
Pingmesh: A Large-Scale System for Data Center
Network Latency Measurement and Analysis∗

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave Maltz,
Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, Varugis Kurien†

Microsoft, †Midfin Systems
{chguo, lyuan, dxiang, yidang, rayhuang, dmaltz, zhaoyil, vinwang, bipang, stchen,

linzw}@microsoft.com, vkurien@midfinsystems.com

ABSTRACT
Can we get network latency between any two servers
at any time in large-scale data center networks? The
collected latency data can then be used to address a
series of challenges: telling if an application perceived
latency issue is caused by the network or not, defin-
ing and tracking network service level agreement (SLA),
and automatic network troubleshooting.

We have developed the Pingmesh system for large-
scale data center network latency measurement and anal-
ysis to answer the above question affirmatively. Pingmesh
has been running in Microsoft data centers for more
than four years, and it collects tens of terabytes of la-
tency data per day. Pingmesh is widely used by not only
network software developers and engineers, but also ap-
plication and service developers and operators.

CCS Concepts
•Networks→Network measurement; Cloud com-
puting; Network monitoring; •Computer systems
organization → Cloud computing;

Keywords
Data center networking; Network troubleshooting; Silent
packet drops

1. INTRODUCTION
In today’s data centers there are hundreds of thou-

sands of servers. These servers are connected via net-
∗This work was performed when Varugis Kurien was
with Microsoft.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787496

work interface cards (NICs), switches and routers, ca-
bles and fibers, which form large-scale intra and inter
data center networks. The scale of the data center net-
works (DCNs) is growing even larger due to the rapid
development of cloud computing. On top of the phys-
ical data center infrastructure, various large-scale, dis-
tributed services are built, e.g., Search [5], distributed
file systems [17] and storage [7], MapReduce [11].

These distributed services are large and evolving soft-
ware systems with many components and have complex
dependencies. All of these services are distributed and
many of their components need to interact via the net-
work either within a data center or across different data
centers. In such large systems, software and hardware
failures are the norm rather than the exception. As a
result, the network team faces several challenges.

The first challenge is to determine if an issue is a
network issue or not. Due to the distributed systems
nature, many failures show as “network” problems, e.g.,
some components can only be reached intermittently, or
the end-to-end latency shows a sudden increase at the
99th percentile, the network throughput degrades from
20MB/s per server to less than 5MB/s. Our experience
showed that about 50% of these “network” problems are
not caused by the network. However it is not easy to
tell if a “network” problem is indeed caused by network
failures or not.

The second challenge is to define and track network
service level agreements (SLAs). Many services need
the network to provide certain performance guarantees.
For example, a Search query may touch thousands of
servers and the performance of a Search query is de-
termined by the last response from the slowest server.
These services are sensitive to network latency and packet
drops and they care about the network SLA. Network
SLA needs to be measured and tracked individually
for different services since they may use different set
of servers and different part of the network. This be-
comes a challenging task because of the huge number of
services and customers in the network.

The third challenge is network troubleshooting. When
network SLAs are broken due to various network fail-

139

http://dx.doi.org/10.1145/2785956.2787496

ures, “live-site” incidents happen. A live-site incident is
any event that results in an impact to the customers,
partners or revenue. Live-site incidents need to be de-
tected, mitigated, and resolved as soon as possible. But
data center networks have hundreds of thousands to mil-
lions of servers, hundreds of thousands of switches, and
millions of cables and fibers. Thus detecting where the
problem is located is a hard problem.

To address the above challenges, we have designed
and implemented Pingmesh, a large-scale system for
data center network latency measurement and analy-
sis. Pingmesh leverages all the servers to launch TCP
or HTTP pings to provide the maximum latency mea-
surement coverage. Pingmesh forms multiple levels of
complete graphs. Within a data center, Pingmesh lets
the servers within a rack form a complete graph and
also uses the top-of-rack (ToR) switches as virtual nodes
and let them form a second complete graph. Across
data centers, Pingmesh forms a third complete graph by
treating each data center as a virtual node. The calcula-
tion of the complete graphs and related ping parameters
are controlled by a central Pingmesh Controller.

The measured latency data are collected and stored,
aggregated and analyzed by a data storage and analy-
sis pipeline. From the latency data, network SLAs are
defined and tracked at both the macro level (i.e., data
center level) and the micro level (e.g., per-server and
per-rack levels). The network SLAs for all the services
and applications are calculated by mapping the services
and applications to the servers they use.

Pingmesh has been running in tens of globally dis-
tributed data centers of Microsoft for four years. It
produces 24 terabytes of data and more than 200 bil-
lion probes per day. Because of the universal availability
of the Pingmesh data, answering if a live-site incident
is because of the network becomes easier: If Pingmesh
data does not indicate a network problem, then the live-
site incident is not caused by the network.

