same network
conditions QUIC better recovers from loss events and adjusts its
congestion window faster than TCP, resulting in a larger congestion
window on average and thus better performance.

Under variable delays, QUIC performs significantly worse than
TCP. Using our state machine approach, we observed that under
variable delay QUIC spends significantly more time in the recovery
state compared to relatively stable delay scenarios. To investigate
this, we instrumented QUIC’s loss detection mechanism, and our
analysis reveals that variable delays cause QUIC to incorrectly infer
packet loss when jitter leads to out-of-order packet delivery. This
occurs in our testbed because netem adds jitter by assigning a delay
to each packet, then queues each packet based on the adjusted send
time, not the packet arrival time—thus causing packet re-ordering.

The reason that QUIC cannot copewith packet re-ordering is that
it uses a fixed threshold for number of NACKs (default 3) before it
determines that a packet is lost and responds with a fast retransmit.
Packets reordered deeper than this threshold cause false positive
loss detection.13 In contrast, TCP uses the DSACK algorithm [41] to
detect packet re-ordering and adapt its NACK threshold accordingly.
As we will show later in this section, packet reordering occurs in
the cellular networks we tested, so in such cases QUIC will benefit
from integrating DSACK. We quantify the impact of using larger
13Note that reordering impact when testing small objects is insignificant because QUIC does not
falsely detect losses until a sufficient number of packets are exchanged.

0

40

80

120

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (s)

TCP QUIC

Figure 11: QUIC vs. TCP when downloading a 210MB object.
Bandwidth fluctuates between 50 and 150Mbps (randomly
picks a rate in that range every one second). Averaging over
10 runs, QUIC is able to achieve an average throughput of
79Mbps (STD=31) while TCP achieves an average through-
put of 46Mbps (STD=12).

DSACK values in Fig. 10, demonstrating that in the presence of
packet reordering larger NACK thresholds substantially improve
end to end performance compared to smaller NACK thresholds.
We shared this result with a QUIC engineer, who subsequently
informed us that the QUIC team is experimenting with dynamic
threshold and time-based solutions to avoid falsely inferring loss
in the presence of reordering.

Desktop with variable bandwidth. The previous tests set a
static threshold for the available bandwidth. However, in practice
such values will fluctuate over time, particularly in wireless net-
works. To investigate how QUIC and TCP compare in environments
with variable bandwidth, we configured our testbed to change the
bandwidth randomly within specified ranges and with different
frequencies.

Fig. 11 shows the throughput over time for three back-to-back
TCP and QUIC downloads of a 210MB object when the bandwidth
randomly fluctuates between 50 and 150Mbps. As shown in this
figure, QUIC is more responsive to bandwidth changes and is able
to achieve a higher average throughput compared to TCP. We re-
peated this experiment with different bandwidth ranges and change
frequencies and observed the same behavior in all cases.

Mobile environment. Due to QUIC’s implementation in
userspace (as opposed to TCP’s implementation in the OS kernel),
resource contention might negatively impact performance indepen-
dent of the protocol’s optimizations for transport efficiency. To test
whether this is a concern in practice, we evaluated an increasingly
common resource-constrained deployment environment: smart-
phones. We use the same approach as in the desktop environment,
controlling Chrome (with QUIC enabled) over two popular Android
phones: the Nexus 6 and the MotoG. These phones are neither top-
of-the-line, nor low-end consumer phones, and we expect that they
approximate the scenario of a moderately powerful mobile device.

Fig. 12 shows heatmaps for the two devices when varying band-
width and object size.14 We find that, similar to the desktop envi-
ronment, in mobile QUIC outperforms TCP in most cases; however,
its advantages diminish across the board.

To understand why this is the case, we investigate the QUIC
congestion control states visited most in mobile and non-mobile
scenarios under the same network conditions. We find that in mo-
bile QUIC spends most of its time (58%) in the “Application Limited”
14We omit 100Mbps because our phones cannot achieve rates beyond 50Mbps over WiFi, and we
omit results from varying the number of objects because they are similar to the single-object cases.

