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Abstract
QJUMP is a simple and immediately deployable ap-

proach to controlling network interference in datacenter
networks. Network interference occurs when congestion
from throughput-intensive applications causes queueing
that delays traffic from latency-sensitive applications.
To mitigate network interference, QJUMP applies Inter-
net QoS-inspired techniques to datacenter applications.
Each application is assigned to a latency sensitivity level
(or class). Packets from higher levels are rate-limited
in the end host, but once allowed into the network can
“jump-the-queue” over packets from lower levels. In set-
tings with known node counts and link speeds, QJUMP
can support service levels ranging from strictly bounded
latency (but with low rate) through to line-rate through-
put (but with high latency variance).

We have implemented QJUMP as a Linux Traffic Con-
trol module. We show that QJUMP achieves bounded
latency and reduces in-network interference by up to
300×, outperforming Ethernet Flow Control (802.3x),
ECN (WRED) and DCTCP. We also show that QJUMP
improves average flow completion times, performing
close to or better than DCTCP and pFabric.

1 Introduction

Many datacenter applications are sensitive to tail la-
tencies. Even if as few as one machine in 10,000 is a
straggler, up to 18% of requests can experience high la-
tency [13]. This has a tangible impact on user engage-
ment and thus potential revenue [8, 9].

One source of latency tails is network interfer-
ence: congestion from throughput-intensive applications
causes queueing that delays traffic from latency-sensitive
applications. For example, Hadoop MapReduce can

Please see http://www.cl.cam.ac.uk/netos/qjump for full details in-
cluding the QJUMP source-code. In the electronic version of this paper,
most of the figures and tables are clickable with links to a full experi-
mental description and original datasets.

cause queueing that extends memcached request latency
tails by 85 times the interference-free maximum (§2).

If memcached packets can somehow be prioritized to
“jump-the-queue” over Hadoop’s packets, memcached
will no longer experience latency tails due to Hadoop. Of
course, multiple instances of memcached may still inter-
fere with each other, causing long queues or incast col-
lapse [10]. If each memcached instance can be appropri-
ately rate-limited at the origin, this too can be mitigated.

These observations are not new: QoS technologies like
DiffServ [7] demonstrated that coarse-grained classifica-
tion and rate-limiting can be used to control network la-
tencies. Such schemes struggled for widespread deploy-
ment, and hence provided limited benefit [12]. How-
ever, unlike the Internet, datacenters have well-known
network structures (i.e. host counts and link rates), and
the bulk of the network is under the control of a single au-
thority. In this environment, we can enforce system-wide
policies, and calculate specific rate-limits which take into
account worst-case behavior, ultimately allowing us to
provide a guaranteed bound on network latency.

QJUMP is implemented via a simple rate-limiting
Linux kernel module and application utility. QJUMP has
four key features. It:

1. resolves network interference for latency-sensitive
applications without sacrificing utilization for
throughput-intensive applications;

2. offers bounded latency to applications requiring
low-rate, latency-sensitive messaging (e.g. timing,
consensus and network control systems);

3. is simple and immediately deployable, requiring
no changes to hardware or application code; and

4. performs close to or better than competing sys-
tems, including ECN, 802.3x, DCTCP and pFabric,
but is considerably less complex to understand, de-
velop and deploy.

In this work, we consider only latency tails that result
from in-network interference. Other work mitigates host-
based sources of latency tails [14, 23, 30, 32, 36].

http://www.cl.cam.ac.uk/netos/qjump
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(a) Timeline of PTP synchronization offset.
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Figure 1: Motivating experiments: Hadoop traffic interferes with (a) PTPd, (b) memcached and (c) Naiad traffic.

Setup 50th% 99th%
one host, idle network 85 126μs

two hosts, shared switch 110 130μs
shared source host, shared egress port 228 268μs
shared dest. host, shared ingress port 125 278μs

shared host, shared ingress and egress 221 229μs
two hosts, shared switch queue 1,920 2,100μs

Table 1: Median and 99th percentile latencies observed
as ping and iperf share various parts of the network.

2 Motivation
We begin by showing that shared switch queues are the
primary source of network interference. We then quan-
tify the extent to which network interference impacts
application-observable metrics of performance.

2.1 Where does the latency come from?
Network interference may occur at various places on the
network path. Applications may share ingress or egress
paths in the host, share the same network switch, or share
the same queue in the same network switch. To assess the
impact of interference in each of these situations, we em-
ulate a latency-sensitive RPC application using ping and
a throughput-intensive bulk transfer application by run-
ning two instances of iperf. Table 1 shows the results of
arranging ping and iperf with various degrees of net-
work sharing. Although any sharing situation results in
interference, the effect is worst when applications share a
congested switch queue.. In this case, the 99th percentile
ping latency is degraded by over 16× compared to the
unshared case.

2.2 How bad is it really?
Different applications use the network in different ways.
To demonstrate the degree to which network interfer-
ence affects different applications, we run three represen-
tative latency-sensitive applications (PTPd, memcached
and Naiad) on a network shared with Hadoop (details

in §6) and measure the effects.

1. Clock Synchronization Precise clock synchroniza-
tion is important to distributed systems such as Google’s
Spanner [11]. PTPd offers microsecond-granularity time
synchronization from a time server to machines on a
local network. In Figure 1a, we show a timeline of
PTPd synchronizing a host clock on both an idle net-
work and when sharing the network with Hadoop. In
the shared case, Hadoop’s shuffle phases causes queue-
ing, which delays PTPd’s synchronization packets. This
causes PTPd to temporarily fall 200–500μs out of syn-
chronization; 50× worse than on an idle network.