Pingmesh is heavily used for network troubleshooting
to locate where the problem is. By visualization and au-
tomatic pattern detection, we are able to answer when
and where packet drops and/or latency increases hap-
pen, identify silent switch packet drops and black-holes
in the network. The results produced by Pingmesh is
also used by application developers and service opera-
tors for better server selection by considering network
latency and packet drop rate.

This paper makes the following contributions: We
show the feasibility of building a large-scale network la-
tency measurement and analysis system by designing
and implementing Pingmesh. By letting every server
participate, we provide latency data for all the servers
all the time. We show that Pingmesh helps us better un-
derstand data center networks by defining and tracking
network SLA at both macro and micro scopes, and that
Pingmesh helps reveal and locate switch packet drops
including packet black-holes and silent random packet
drops, which were less understood previously.

2. BACKGROUND

2.1 Data center networks
Data center networks connect servers with high speed

and provide high server-to-server bandwidth. Today’s
large data center networks are built from commodity
Ethernet switches and routers [1, 12, 2].

Figure 1 shows a typical data center network struc-
ture. The network has two parts: intra data center
(Intra-DC) network and inter data center (Inter-DC)
network. The intra-DC network is typically a Clos net-
work of several tiers similar to the network described
in [1, 12, 2]. At the first tier, tens of servers (e.g., 40)
use 10GbE or 40GbE Ethernet NICs to connect to a
top-of-rack (ToR) switch and form a Pod. Tens of ToR
switches (e.g., 20) are then connected to a second tier
of Leaf switches (e.g., 2-8). These servers and ToR and
Leaf switches form a Podset. Multiple Podsets then
connect to a third tier of Spine switches (tens to hun-
dreds). Using existing Ethernet switches, an intra-DC
network can connect tens of thousands or more servers
with high network capacity.

One nice property of the intra-DC network is that
multiple Leaf and Spine switches provide a multi-path
network with redundancy. ECMP (equal cost multi-
path) is used to load-balance traffic across all the paths.
ECMP uses the hash value of the TCP/UDP five-tuple
for next hop selection. As a result, the exact path of
a TCP connection is unknown at the server side even
if the five-tuple of the connection is known. For this
reason, locating a faulty Spine switch is not easy.

The inter-DC network is to interconnect the intra-DC
networks and to connect the inter-DC networks to the
Internet. The inter-DC network uses high-speed, long
haul fibers to connect data centers networks at different
geolocations. Software defined networking (SWAN [13],
B4 [16]) are further introduced for better wide area net-
work traffic engineering.

Our data center network is a large, sophisticated dis-
tributed systems. It is composed of hundreds of thou-
sands of servers, tens of thousands switches and routers,
and millions of cables and fibers. It is managed by Au-
topilot [20], our home-grown data center management
software stack, and the switches and NICs run soft-
ware and firmware provided by different switch and NIC
providers. The applications run on top of the network
may introduce complex traffic patterns.

2.2 Network latency and packet drops
In this paper we use the term “network latency” from

application’s point of view. When an application A at
a server sends a message to an application B at a peer
server, the network latency is defined as the time in-
terval from the time A sends the message to the time
B receives the message. In practice we measure round-
trip-time (RTT) since RTT measurement does not need
to synchronize the server clocks.

140

Inter-DC
network

DC1

DC2 DC3

Spine

Leaf

ToR

Podset

Pod

Servers

Intra-DC

network

Figure 1: Data center network structure.

RTT is composed of application processing latency,
OS kernel TCP/IP stack and driver processing latency,
NIC introduced latency (e.g., DMA operations, inter-
rupt modulation) [22], packet transmission delay, prop-
agation delay, and queuing delay introduced by packet
buffering at the switches along the path.

One may argue the latencies introduced by applica-
tions and kernel stack are not really from the network.
In practice, our experiences have taught us that our
customers and service developers do not care. Once a
latency problem is observed, it is usually called a “net-
work” problem. It is the responsibility of the network
team to show if the problem is indeed a network prob-
lem, and if it is, mitigate and root-cause the problem.

User perceived latency may increase due to various
reasons, e.g., queuing delay due to network congestion,
busy server CPU, application bugs, network routing
issues, etc. We also note that packet drops increase
user perceived latency, since dropped packets need to
be retransmitted. Packet drops may happen at differ-
ent places due to various reasons, e.g., fiber FCS (frame
check sequence) errors, switching ASIC defects, switch
fabric flaw, switch software bug, NIC configuration is-
sue, network congestions, etc. We have seen all these
types of issues in our production networks.