Taking a Long Look at QUIC IMC ’17, November 1–3, 2017, London, United Kingdom

(a) MotoG, No added loss or latency (b) MotoG, 1% Loss (c) MotoG, 112ms RTT

(d) Nexus6, No added loss or latency (e) Nexus6, 1% Loss (f) Nexus6, 112ms RTT

Figure 12: QUICv34 vs. TCP for varying object sizes on MotoG and Nexus6 smartphones (using WiFi). We find that QUIC’s
improvements diminish or disappear entirely when running on mobile devices.

(a) MotoG (b) Desktop

Figure 13: QUIC state transitions on MotoG vs. Desktop.
QUICv34, 50Mbps, no added loss or delay. Red numbers in-
dicate the fraction of time spent in each state, and black
numbers indicate the state-transition probability. The fig-
ure shows that poor performance for QUIC on mobile de-
vices can be attributed to applications not processing pack-
ets quickly enough. Note that the zero transition probabili-
ties are due to rounding down.

state, which contrasts substantially with the desktop scenario (only
7% of the time). The reason for this behavior is that QUIC runs in
a userspace process, whereas TCP runs in the kernel. As a result,
QUIC is unable to consume received packets as quickly as on a desk-
top, leading to suboptimal performance, particularly when there is
ample bandwidth available.15 Fig. 13 shows the full state diagram
(based on server logs) in both environments for 50Mbps with no
added latency or loss. By revealing the changes in time spent in
each state, such inferred state machines help diagnose problems
and develop a better understanding of QUIC dynamics.

Tests on commercial cellular networks. We repeated our
PLT tests—without any network emulation—over Sprint’s and Veri-
zon’s cellular networks, using both 3G and LTE. Table 5 shows the
characteristics of these networks at the time of the experiment. To
isolate the impact of the network from that of the device they run

15A parallel study from Google [26] using aggregate data identifies the same performance issue but
does not provide root cause analysis.

(a) Varying object size (b) Varying object count

Figure 14: QUICv34 vs. TCP over Verizon and Sprint cellular
networks.

Thrghpt.
(Mbps)

RTT (STD)
(ms)

Reordering
(%)

Loss
(%)

3G LTE 3G LTE 3G LTE 3G LTE
Verizon 0.17 4.0 109 (20) 62 (14) 9 0.25 0.05 0
Sprint 0.31 2.4 70 (39) 55 (11) 1.38 0.13 0.02 0.02

Table 5: Characteristics of tested cell networks. Throughput
and RTT represent averages.

on, we used our desktop client tethered to a mobile network instead
of using a mobile device (because the latter leads to suboptimal
performance for QUIC, shown in Fig. 12 and 13). We otherwise
keep the same server and client settings as described in Sec. 3.1.

Fig. 14 shows the heatmaps for these tests. For LTE, QUIC per-
forms similarly to a desktop environment with low bandwidth
(Fig. 7). In these cell networks, the benefit of 0-RTT is larger for the
1MB page due to higher latencies in the cellular environment.

In the case of 3G, we see the benefits of QUIC diminish. Com-
pared to LTE, the bandwidth in 3G is much lower and the loss is
higher—which works to QUIC’s benefit (see Fig. 8a). However, the
packet reordering rates are higher compared to LTE, and this works
to QUIC’s disadvantage. Note that in 3G scenarios, in many cases
QUIC had better performance on average (i.e., lower average PLT);
however, the high variance resulted in high p-values, which means
we cannot reject the null hypothesis that the two sample sets were
drawn form the same (noisy) distribution.

5.3 Video-streaming Performance
This section investigates QUIC’s impact on video streaming in
the desktop environment. Unlike page load times, which tend to

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

(a) MACW=430 (b) MACW=2000

Figure 15: QUIC (version 37) vs. TCP with different max-
imum allowable congestion window (MACW) size. In (a),
MACW=430 and QUIC versions 34 and 37 have identical per-
formance (see Fig. 6a), In (b), we use the defaultMACW=2000
for QUIC 37, which results in higher throughput and larger
performance gains for large transfers.

be limited by RTT and multiplexing, video streaming relies on
the transport layer to load large objects sufficiently quickly to
maintain smooth playback. This exercises a transport-layer’s ability
to quickly ramp up and maintain high utilization.

We test video-streaming performance using YouTube, which
supports both QUIC and TCP. We evaluate the protocols using well
known QoE metrics for video such as the time spent waiting for
initial playback, and the number of rebuffering events. For the latter
metric, Google reports that, on average users experience 18% fewer
re-buffers when watching YouTube videos over QUIC [26].