2. Key-value Stores Memcached is a popular in-
memory key-value store used by Facebook and others to
store small objects for quick retrieval [25]. We bench-
mark memcached using the memaslap load generator2

and measure the request latency. Figure 1b shows the
distribution of request latencies on an idle network and a
network shared with Hadoop. With Hadoop running, the
99th percentile request latency degrades by 1.5× from
779μs to 1196μs. Even worse, approximately 1 in 6,000
requests take over 200ms to complete3, over 85× worse
than the maximum latency seen on an idle network.

3. Iterative Data-Flow Naiad is a framework for dis-
tributed data-flow computation [24]. In iterative com-
putations, Naiad’s performance depends on low-latency
state synchronization between worker nodes. To test Na-
iad’s sensitivity to network interference, we execute a
barrier synchronization benchmark (provided by the Na-
iad authors) with and without Hadoop running. Figure 1c
shows the distribution of Naiad synchronization laten-
cies in both situations. On an idle network, Naiad takes
around 500μs at the 99th percentile to perform a four-way
barrier synchronization. With interference, this grows to
1.1–1.5ms, a 2–3× performance degradation.

2http://libmemcached.org
3Likely because packet loss triggers the TCP minRTO timeout.

http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure5.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure3b.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure3c.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/table1.html
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Figure 2: Packets fanning in to a four-port, virtual output
queued switch. Output queues shown for port 3 only.

3 QJUMP System Design
Our exploratory experiments demonstrate that applica-
tions are sensitive to network interference, and that net-
work interference occurs primarily as a result of shared
switch queues. QJUMP therefore tackles network inter-
ference by reducing switch queueing: essentially, if we
can reduce the amount of queueing in the network, then
we will also reduce network interference. In the extreme
case, if we can place a low, finite bound on queueing,
then we can fully control network interference. This idea
forms the basis of QJUMP.

In this section, we derive an intuitive model to place
such a bound on queueing in any datacenter network
topology. We first consider a single switch case, before
extending the model to cover multiple switches. We then
relax our model’s throughput constraints and quantify the
latency variance vs. throughput tradeoff. Finally, we de-
scribe how latency-sensitive traffic is allowed to “jump-
the-queue” over high-throughput traffic.

Although the model we present is intuitive, it amounts
to a simplification of the classic Parekh-Gallager theo-
rem [27, 28]. The theorem shows that end-to-end de-
lay can be bounded in a Weighted Fair Queueing (WFQ)
network, provided that the network remains undersub-
scribed. In the Appendix, we show the relationship be-
tween our model and the theorem. In essence, we use the
fact that datacenter networks have a well-known struc-
ture (unlike the Internet) to simplify the theorem, result-
ing in the version that we now present.

3.1 Bounded Queues – Bounded Latency
To begin, we assume an initially idle network in which
each host is connected by a single link. We also assume
that the link rate never decreases from the edge to the
core of the network—an assumption that is true in any
reasonable datacenter network.

Single Switch Queueing Model Consider the simpli-
fied model of a typical virtual-output queued (VOQ)
layer 2 switch shown in Figure 2. The figure shows four
input ports which are connected to four output ports via
a crossbar. Only the output queues for port 3 are shown.
One of two scenarios might occur at an instant in time:
(i) only one input port sends packets to output port 3; or
(ii) multiple input ports send packets to output port 3.

In the first case, a single sender can communicate with
the destination port without queueing. Packets are only
delayed by the processing delay across the switch, which
is typically less than 0.5μs.

In the second case, packets arrive concurrently and
only one packet can exit from the output port at a time.
The switch scheduler must share access to this output
by serializing the concurrent arrivals. In the worst case,
the number of packets that arrive concurrently is equal to
the maximum fan-in of the switch (see Figure 2), which
is the number of input ports on the switch (four in this
example). Thus, a packet may have to wait for up to
max fan-in−1 packets before it is serviced .

Multi Switch Queueing Model We can easily expand
this understanding to cover multi-hop networks by treat-
ing the whole network as a single “big switch” (this is
a version of the hose-constraint [15] model). Since we
assume that each host has only one connection to the net-
work, all packets “fanning in” to a host must eventually
use this one link. This represents a mandatory serial-
ization point, regardless of the core network topology.
Given n hosts in the network, a packet may therefore
experience at most max network fan-in− 1 = n− 2 ≈ n
packets worth of delay. Knowing that a packet of size P
will take P/R seconds to transmit at link-rate R, we can
therefore bound the maximum interference delay at:

worst case end-to-end delay ≤ n× P
R
+ ε (1)

where n is the number of hosts, P the maximum packet
size (in bits), R is the rate of the slowest link in bits per
second and ε is the cumulative processing delay intro-
duced by switch hops.

Network epochs So far, our model assumes that
switch queues are initially empty and that the network
is undersubscribed. In this case, Equation 1 offers an up-
per bound on end-to-end network delay. We refer to the
result from Equation 1 as a network epoch. Intuitively, a
network epoch is the maximum time that an idle network
will take to service one packet from every sending host,
regardless of the source, destination or timing of those
packets. If all hosts are rate-limited so that they can-
not issue more than one packet per epoch, no permanent
queues can build up and the end-to-end network delay
bound will be maintained forever.

One problem with a network epoch is that it is a global
concept: to maintain it, all hosts must agree on when
an epoch begins and when an epoch ends. This requires
scheduling and precise timing. If all hosts in the network
share a single time source, network epochs can be syn-
chronized. Hardware time-stamped PTP synchronization
on modern hardware can be used for micro-second gran-
ularity network scheduling [29]. PTP synchronization
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hardware is not yet ubiquitous. As an alternative, we can
allow the network to become mesochronous. That is, we
require all network epochs in the system to occur at the
same frequency, but impose no restriction on the phase
relationship between epochs. In this case, host-based
timing is sufficient, so long as drift remains minimal over
the sub-millisecond timespan of a network epoch.