2.3 Data center management and data pro-
cessing systems

Next we introduce Autopilot [20] and Cosmos and
SCOPE [15]. Data centers are managed by centralized
data center management systems, e.g., Autopilot [20] or
Borg [23]. These management systems provide frame-
works on how resources including physical servers are
managed, how services are deployed, scheduled, moni-
tored and managed. Pingmesh is built within the frame-
work of Autopilot.

Autopilot is Microsoft’s software stack for automatic
data center management. Its philosophy is to run soft-
ware to automate all data center management tasks,
including failure recovery, with as minimal human in-
volvement as possible. Using the Autopilot terminol-
ogy, a cluster, which is a set of servers connected by
a local data center network, is managed by an Au-
topilot environment. An Autopilot environment has

a set of Autopilot services including Device Manager
(DM), which manages the machine state, Deployment
Service (DS) which does service deployment for both
Autopilot and various applications, Provisioning Ser-
vice (PS) which installs Server OS images, Watchdog
Service (WS) which monitors and reports the health
status of various hardware and software, Repair Service
(RS) which performs repair action by taking commands
from DM, etc.

Autopilot provides a shared service mode. A shared
service is a piece of code that runs on every autopilot
managed server. For example, a Service Manager is a
shared service that manages the life-cycle and resource
usage of other applications, a Perfcounter Collector is a
shared service that collects the local perf counters and
then uploads the counters to Autopilot. Shared ser-
vices must be light-weight with low CPU, memory, and
bandwidth resource usage, and they need to be reliable
without resource leakage and crashes.

Pingmesh uses our home-grown data storage and anal-
ysis system, Cosmos/SCOPE, for latency data storage
and analysis. Cosmos is Microsoft’s BigData system
similar to Hadoop [3] which provides a distributed file
system like GFS [17] and MapReduce [11]. Files in Cos-
mos are append-only and a file is split into multiple
‘extents’ and an extent is stored in multiple servers to
provide high reliability. A Cosmos cluster may have
tens of thousands of servers or more, and gives users
almost ‘infinite’ storage space.

SCOPE [15] is a declarative and extensible scripting
language, which is built on top of Cosmos, to analyze
massive data sets. SCOPE is designed to be easy to
use. It enables users to focus on their data instead
of the underlying storage and network infrastructure.
Users only need to write scripts similar to SQL without
worrying about parallel execution, data partition, and
failure handling. All these complexities are handled by
SCOPE and Cosmos.

3. DESIGN AND IMPLEMENTATION

3.1 Design goal
The goal of Pingmesh is to build a network latency

measurement and analysis system to address the chal-
lenges we have described in Section 1. Pingmesh needs
to be always-on and be able to provide network latency
data for all the servers. It needs to be always on be-
cause we need to track the network status all the time.
It needs to produce network latency data for all the
servers because the maximum possible network latency
data coverage is essential for us to better understand,
manage, and troubleshoot our network infrastructure.

From the beginning, we differentiated Pingmesh from
various public and proprietary network tools (e.g., tracer-
oute, TcpPing, etc.). We realized that network tools do
not work for us because of the following reasons. First,
these tools are not always-on and they only produce

141

Pingmesh
agent

Pingmesh
generator

Pinglist.xml

Network
graph

log

vip

Pingmesh
agent

log

Servers

Pingmesh Controller

Web
service

Cosmos
Store

SCOPE
Jobs

Database

Visuali-
zation

Tcp/Http

probings

Data Storage and Analysis

(DSA)

Pingmesh Agent

Alert

vip

Perfcounter
Aggregator

Figure 2: Pingmesh architecture.

data when we run them. Second, the data they produce
does not have the needed coverage. Because these tools
are not always-on, we cannot count on them to track
the network status. These tools are usually used for
network troubleshooting when a source-destination pair
is known. This, however, does not work well for large-
scale data center networks: when a network incident
happens, we may not even know the source-destination
pair. Furthermore, for transient network issues, the
problem may be gone before we run the tools.

3.2 Pingmesh architecture
Based on its design goal, Pingmesh needs to meet

the requirements as follows. First, because Pingmesh
aims to provide the largest possible coverage and mea-
sure network latency from applications’ point of view,
a Pingmesh Agent is thus needed on every server. This
has to be done carefully so that the CPU, memory, and
bandwidth overhead introduced by Pingmesh Agent is
small and affordable.

Second, the behavior of the Pingmesh Agent should
be under control and configurable. A highly reliable
control plane is needed to control how the servers should
carry out network latency measurement.