We developed a tool for automatically streaming a YouTube video
and logging quality of experience (QoE) metrics via the API men-
tioned in Sec. 3.3. The tool opens a one-hour-long YouTube video,
selects a specific quality level, lets the video run for 60 seconds,
and logs the following QoE metrics: time to start the video, video
quality, quality changes, re-buffering events, and fraction of video
loaded. As we demonstrated in previous work [31], 60 seconds is
sufficient to capture QoE differences. We use this tool to stream
videos using QUIC and TCP and compare the QoE.

Table 6 shows the results for 100Mbps bandwidth and 1% loss,16
a condition under which QUIC outperforms TCP (Sec. 8). In this
environment, at low and medium resolutions we see no significant
difference in QoE metrics, but for the highest quality, hd2160, QUIC
is able to load a larger fraction of the video in 60 seconds and
experience fewer rebuffers per time played, which is consistent
with our PLT test results (Sec. 5.2) and with what Google reported.
Thus, to refine their observations, we find that QUIC can outperform
TCP for video streaming, but this matters only for high resolutions.

5.4 Historical Comparison
To understand how QUIC performance has changed over time, we
evaluated 10 QUIC versions (25 to 34)17 in our testbed. In order
to only capture differences due to QUIC version changes, and not
due to different configuration values, we used the same version of
Chrome and the same QUIC parameter configuration.

We found that when using the same configuration most QUIC
versions in this range yielded nearly identical results, despite sub-
stantial changes to the QUIC codebase (including reorganization of

16We observed similar results for 10 and 50Mbps under similar loss.
17The stable version of Chrome at the time of analysis (52) did not support QUIC versions earlier
than 25. To avoid false inferences from using different Chrome versions and different QUIC versions,
we only tested QUIC versions 25 and higher.

Client's machine ServerRouter

(running network emulator)

Proxy

40ms RTT 40ms RTT

80ms RTT

Figure 16: QUIC proxy test setup. The proxy is located mid-
way between client and server.

code that frustrated our attempts to instrument it). This is corrobo-
rated by changelogs [12] that indicate most modifications were to
the cryptography logic, QUIC flags, and connection IDs.

Based on the relatively stable QUIC performance across recent
versions, we expect our observations about its performance using its
current congestion control algorithm are likely to hold in the future
(except in places where we identified opportunities to improve the
protocol).

Note that at the time of writing, the recently proposed BBR
congestion control algorithm has not been deployed in the “stable”
branch and thuswe could not evaluate its performance fairly against
Cubic in QUIC or TCP. Private communication with a QUIC team
member indicated that BBR is “not yet performing as well as Cubic
in our deployment tests.”

Comparison with QUIC 37. At the time of publication, the
latest stable version of Chromiumwas 60.0.3112.101, which includes
QUIC 37 as the latest stable version. To enhance our longitudinal
analysis and demonstrate how our approach easily adapts to new
versions of QUIC, we instrumented, tested, and compared QUIC 37
with 34 (the one used for experiments through out this paper).

We found that the main change in QUIC 37 is that the maximum
allowed congestion window (MACW) increased to 2000 (from 430
used in our experiments) in the new versions of Chromium. This al-
lows QUIC to achieve much higher throughput compared to version
34, particularly improving performance when compared with TCP
for large transfers in high bandwidth networks. Fig. 15 shows the
comparison between TCP and QUIC version 37 for various object
sizes with MACW of 430 (Fig. 15a) and 2000 (Fig. 15b). When com-
paring Fig. 15a and 6a, we find that QUIC versions 34 and 37 have
almost identical performance when using the same MACW; this is
corroborated by QUIC version changelogs [12]. All our previous
findings, e.g., QUIC performance degradation in presence of deep
packet reordering, still hold for this new version of QUIC.

5.5 Impact of Proxying
We now test the impact of QUIC’s design decisions on in-network
performance optimization. Specifically, many high-latency net-
works use transparent TCP proxies to reduce end-to-end delays and
improve loss recovery [40]. However, due to the fact that QUIC en-
crypts not only payloads but also transport headers, such proxying
is impossible for in-network devices.