This mesochronous relaxation does, however, affect
our assumption of an initially idle network. A phase
misalignment between hosts (or switches) means that a
switch may encounter two packets within a host’s net-
work epoch: the first packet being issued at the end of
an epoch and the second packet issued immediately at
the start of the next epoch. The probability of this unfor-
tunate alignment occurring decreases exponentially with
scale. With as few as ten machines, the likelihood of
waiting behind more than n packets is very small. Nev-
ertheless, to ensure that the latency bound is guaranteed,
we can accommodate the mesochronous case by dou-
bling our worst-case latency bound. Our network epoch
calculation thus becomes:

network epoch = 2n× P
R
+ ε (2)

This is a key property of QJUMP: if we rate-limit all
hosts so that they can only issue one packet every net-
work epoch, then no packet will take more than one net-
work epoch to be delivered in the worst case.

3.2 Latency Variance vs. Throughput
Although the equation derived above provides an abso-
lute upper bound on in-network delay, it also has the ef-
fect of aggressively restricting throughput. Formulating
Equation 2 for throughput, we obtain:

throughput =
P

network epoch
≈ R

2n
(3)

That is, as we increase the number of hosts n linearly, we
decrease the throughput capacity for each host by a factor
of 2n. For example, with 1,000 hosts and a 10Gb/s edge
we obtain an effective throughput of less than 5Mb/s per
host. Clearly, this is not ideal.

We can improve this situation by making two observa-
tions. First, Equation 2 is pessimistic: it assumes that all
hosts transmit to one destination at the worst time, which
is unlikely given a realistic network and traffic distribu-
tion. Second, some applications (e.g. PTP) are more sen-
sitive to interference than others (e.g. memcached, Na-
iad) whereas still other applications (e.g. Hadoop) are
more sensitive to throughput restrictions.

From the first observation, we can relax the throughput
constraints in Equation 2 by assuming that fewer than n
hosts send to a single destination at the worst time. For
example, if we assume that only 500 of the 1,000 hosts

concurrently send to a single destination, then those 500
hosts can send at twice the rate and maintain the same
network delay. More generally, we define a scaling factor
f so that the assumed number of senders n� is given by:

n� =
n
f

where 1 ≤ f ≤ n. (4)

Intuitively, f is a “throughput factor”: as the value of f
grows, so does the amount of bandwidth available.

From the second observation, some (but not all) appli-
cations can tolerate some degree of latency variance. For
these applications, we aim for a statistical reduction in la-
tency variance. This re-introduces a degree of statistical
multiplexing to the network, but one that is more tightly
controlled than in current networks. When the the value
of f is too optimistic (i.e. the actual number of senders is
greater than n�), some queueing may occur, resulting in
network interference.

The probability that interference occurs increases with
increasing values of f . At the upper bound ( f = n), la-
tency variance is no worse than in existing networks and
full network throughput is available. At the lower bound
( f = 1), latency is guaranteed, but with much reduced
throughput. In essence, f quantifies the latency variance
vs. throughput tradeoff.

3.3 Jump the Queue with Prioritization
We would like to use multiple values of f concurrently,
so that different applications can benefit from the latency
variance vs. throughput tradeoff that suits them best. To
achieve this, we partition the network so that traffic from
latency-sensitive applications (e.g. PTPd, memcached,
Naiad) can “jump-the-queue” over traffic from through-
put intensive applications (e.g. Hadoop).

Datacenter switches support the IEEE 802.1Q [18]
standard which provides eight (0–7) hardware enforced
“service classes” or “priorities”. Priorities are rarely used
in practice because priority selection can become a “race
to the top”. For example, memcached developers may
assume that memcached traffic is the most important and
should receive the highest priority. Meanwhile, Hadoop
developers may assume that Hadoop traffic is the most
important, and should similarly receive the highest pri-
ority. Since there is a limited number of priorities, nei-
ther can achieve an advantage and prioritization loses its
value. QJUMP is different.

QJUMP couples priority values and rate-limits: for
each priority, we assign a distinct value of f , with higher
priorities receiving smaller values. Since a small value of
f implies an aggressive rate limit, priorities become use-
ful because they are no longer “free”: QJUMP users must
choose between low latency variance at low throughput
(high priority) and high latency variance at high through-
put (low priority).
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We call the assignment of an f value to a priority a
QJUMP level. The latency variance of a given QJUMP
level is a function of the sum of the QJUMP levels above
it. In Section 5, we discuss various ways of assigning f
values to QJUMP levels.

4 QJUMP Implementation
QJUMP has two components: a rate-limiter to provide ad-
mission control to the network, and an application util-
ity to configure unmodified applications to use QJUMP
levels. In a multi-tenant environment, the rate-limiter is
deployed as a component in the hypervisor and QJUMP
is configured for the total number of virtual hosts. In
a single-authority environment, the rate-limiter is de-
ployed as an addition to the kernel network egress path
and QJUMP is configured for the number of physical
hosts.

Rate limiting QJUMP differs from many other systems
that use rate-limiters. Instead of requiring a rate-limiter
for each flow, each host only needs one coarse-grained
rate-limiter per QJUMP level. This means that just eight
rate-limiters per host are sufficient when using IEEE
802.1Q priorities. As a result, QJUMP rate-limiters can
be implemented efficiently in software.

In our prototype, we use the queueing discipline
(qdisc) mechanism offered by the Linux kernel traffic
control (TC) subsystem to rate-limit packets. TC mod-
ules do not require kernel modifications and can be in-
serted and removed at runtime, making them flexible and
easy to deploy. We also use Linux’s built-in 802.1Q
VLAN support to send layer 2 priority-tagged packets.

Listing 1 shows our a custom rate-limiter implemen-
tation. To keep the rate-limiter efficient, all operations
quantify time in cycles. This requires us to initially con-
vert the network epoch value from seconds into cycles
(line 1). We then synthesize a clock from the CPU times-
tamp counter (rdtsc, line 6). This provides us with ex-
tremely fine-grained timing for the price of just one in-
struction on the critical path.