Third, the latency data should be aggregated, ana-
lyzed, and reported in near real-time and stored and
archived for deeper analysis. Based on the require-
ments, we have designed the architecture of Pingmesh
as illustrated in Figure 2. Pingmesh has three compo-
nents as we describe as follows.
Pingmesh Controller. It is the brain of the whole sys-
tem, as it decides how servers should probe each other.
Within the Pingmesh Controller, a Pingmesh Generator
generates a pinglist file for every server. The pinglist file
contains the list of peer servers and related parameters.
The pinglist files are generated based on the network
topology. Servers get their corresponding pinglist via a
RESTful Web interface.
Pingmesh Agent. Every server runs a Pingmesh Agent.
The Agent downloads the pinglist from the Pingmesh
Controller, and then launches TCP/HTTP pings to the
peer servers in the pinglist. The Pingmesh Agent stores

the ping results in local memory. Once a timer times
out or the size of the measurement results exceeds a
threshold, the Pingmesh Agent uploads the results to
Cosmos for data storage and analysis. The Pingmesh
Agent also exposes a set of performance counters which
are periodically collected by a Perfcounter Aggregator
(PA) service of Autopilot.
Data Storage and Analysis (DSA). The latency
data from Pingmesh Agents are stored and processed
in a data storage and analysis (DSA) pipeline. La-
tency data is stored in Cosmos. SCOPE jobs are de-
veloped to analyze the data. SCOPE jobs are written
in declarative language similar to SQL. The analyzed
results are then stored in an SQL database. Visualiza-
tion, reports and alerts are generated based on the data
in this database and the PA counters.

3.3 Pingmesh Controller

3.3.1 The pinglist generation algorithm
The core of the Pingmesh Controller is its Pingmesh

Generator. The Pingmesh Generator runs an algorithm
to decide which server should ping which set of servers.
As aforementioned, we would like Pingmesh to have as
large coverage as possible. The largest possible coverage
is a server-level complete graph, in which every server
probes the rest of the servers. A server-level complete
graph, however, is not feasible because a server needs
to probe n−1 servers, where n is the number of servers.
In a data center n can be as large as hundreds of thou-
sands. Also a server-level complete graph is not nec-
essary since tens of servers connect to the rest of the
world through the same ToR switch.

We then come up with a design of multiple level of
complete graphs. Within a Pod, we let all the servers
under the same ToR switch form a complete graph. At
intra-DC level, we treat each ToR switch as a virtual
node, and let the ToR switches form a complete graph.
At inter-DC level, each data center acts as a virtual
node, and all the data centers form a complete graph.

In our design, only servers do pings. When we say a
ToR as a virtual node, it is the servers under the ToR
that carry out the pings. Similarly, for a data center
as a virtual node, it is the selected servers in the data
center that launch the probings.

At the intra-DC level, we once thought that we only
need to select a configurable number of servers to par-
ticipate in Pingmesh. But how to select the servers
becomes a problem. Further, the small number of se-
lected servers may not well represent the rest of the
servers. We finally come up with the idea of letting all
the servers participate. The intra-DC algorithm is: for
any ToR-pair (ToRx, ToRy), let server i in ToRx ping
server i in ToRy. In Pingmesh, even when two servers
are in the pinglists of each other, they measure net-
work latency separately. By doing so, every server can
calculate its own packet drop rate and network latency
locally and independently.

142

At the inter-DC level, all the DCs form yet another
complete graph. In each DC, we select a number of
servers (with several servers selected from each Podset).

Combining the three complete graphs, a server in
Pingmesh needs to ping 2000-5000 peer servers depend-
ing on the size of the data center. The Pingmesh Con-
troller uses threshold values to limit the total number of
probes of a server and the minimal time interval of two
successive probes for a source destination server pair.

3.3.2 Pingmesh Controller implementation
The Pingmesh Controller is implemented as an Au-

topilot service and becomes part of the Autopilot man-
agement stack. It generates Pinglist file for every server
by running the Pingmesh generation algorithm. The
files are then stored in SSD and served to the servers
via a Pingmesh Web service. The Pingmesh Controller
provides a simple RESTful Web API for the Pingmesh
Agents to retrieve their Pinglist files respectively. The
Pingmesh Agents need to periodically ask the Controller
for Pinglist files and the Pingmesh Controller does not
push any data to the Pingmesh Agents. By doing so,
Pingmesh Controller becomes stateless and easy to scale.