We evaluate the extent to which this decision impacts QUIC’s
potential performance gains. Specifically, we wrote a QUIC proxy,
and co-located it with a TCP proxy so that we could compare the
impact of proxying on end-to-end performance (Fig. 16). For these
experiments, we consider PLTs as done in previous sections.

Taking a Long Look at QUIC IMC ’17, November 1–3, 2017, London, United Kingdom

Quality Time to Start video loaded Buffer/Play Time† (%) #rebuffers #rebuffers
(secs) in 1 min (%) per playing secs

QUIC TCP QUIC TCP QUIC TCP QUIC TCP QUIC TCP
tiny 0.5 (0.11) 0.5 (0.21) 33.8 (0.01) 33.8 (0.01) 0.9 (0.17) 0.9 (0.34) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
medium 0.9 (1.04) 0.5 (0.13) 17.9 (0.01) 12.9 (0.92) 1.4 (1.62) 0.9 (0.22) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
hd720 0.7 (0.16) 0.7 (0.18) 8.0 (0.27) 4.3 (0.28) 1.1 (0.27) 1.1 (0.27) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
hd2160 5.9 (2.73) 5.9 (2.51) 0.8 (0.05) 0.4 (0.01) 50.2 (3.01) 73.1 (1.91) 6.7 (0.46) 4.9 (0.3) 0.2 (0.01) 0.3 (0.01)

Table 6: Mean (std) of QoE metrics for a YouTube video in different qualities, averaged over 10 runs. 100Mbps, 1% loss. QUIC
benefits are clear for high qualities. While the absolute number of rebuffers for QUIC is higher for hd2160, it is able to load
and playmore of the video in a given time compared to TCP, with fewer (about 30%) rebuffers per playing second. †Buffer/Play
Time is the time spent while buffering the video divided by the time playing video.

(a) No added loss or latency (b) 1% Loss (c) 100ms added RTT

Figure 17: QUIC vs. TCP proxied, where red cells indicate that QUIC performs better.

(a) No added loss or latency (b) 1% Loss (c) 100ms added RTT

Figure 18: QUIC with and without proxy when downloading objects with different sizes. Positive numbers (red cells) mean
QUIC performs better connecting to the server directly.

We present two types of comparison results: QUIC vs. proxied
TCP (as this is what one would expect to find in many cellular net-
works), and QUIC vs. proxied QUIC (to determine how QUIC would
benefit if proxies could transparently terminate QUIC connections).
For the former case, we find that QUIC continues to outperform
TCP in many scenarios, but its benefits diminish or entirely dis-
appear compared to unproxied TCP in low loss/latency cases, and
when there is 1% loss. In the case of high delay links, QUIC still
outperforms TCP (Fig. 17). Thus, proxies can help TCP to recover
many of the benefits of QUIC, but primarily in lossy scenarios, and
when the proxy is equidistant from the client and server.

In the case of a QUIC proxy (Fig. 18), we find that a proxy hurts
performance for small object sizes (likely due to inefficiencies and
the inability to establish connections via 0-RTT), but performance
is better under loss for large objects. Taken together, our initial
attempt at a QUIC proxy provides mixed results, and identifying
any other potential benefits will require additional tuning.

6 CONCLUSION
In this paper, we address the problem of evaluating an application-
layer transport protocol that was built without a formal specifica-
tion, is rapidly evolving, and is deployed at scale with nonpublic
configuration parameters. To do so, we use a methodology and
testbed that allows us to conduct controlled experiments in a vari-
ety of network conditions, instrument the protocol to reason about

its performance, and ensure that our evaluations use settings that
approximate those deployed in the wild. We used this approach to
evaluate QUIC, and found cases where it performs well and poorly—
both in traditional desktop environments but also in mobile and
proxy scenarios not previously tested. With the help of an inferred
protocol state machine and information about time spent in each
state, we explained the performance results we observed.