When a new packet arrives at the rate-limiter, it is clas-
sified into a QJUMP level using the priority tag found in
its sk buff (line 7). Users can set this priority directly
in the application code, or assign priorities to unmodi-
fied binaries using our application utility. Next, the rate-
limiter checks if a new epoch has begun. If so, it issues
a fresh allocation of bytes to itself (lines 8–10). It then
checks to see if sufficient bytes are remaining to send the
packet in this network epoch (line 12). If so, the packet is
forwarded to the driver (line 15–16), if not, the packet is
dropped (line 13). In practice, packets are rarely dropped
because our application utility also resizes socket buffers
to apply early back-pressure.

Forwarded packets are mapped onto individual driver
queues depending on the priority level. QJUMP there-

1 long epoch_cycles = to_cycles(network_epoch);

2 long timeout = start_time;

3 long bucket[NUM_QJUMP_LEVELS];

4

5 int qJumpRateLimiter(struct sk_buff* buffer) {

6 long cycles_now = asm("rdtsc"); /* read cycle ctr */

7 int level = buffer->priority;

8 if (cycles_now > timeout) { /* new token alloc? */

9 timeout += epoch_cycles;

10 bucket[level] = tokens[level];

11 }

12 if (buffer->len > bucket[level]) {

13 return DROP; /* tokens for epoch exhausted */

14 }

15 bucket[level] -= buffer->len;

16 sendToHWQueue(buffer, level);

17 return SENT;

18 }

Listing 1: QJUMP rate-limiter pseudocode.

fore prioritizes low-latency traffic in the end-host itself,
before packets are issued to the network card.

Since Equation 2 assumes pessimal conditions, our
rate-limiter also tolerates bursts up to the level-specific
byte limit per epoch. This makes it compatible with hard-
ware offload techniques such as TSO, LSO or GSO.

On our test machines, we found no measurable ef-
fect of the rate-limiter on CPU utilization or throughput.
On average it imposes a cost of 35.2 cycles per packet
(σ = 18.6; 99th% = 69 cycles) on the Linux kernel crit-
ical path of ≈8,000 cycles. This amounts to less than
0.5% overhead.

QJUMP Application Utility QJUMP requires that ap-
plications (or, specifically, sockets within applications)
are assigned to QJUMP levels. This is easily done in ap-
plication code directly with a setsockopt() using the
SO PRIORITY option. However, we would also like to
support unmodified applications without recompilation.
To achieve this, we have implemented a utility that dy-
namically intercepts socket setup system calls and alters
their options. We inject the utility into unmodified ex-
ecutables via the Linux dynamic linker’s LD PRELOAD

support (a similar technique to OpenOnload [31]).
The utility performs two tasks: (i) it configures socket

priority values, and (ii) it sets socket send buffer sizes.
Modifying socket buffer sizes is an optimization to ap-
ply early back-pressure to applications. If an appli-
cation sends more data than its QJUMP level permits,
an ENOBUFS error is returned rather than packets being
dropped. While not strictly required, this optimization
brings a significant performance benefit in practice as it
helps avoid TCP retransmit timeouts (minRTOs).

5 Configuring QJUMP

A QJUMP deployment requires five parameters to be con-
figured: (i) n, the number of hosts; (ii) P, the maximum
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packet size; (iii) R, the rate of the slowest edge link; (iv)
ε , the edge-to-edge cumulative switch processing delay;
and (v) fi, the assumed fraction of concurrently transmit-
ting hosts at each level.

Configuring R and ε As the topology of a datacenter
network is static, the minimum link speed R and the cu-
mulative switching delay ε do not vary. Typical values
are R = 10Gb/s or 40Gb/s and ε = 1μs to 4μs.

Configuring P In §3.1, we defined P as the “maximum
packet size”. However, it is more correctly defined as the
maximum number of bytes that can be issued into the
network at the guaranteed latency level in a single net-
work epoch. From Equation 2, the network epoch grows
linearly with increasing P, so P should be kept small to
keep the network epoch short. However, we also want P
to be big enough to be useful. Benson et al. found that
30%–50% of packets in many datacenters contain fewer
than 256 bytes [5]. This suggests that ≤256B packets are
sufficient for some applications. For 1,000 hosts, setting
P to 256 bytes results in a worst-case delay of <500μs.

Configuring n This usefulness of QJUMP depends on
the size of the latency bound, which scales as a func-
tion of n. If all hosts in the network use QJUMP, then n
can take a value of between 1,000 and 4,000 hosts and
maintain a bound of 100-500μs using small messages of
64–256B. QJUMP can also be configured with n set as a
subset of the hosts, provided that the remainder of hosts
only use the lowest network priority.

Application-specific knowledge may also be exploited
to increase the number of hosts that can participate in a
QJUMP network. For example, a distribute/aggregate ser-
vice may send requests to 10,000 hosts, but can be certain
that fewer than 1,000 will respond. In this case, n can still
be set to 1,000 hosts, but all 10,000 hosts can use QJUMP
with guarantees. Finally, QJUMP scales with the network
speed. On a faster network (e.g. a 40Gb/s edge), the same
delay can be maintained for larger n (e.g. 16,000).

Configuring fi The most complicated parameters to
determine are the throughput factors fi. Fortunately, each
value of fi is easily expressible as a rate-limit (e.g in
Mb/s) which makes choosing values relatively intuitive
(see §6 for examples). The best value for fi depends on
the desired latency distribution and the workload. The
simplest configuration is to use only two QJUMP lev-
els: (i) guaranteed latency ( f1 = 1) and (ii) maximum
throughput ( f7 = n). Alternatively, a set of fi values can
be configured for a known application mix or for a known
traffic distribution.

1. Known Application Mix Datacenter application
mixes are often known, or information on application
profiles can be obtained from users [4, 20, 21]. If ap-
plication latency and throughput requirements can be es-
timated or measured, the QJUMP levels can be set to ac-

commodate their needs.4 In practice, simple benchmarks
at different rate limits make it easy to characterize an ap-
plication. We show an example in §6.5.

2. Known Traffic Distribution While the applica-
tion mix in large datacenters can be complex, moni-
toring infrastructure supplies aggregate traffic statistics.
An approximate distribution of flow sizes is often avail-
able [1, 5, 16]. For a known flow size distribution, fi
values can be configured to partition the traffic accord-
ing to a desired latency variance vs. throughput distribu-
tion. We applied this method on a flow size CDF using a
simple spreadsheet. This worked well in our experiments
and simulations in §6.4.

6 Evaluation
We evaluate QJUMP both on a small deployment and in
simulation. Our evaluation shows that QJUMP:

1. resolves network interference for a collection of
real-world datacenter applications (§6.2);

2. outperforms Ethernet Flow Control (802.3x), ECN
and DCTCP in our deployment (§6.3);

3. provides excellent flow completion times, close to
or better than DCTCP [1] and pFabric [3] (§6.4);

4. is easily configurable, illustrated by examples of
methods to determine QJUMP parameters (§6.5).

6.1 Experimental setup
Our physical test-bed comprises an otherwise idle, 12
node cluster of recent AMD Opteron and Intel Xeon-
based machines running Ubuntu 14.04 with Linux ker-
nel 3.4.55. Each machine has one two-port 10Gb/s
NIC installed. Our network is comprised of four Arista
DCS-7124fx switches arranged as per Figure 4. We use
ptpd v2.1.0 and memcached v1.4.14. We generate load
for memcached using memaslap from libmemcached

v1.0.15 running a binary protocol, mixed GET/SET
workload of 1 KB requests in TCP mode with 128 con-
current requests. The Naiad experiments use v0.2.3 and
the barrier-sync microbenchmark was supplied by the
Naiad authors. Hadoop 2.0.0-mr1-cdh4.5.1 is deployed
on eight of our twelve nodes, with the HDFS data in
tmpfs and the replication factor set to six.5 The Hadoop
workload is a natural join between two uniformly ran-
domly generated 512 MB data sets (39M rows each),
which produces an output of 29 GB (1.5B rows).

6.2 QJUMP Resolves Network Interference
Our experiments in §2 showed that network interference
degrades application performance. We now repeat those
experiments with QJUMP enabled and show that QJUMP
mitigates the network interference, resulting in near ideal

4 There may be more applications than QJUMP levels. In this case,
some levels will need to be shared between applications.

5This simulates the traffic a larger Hadoop cluster would generate.
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Figure 3: Application-level latency experiments: QJUMP (green, dotted line) mitigates the latency tails from Figure 1.

Figure 4: Network topology of our test-bed.

performance. We also show that in a realistic multi-
application setting, QJUMP both resolves network inter-
ference and outperforms other readily available systems.
We execute these experiments on the topology shown in
Figure 4.

Low Latency RPC vs. Bulk Transfer Remote Proce-
dure Calls (RPCs) and bulk data transfers represent ex-
treme ends of the latency-bandwidth spectrum. QJUMP
resolves network interference at these extremes. As in
§2.1, we emulate RPCs and bulk data transfers using
ping and iperf respectively. We measure in-network
latency for the ping traffic directly using a high resolu-
tion Endace DAG capture card and two optical taps on
either side of a switch. This verifies that queueing la-
tency at switches is reduced by QJUMP. By setting ping

to the highest QJUMP level ( f7 = 1), we reduce its pack-
ets’ latency at the switch by over 300× (Figure 3a). The
small difference between idle switch latency (1.6μs) and
QJUMP latency (2–4μs) arises due a small on-chip FIFO
through which the switch must process packets in-order.
The switch processing delay, represented as ε in Equa-
tion 2, is thus no more than 4μs for each of our switches.

Memcached QJUMP resolves network interference
experienced by memcached sharing a network with
Hadoop. We show this by repeating the memcached ex-
periments in §2.2. In this experiment, memcached is
configured at an intermediate QJUMP level, rate-limited
to 5Gb/s (above memcached’s maximum throughput; see

§6.5). Figure 3b shows the distribution (CDF) of mem-
cached request latencies when running on an idle net-
work, a shared network, and a shared network with
QJUMP enabled. With QJUMP enabled, the request laten-
cies are close to the ideal. The median latency improves
from 824μs in the shared case to 476μs, a nearly 2× im-
provement.6

Naiad Barrier Synchronization QJUMP also resolves
network interference experienced by Naiad [24], a dis-
tributed system for executing data parallel dataflow pro-
grams. Figure 3c shows the latency distribution of
a four-way barrier synchronization in Naiad. On an
idle network network, 90% of synchronizations take no
more than 600μs. With interfering traffic from Hadoop,
this value doubles to 1.2ms. When QJUMP is enabled,
however, the distribution closely tracks the uncontended
baseline distribution, despite sharing the network with
Hadoop. QJUMP here offers a 2–5× improvement in
application-level latency.

Multi-application Environment In real-world data-
centers, a range of applications with different latency
and bandwidth requirements share same infrastructure.
QJUMP effectively resolves network interference in these
shared, multi-application environments. We consider a
datacenter setup with three different applications: ptpd
for time synchronization, memcached for serving small
objects and Hadoop for batch data analysis. Since resolv-
ing on-host interference is outside the scope of our work,
we avoid sharing hosts between applications in these ex-
periments and share only the network infrastructure.