There are a number of open questions we plan to address in
future work. First, we will evaluate performance in additional oper-
ational networks, particularly in more mobile ones and data centers.
Second, we will investigate techniques to improve QUIC’s fairness
to TCP while still maintaining high utilization. Third, we will au-
tomate the steps used for analysis in our approach and port it to
other application layer protocols. This includes adapting our state-
machine inference approach to other protocols, and we encourage
developers to annotate state transitions in their code to facilitate
such analysis. We believe doing so can lead to a more performant,
reliable evolution for such network protocols.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd Costin Raiciu
for their valuable feedback. Jana Iyengar provided comments on
early versions of this work. This work is funded in part by NSF
grants CNS-1600266, CNS-1617728.

IMC ’17, November 1–3, 2017, London, United Kingdom A. Molavi Kakhki et al.

REFERENCES
[1] Android debug bridge. https://developer.android.com/studio/command-line/adb.html.
[2] Chrome debugging protocol. https://developer.chrome.com/devtools/docs/

debugger-protocol.
[3] Chromium. https://www.chromium.org/Home.
[4] I. grigorik. deciphering the critical rendering path. https://calendar.perfplanet.com/2012/

deciphering-the-critical-rendering-path/.
[5] IETF QUIC WG. https://github.com/quicwg.
[6] Linux network emulation. http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem.
[7] Linux traffic control. http://linux.die.net/man/8/tc.
[8] Playing with QUIC. https://www.chromium.org/quic/playing-with-quic.
[9] QUIC: A UDP-Based Secure and Reliable Transport for HTTP/2. https://tools.ietf.org/html/

draft-tsvwg-quic-protocol-02.
[10] QUIC at 10,000 feet. https://docs.google.com/document/d/

1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU.
[11] QUIC Loss Recovery And Congestion Control. https://tools.ietf.org/html/

draft-tsvwg-quic-loss-recovery-01.
[12] QUIC Wire Layout Specification. https://docs.google.com/document/d/

1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U.
[13] Tcp probe. https://wiki.linuxfoundation.org/networking/tcpprobe.
[14] Welch’s t-test. https://en.wikipedia.org/wiki/Welch%27s_t-test.
[15] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst. Leveraging Existing Instru-

mentation to Automatically Infer Invariant-constrained Models. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engi-
neering, 2011.

[16] P. Biswal and O. Gnawali. Does quic make the web faster? In IEEE GLOBECOM, 2016.
[17] G. Carlucci, L. De Cicco, and S. Mascolo. HTTP over UDP: an experimental investigation of

QUIC. In Proc. of SAC, 2015.
[18] Chromium Blog. A QUIC update on Google’s experimental transport. http://blog.chromium.

org/2015/04/a-quic-update-on-googles-experimental.html, April 2015.
[19] C. Cimpanu. Google Creates New Algorithm for Handling

TCP Traffic Congestion Control. http://news.softpedia.com/news/
google-creates-new-algorithm-for-handling-tcp-traffic-congestion-control-508398.shtml,
September 2016.

[20] S. R. Das. Evaluation of QUIC on web page performance. Master’s thesis, Massachusetts
Institute of Technology, 2014.

[21] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting congestion
control for consistent high performance. In Proc. of USENIX NSDI, 2015.

[22] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis. Tail Loss Probe (TLP):
An Algorithm for Fast Recovery of Tail Losses. https://tools.ietf.org/html/

draft-dukkipati-tcpm-tcp-loss-probe-01, February 2013.
[23] M. Fischlin and F. Günther. Multi-stage key exchange and the case of Google’s QUIC protocol.

In Proc. of ACM CCS, 2014.
[24] S. Ha and I. Rhee. Taming the elephants: New tcp slow start. In Comput. Netw., 2011.
[25] T. Jager, J. Schwenk, and J. Somorovsky. On the security of TLS 1.3 and QUIC against weak-

nesses in PKCS# 1 v1. 5 encryption. In Proc. of ACM CCS, 2015.
[26] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett,

J. Iyengar, J. Bailey, J. Dorfman, J. Kulik, J. Roskind, P.Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC transport protocol: Design and Internet-scale
deployment. In Proc. of ACM SIGCOMM, 2017.

[27] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru. How secure and quick is QUIC? provable
security and performance analyses. In Proc. of IEEE Security and Privacy, 2015.

[28] M. Mathis, N. Dukkipati, and Y. Cheng. Proportional rate reduction for TCP. https://tools.ietf.
org/html/rfc6937, May 2013.