Figure 5 (top) shows a timeline of average request la-
tencies (over a 1ms window) for memcached and syn-
chronization offsets for ptpd, each running alone on an
otherwise idle network. Figure 5 (middle), shows the two
applications sharing the network with Hadoop. In this

6The distributions for the idle network and the QJUMP case do not
completely agree due of randomness in the load generated.

http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure3a.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure3b.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure3c.html
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Figure 5: PTPd and memcached in isolation (top), with
interfering traffic from Hadoop (middle) and with the in-
terference mitigated by QJUMP (bottom).

case, average latencies increase for both applications and
visible latency spikes (corresponding to Hadoop’s shuf-
fle phases) emerge. With QJUMP deployed, we assign
ptpd to f7 = 1, Hadoop to f0 = n = 12 and memcached
to T5 = 5Gb/s =⇒ f5 = 6 (see §6.5). The three appli-
cations now co-exist without interference (Figure 5 (bot-
tom)). Hadoop’s performance is not noticeably affected
by QJUMP, as we will further show in §6.3.

Distributed Atomic Commit One of QJUMP’s unique
features is its guaranteed latency level (described in
§3.1). Bounded latency enables interesting new designs
for datacenter coordination software such as SDN con-
trol planes, fast failure detection and distributed consen-
sus systems. To demonstrate the usefulness of QJUMP’s
bounded latency level, we built a simple distributed two-
phase atomic-commit (2PC) application.

The application communicates over TCP or over UDP
with explicit acknowledgements and retransmissions.
Since QJUMP offers reliable delivery, the coordinator can
send its messages by UDP broadcast when QJUMP is en-
abled. This optimization yields a ≈30% throughput im-
provement over both TCP and UDP.

In Figure 6, we show the request rate for one coordi-
nator and seven servers as a function of network interfer-
ence. Interference is created with two traffic generators:
on that generates a constant 10Gb/s of UDP traffic and
another that sends fixed-size bursts followed by a 25ms
pause. We report interference as the ratio of the burst
size to the internal switch buffer size. Beyond a ratio of
200%, permanent queues build up in the switch. At this
point the impact of retransmissions degrades throughput
of the UDP and TCP implementations to 20% of the
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Figure 6: QJUMP offers constant two-phase commit
throughput even at high levels of network interference.

10,000 requests/sec observed on an idle network. By
contrast, the UDP-over-QJUMP implementation does not
degrade as its messages “jump the queue”. At high inter-
ference ratios (>200%), two-phase commit over QJUMP
achieves 6.5× the throughput of standard TCP or UDP.
Furthermore, QJUMP’s reliable delivery and low latency
enable very aggressive timeouts to be used for failure
detection. Our 2PC system detects component failure
within two network epochs (≈40μs on our network), far
faster than typical failure detection timeouts (e.g. 150 ms
in RAMCloud [26, §4.6]).

6.3 QJUMP Outperforms Alternatives
Several readily deployable congestion control schemes
exist, including Ethernet Flow Control (802.1x), Explicit
Congestion Notifications (ECN) and Data Center TCP
(DCTCP). We repeat the multi-application experiment
described in §6.2 and show that QJUMP exhibits better
interference control than other schemes.

Since interference is transient in these experiments,
we measure the degree to which it affects applications
using the root mean square (RMS) of each application-
specific metric.7 For Hadoop, PTPd and memcached, the
metrics are job runtime, synchronization offset and re-
quest latency, respectively. Figure 7 shows six cases: an
ideal case, a contended case and one for each of the four
schemes used to mitigate network interference. All cases
are normalized to the ideal case, which has each applica-
tion running alone on an idle network. We discuss each
result in turn.

Ethernet Flow Control Like QJUMP, Ethernet Flow
Control is a data link layer congestion control mecha-
nism. Hosts and switches issue special pause messages

7RMS is a statistical measure of the magnitude of a varying quan-
tity [6, p. 64]. This is not the same as the root mean square error
(RMSE), which measures prediction accuracy.

http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure5.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure6.html
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Figure 7: QJUMP comes closest to ideal performance for
all of Hadoop, PTPd and memcached.

when their queues are nearly full, alerting senders to slow
down. Figure 7 shows that Ethernet Flow Control has a
limited positive influence on memcached, but increases
the RMS for PTPd. Hadoop’s performance remains un-
affected.

Early Congestion Notification (ECN) ECN is a net-
work layer mechanism in which switches indicate queue-
ing to end hosts by marking TCP packets. Our Arista
7050 switch implements ECN with Weighted Random
Early Detection (WRED). The effectiveness of WRED
depends on an administrator correctly configuring upper
and lower marking thresholds. We investigated ten dif-
ferent marking thresholds pairs, ranging between [5, 10]
and [2560, 5120] ([upper, lower], in packets). None of
these settings achieve ideal performance for all three ap-
plications, but the best compromise was [40, 80]. With
this configuration, ECN very effectively resolves the in-
terference experienced by PTPd and memcached. How-
ever, this comes at the expense of increased Hadoop run-
times.

Datacenter TCP (DCTCP) DCTCP uses the rate at
which ECN markings are received to build an estimate of
network congestion. It applies this to a new TCP conges-
tion avoidance algorithm to achieve lower queueing de-
lays [1]. We configured DCTCP with the recommended
ECN marking thresholds of [65, 65]. Figure 7 shows
that DCTCP reduces the variance in PTPd synchroniza-
tion and memcached latency compared to the contended
case. However, this comes at an increase in Hadoop job
runtimes, as Hadoop’s bulk data transfers are affected by
DCTCP’s congestion avoidance.

QJUMP Figure 7 shows that QJUMP achieves the best
results. The variance in Hadoop, PTPd and memcached
performance is close to (Hadoop, PTPd) or slightly better
than (memcached) in the uncontended ideal case.

6.4 QJUMP Improves Flow Completion

Figure 8: 144 node leaf-spine topology used for simula-
tion experiments.

In addition to resolving network interference, QJUMP
also provides excellent overall average and 99th per-
centile flow completion times (FCTs). Although QJUMP
specifically optimizes tail latencies for small flows (at the
expense of larger flows), doing so imposes a natural order
on the network. This results in a surprisingly good over-
all network schedule with a generally positive impact on
flow completion times.

The pFabric architecture has been shown to sched-
ule flows close to optimally [3]. Therefore, we com-
pare QJUMP against pFabric to assess the quality of the
network schedule it imposes. pFabric “is a clean-slate
design [that] requires modifications both at the switches
and the end-hosts” [3, §1] and is therefore only available
in simulation. By contrast, QJUMP is far simpler and
readily deployable, but applies rigid, global rate limits.

We compare QJUMP against a TCP baseline, DCTCP
and pFabric by extending an ns2 simulation provided
by the authors of pFabric. This replicates the leaf-spine
network topology used to evaluate pFabric (see Fig-
ure 8). We also run the same workloads derived from
web search [1, §2.2] and data mining [16, §3.1] clusters
in Microsoft datacenters, and show matching graphs in
Figure 9.8 As in pFabric, we normalize flows to their
ideal flow completion time on an idle network.

Figure 9 reports the average and 99th percentile nor-
malized FCTs for small flows (0kB, 100kB] and the av-
erage FCTs for large flows (10MB, ∞). For both work-
loads, QJUMP is configured with P = 9kB, n = 144, and
{ f0... f7} = {144,100,20,10,5,3,2,1}. We chose this
configuration based on the distribution of flow sizes in
the web search workload. However, in practice it worked
well for both workloads.

Despite its simplicity, QJUMP performs very well. As
expected, it works best on short flows: on both work-
loads, QJUMP achieves average and 99th percentile FCTs
close to or better than pFabric’s. On the web-search
workload, QJUMP beats pFabric by a margin of up to
32% at the 99th percentile (Fig. 9b). For larger flows, the
results are mixed. On the web search workload, QJUMP

8An extended set of graphs for both of the workloads is available at
http://www.cl.cam.ac.uk/netos/qjump/sims.html.

http://www.cl.cam.ac.uk/netos/qjump/sims.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure7.html
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Figure 9: Normalized flow completion times in a 144-host simulation (1 is ideal): QJUMP outperforms TCP, DCTCP
and pFabric for small flows. N.B.: log-scale y-axis; QJUMP and pFabric overlap in (a), (d) and (e).

outperforms pFabric by up to 20% at high load, but loses
to pFabric by 15% at low load (Fig. 9c). On the data min-
ing workload, QJUMP’s average FCTs are between 30%
and 63% worse than pFabric’s (Fig. 9f).

In the data-mining workload, 85% of all flows transfer
fewer than 100kB, but over 80% of the bytes are trans-
ferred in flows of greater than 100MB (less than 15%
of the total flows). QJUMP’s short epoch intervals can-
not sense the difference between large flows, so it does
not apply any rate-limiting (scheduling) to them. This
results in sub-optimal behavior. A combined approach
where QJUMP regulates interactions between large flows
and small flows, while DCTCP regulates the interactions
between different large flows might improve this.

6.5 QJUMP Configuration
As described in §5, QJUMP levels can be determined
in several ways. One approach is to tune the levels to
a specific mix of applications. For some applications,
it is clear that they perform best at guaranteed latency
(e.g. ptpd at f7 = 1) or high rate (e.g. Hadoop at f0 = n).
For others, their performance at different throughput fac-
tors is less straightforward. Memcached is an example
of such an application. It needs low request latency vari-
ance as well as reasonable request throughput. Figure 10
shows memcached’s request throughput and latency as
a function of rate-limiting. Peak throughput is reached
at a rate allocation of around 5Gb/s. At the same point,
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Figure 10: memcached throughput (top) and latency
(bottom, log10) as a function of the QJUMP rate limit.

the request latency also stabilizes. Hence, a rate-limit of
5Gb/s gives the best tradeoff for memcached. This point
has the strongest interference control possible without
throughput restrictions. To convert this to a throughput
factor, we get fi =

nTi
R by rearranging Equation 2 for fi.

On our test-bed (n = 12 at R =10Gb/s), Ti =5Gb/s yields
a throughput factor of f = 6. We can therefore choose
a QJUMP level for memcached (e.g. f4) and set it to a
throughput factor ≥6.

QJUMP offers a bounded latency level at throughput
factor f7. At this level, all packets admitted into the net-

http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure9.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure9.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure9.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure9.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure9.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure9.html
http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure10.html
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Figure 11: Latency bound validation: 60 host fan-in of
f7 and f0 traffic; 100 million samples per data point.

Figure 12: Latency bound validation topology: 10 hy-
pervisors (HV) and 60 guests (G1..60) and 120 apps.

work must reach the destination by the end of the net-
work epoch (§3.1). We now show that our model and
the derived configuration perform correctly. To do this,
we perform a scale-up emulation using a 60-host virtual-
ized topology running on ten physical machines (see Fig-
ure 12). In this topology, each machine runs a “hypervi-
sor” (Linux kernel) with a 10Gb/s uplink to the network.
Each hypervisor runs six “guests” (processes) each with
a 1.6Gb/s network connection. We provision QJUMP for
the number of guests and run two applications on each
guest: (i) a coordination service that generates one 256
byte packet per network epoch at the highest QJUMP
level, and (ii) a bulk sender that issues 1500 byte packets
as fast as possible at the lowest QJUMP level. All coordi-
nation requests are sent to a single destination.