[29] S. McQuistin and C. S. Perkins. Is explicit congestion notification usable with udp? In Proc. of
IMC, 2015.

[30] P. Megyesi, Z. Krämer, and S. Molnár. How quick is QUIC? In Proc. of ICC, May 2016.
[31] A. Molavi Kakhki, F. Li, D. Choffnes, A. Mislove, and E. Katz-Bassett. BingeOn under themicro-

scope: Understanding T-Mobile’s zero-rating implementation. InACM SIGCOMM Internet-QoE
Workshop, Aug. 2016.

[32] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Balakrishnan.
Mahimahi: Accurate Record-and-replay for HTTP. In Proc. of USENIX ATC, 2015.

[33] A. Nikravesh, H. Yao, S. Xu, D. R. Choffnes, and Z. M. Mao. Mobilyzer: An open platform for
controllable mobile network measurements. In Proc. of MobiSys, 2015.

[34] J. Odvarko, A. Jain, and A. Davies. HTTP Archive (HAR) format. https://dvcs.w3.org/hg/
webperf/raw-file/tip/specs/HAR/Overview.html, August 2012.

[35] I. Swett. QUIC congestion control and loss recovery. https://docs.google.com/presentation/d/
1T9GtMz1CvPpZtmF8g-W7j9XHZBOCp9cu1fW0sMsmpoo.

[36] I. Swett. QUIC Deployment Experience@Google. https://www.ietf.org/proceedings/96/slides/
slides-96-quic-3.pdf, 2016.

[37] I. Swett. QUIC FEC v1. https://docs.google.com/document/d/
1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit, February 2016.

[38] A. Vernersson. Analysis of UDP-based reliable transport using network emulation. Master’s
thesis, Luleå University of Technology, 2015.

[39] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall. How speedy is SPDY?
In Proc. of USENIX NSDI, 2014.

[40] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. R. Choffnes, and R. Govindan. Investigating trans-
parent web proxies in cellular networks. In Proc. PAM, 2015.

[41] Zhang, Ming and Karp, Brad and Floyd, Sally and Peterson, Larry. RR-TCP: A Reordering-
Robust TCP with DSACK. In Proceedings of the 11th IEEE International Conference on Network
Protocols, ICNP ’03, Washington, DC, USA, 2003. IEEE Computer Society.

https://developer.android.com/studio/command-line/adb.html
https://developer.chrome.com/devtools/docs/debugger-protocol
https://developer.chrome.com/devtools/docs/debugger-protocol
https://www.chromium.org/Home
https://calendar.perfplanet.com/2012/deciphering-the-critical-rendering-path/
https://calendar.perfplanet.com/2012/deciphering-the-critical-rendering-path/
https://github.com/quicwg
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://linux.die.net/man/8/tc
https://www.chromium.org/quic/playing-with-quic
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU
https://docs.google.com/document/d/1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU
https://tools.ietf.org/html/draft-tsvwg-quic-loss-recovery-01
https://tools.ietf.org/html/draft-tsvwg-quic-loss-recovery-01
https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U
https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U
https://wiki.linuxfoundation.org/networking/tcpprobe
https://en.wikipedia.org/wiki/Welch%27s_t-test
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
http://news.softpedia.com/news/google-creates-new-algorithm-for-handling-tcp-traffic-congestion-control-508398.shtml
http://news.softpedia.com/news/google-creates-new-algorithm-for-handling-tcp-traffic-congestion-control-508398.shtml
https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://tools.ietf.org/html/rfc6937
https://tools.ietf.org/html/rfc6937
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html
https://docs.google.com/presentation/d/1T9GtMz1CvPpZtmF8g-W7j9XHZBOCp9cu1fW0sMsmpoo
https://docs.google.com/presentation/d/1T9GtMz1CvPpZtmF8g-W7j9XHZBOCp9cu1fW0sMsmpoo
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit
https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/edit

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methodology
	3.1 Testbed
	3.2 Network Environments
	3.3 Experiments and Performance Metrics

	4 Evaluation Framework
	4.1 Calibration
	4.2 Instrumentation

	5 Analysis
	5.1 State Machine and Fairness
	5.2 Page Load Time
	5.3 Video-streaming Performance
	5.4 Historical Comparison
	5.5 Impact of Proxying

	6 Conclusion
	References