Figure 11 shows the latency distribution of coordina-
tion packets as a function of the throughput factor at the
highest QJUMP level, f7. If the f7 is set to less than 1.0
(region A), the latency bound is met (as we would ex-
pect). In region B, where f7 is between 1.0 and 2.7, tran-
sient queueing affects some packets—as evident from the
100th percentile outliers—but all requests make it within
the latency bound. Beyond f7 = 2.7 (region C), perma-
nent queueing occurs.

This experiment offers two further insights about
QJUMP’s rate-limiting: (i) at throughput factors near 1.0,

the latency bound is usually still met, and (ii) via rate-
limiting, QJUMP prevents latency-sensitive applications
from interfering with their own traffic.

7 Related Work
Network congestion in datacenter networks is an active
research area. Table 2 compares the properties of recent
systems, including those we already compared against
in §6.3 and §6.4. We categorize systems as deployable if
they function on commodity hardware, unmodified trans-
port protocols and unmodified application source code.

Fastpass [29] employs a global arbiter that times the
admission of packets into the network and routes them.
While Fastpass eliminates in-network queueing, requests
for allocation must queue at the centralized arbiter.

EyeQ [22] primarily aims for bandwidth partitioning,
although it also reduces latency tails. It, however, re-
quires a full-bisection bandwidth network and a kernel
patch in addition to a TC module.

Deadline Aware TCP (D2TCP) [33] extends DCTCP’s
window adjustment algorithm with the notion of flow
deadlines, scheduling flows with earlier deadlines first.
Like DCTCP, D2TCP requires switches supporting
ECN;9 it also requires inter-switch coordination, kernel
and application modifications.

HULL combines DCTCP’s congestion avoidance ap-
plied on network links’ utilization (rather than queue
length) with a special packet-pacing NIC [2]. Its rate-
limiting is applied in reaction to ECN-marked packets.

D3 [35] allocates bandwidth on a first-come-first-serve
basis. It requires special switch and NIC hardware and
modifies transport protocols.

PDQ uses Earliest Deadline First (EDF) scheduling
to prioritize straggler flows, but requires coordination
across switches and application changes.

DeTail [37] and pFabric [3] pre-emptively schedule
flows using packet forwarding priorities in switches. De-
Tail also addresses load imbalance caused by poor flow
hashing. Flow priorities are explicitly specified by modi-
fied applications (DeTail) or computed from the remain-
ing flow duration (pFabric). However, both systems re-
quire special switch hardware: pFabric uses very short
queues and 64-bit priority tags, and DeTail coordinates
flows’ rates via special “pause” and “unpause” messages.

SILO [21] employs a similar reasoning to QJUMP to
estimate expected queue lengths. It places VMs accord-
ing to traffic descriptions to limit queueing and paces
hosts using “null” packets.

TDMA Ethernet [34] trades bandwidth for reduced
queueing by time dividing network access, but requires
invasive kernel changes and centralized coordination.

9Only one in five 10Gb/s switches we looked at supports ECN.

http://www.cl.cam.ac.uk/netos/qjump/nsdi2015/figure11.html
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PDQ [17] � � � � � � � �

pFabric [3] � � � � � �∗ � �

DeTail [37] � � � � �∗ � � �∗, softw.
Silo [21] � � � �∗ �∗ �∗, SLAs � �

TDMA Eth. [34] �∗ �∗ � �∗ � � � �

Table 2: Comparison of related systems. ∗with caveats, see text; ‡implementation publicly available.

8 Discussion and Future Work
It would be ideal if applications were automatically clas-
sified into QJUMP levels. This requires overcoming a few
challenges. First, the rate-limiter needs to be extended
to calculate an estimate of instantaneous throughput for
each application. Second, applications that exceed their
throughput allocation must be moved to a lower QJUMP
level, while applications that underutilize their allocation
must be lifted to a higher QJUMP level. Third, some
applications (e.g. Naiad) have latency-sensitive control
traffic as well as throughput-intensive traffic that must be
treated separately [19]. We leave this to future work.

9 Conclusion
QJUMP applies QoS-inspired concepts to datacenter ap-
plications to mitigate network interference. It offers mul-
tiple QJUMP levels with different latency variance vs.
throughput tradeoffs, including bounded latency (at low
rate) and full utilization (at high latency variance). In an
extensive evaluation, we have demonstrated that QJUMP
attains near-ideal performance for real applications and
good flow completion times in simulations. Source code
and data sets are available from http://goo.gl/q1lpFC.
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Appendix
The Parekh-Gallager theorem [27, 28] shows that
Weighted Fair Queueing (WFQ) achieves a worst case
delay bound given by the equation

end to end delay ≤ σ
g
+

K−1

∑
i=1

P
gi

+
K

∑
i=1

P
ri
, (5)

where all sources are governed by a leaky bucket ab-
straction with rate ρ and burst size σ , packets have a
maximum size P and pass through K switches. For each
switch i, there is a total rate ri of which each connection
(host) receives a rate gi. g is the minimum of all gi. It is
assumed that ρ ≤ g, i.e. the network is underutilized.

The final term in the equation adjusts for the difference
between PGPS and GPS (Generalized Processor Shar-
ing) for a non-idle network. Since we assume an idle
network in our model (3.1), Equation 5 simplifies to

end to end delay ≤ σ
g
+

K−1

∑
i=1

P
gi

(6)

If we assume that all hosts are given a fair share of the
network—i.e. Fair Queueing rather than WFQ—then,

gi =
ri

n
(7)

where n is the number of hosts. Therefore the g (the min-
imum gi) dominates. Since we assume an idle network,
the remaining terms sum to zero. For a maximum burst
size ρ = P, the equation therefore simplifies to

end to end delay ≤ P
g
= n× P

R
(8)

which is equivalent to the equation derived in Equation 1
(§3.1). The Parekh-Gallager theorem does not take into
account the switch processing delay ε , since it is negligi-
ble compared to the end-to-end delay on the Internet.

http://goo.gl/q1lpFC
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