As the brain of the whole Pingmesh system, the Pingmesh
Controller needs to serve hundreds of thousands of Pingmesh
Agents. Hence the Pingmesh Controller needs to be
fault-tolerant and scalable. We use Software Load-Balancer
(SLB) [14] to provide fault-tolerance and scalability for
the Pingmesh Controller. See [9, 14] for the details of
how SLB works. A Pingmesh Controller has a set of
servers behind a single VIP (virtual IP address). SLB
distributes the requests from the Pingmesh Agents to
the Pingmesh Controller servers. Every Pingmesh Con-
troller server runs the same piece of code and gener-
ates the same set of Pinglist files for all the servers
and is able to serve requests from any Pingmesh Agent.
The Pingmesh Controller can then easily scale out by
adding more servers behind the same VIP. Also once a
Pingmesh Controller server stops functioning, it is auto-
matically removed from rotation by the SLB. We have
setup two Pingmesh Controllers in two different data
center clusters to make the controller even more fault
tolerant geographically.

3.4 Pingmesh Agent

3.4.1 Pingmesh Agent design considerations
The Pingmesh Agent runs on all the servers. Its task

is simple: downloads pinglist from the Pingmesh Con-
troller; pings the servers in the pinglist; then uploads
the ping result to DSA.

Based on the requirement that Pingmesh needs to be
able to distinguish if a user perceived latency increase is
due to network or not, Pingmesh should use the same
type of packets generated by the applications. Since
almost all the applications in our data centers use TCP
and HTTP, Pingmesh uses TCP and HTTP instead of
ICMP or UDP for probing.

Because we need to differentiate if a ‘network’ issue is
because of the network or the applications themselves,
Pingmesh Agent does not use any network libraries used
by the applications. Instead, we have developed our
own light-weight network library specifically designed
for network latency measurement.

The Pingmesh Agent can be configured to send out
and respond to probing packets of different lengths,
other than the TCP SYN/SYN-ACK packets. As a re-
sult, the Pingmesh Agent needs to act as both client and
server. The client part launches pings and the server
part responds to the pings.

Every probing needs to be a new connection and
uses a new TCP source port. This is to explore the
multi-path nature of the network as much as possible,
and more importantly, reduce the number of concurrent
TCP connections created by Pingmesh.

3.4.2 Pingmesh Agent implementation
Though the task is simple, the Pingmesh Agent is one

of the most challenging part to implement. It must meet
the safety and performance requirements as follows.

First, the Pingmesh Agent must be fail-closed and
not create live-site incidents. Since the Pingmesh Agent
runs on every server, it has the potential to bring down
all the servers if it malfunctions (e.g., uses large portion
of CPU and memory resources, generates large volume
of probing traffic, etc.). To avoid bad things from hap-
pening, several safety features have been implemented
into the Pingmesh Agent:

• The CPU and maximum memory usages of the
Pingmesh Agent are confined by the OS. Once
the maximum memory usage exceeds the cap, the
Pingmesh Agent will be terminated.

• The minimum probe interval between any two servers
is limited to 10 seconds, and the probe payload
length is limited to 64 kilobytes. These limits are
hard coded in the source code. By doing so, we
put a hard limit on the worst-case traffic volume
that Pingmesh can bring into the network.

• If a Pingmesh Agent cannot connect to its con-
troller for 3 times, or if the controller is up but
there is no pinglist file available, the Pingmesh
Agent will remove all its existing ping peers and
stop all its ping activities. (It will still react to
pings though.) Due to this feature, we can stop
the Pingmesh Agent from working by simply re-
moving all the pinglist files from the controller.

• If a server cannot upload its latency data, it will
retry several times. After that it will stop trying
and discard the in-memory data. This is to en-
sure the Pingmesh Agent uses bounded memory
resource. The Pingmesh Agent also writes the la-
tency data to local disk as log files. The size of log
files is limited to a configurable size.

143

(a) CPU usage (b) Memory usage

Figure 3: CPU and memory usages of Pingmesh Agent.

Second, a Pingmesh Agent needs to launch pings to
several thousand of servers by design. But as a shared
service, the Pingmesh Agent should minimize its re-
sources (CPU, memory, and disk space) usage. It should
use close to zero CPU time and as small memory foot-
print as possible, so as to minimize its interference with
customers’ applications.

In order to achieve the performance goal and improve
Pingmesh’s latency measurement accuracy, we use C++
instead of Java or C# to write Pingmesh Agent. This
is to avoid the common language runtime or Java vir-
tual machine overhead. We have developed a network
library specifically for Pingmesh. The goal of the li-
brary is solely for network latency measurement, and
it is designed to be light-weight and to handle a large
number of concurrent TCP connections. The library
is directly based on the Winsock API, and it uses the
Windows IO Completion Port programming model for
efficient asynchronous network IO processing. The li-
brary acts as both client and server, and it distributes
the probing processing load to all the CPU cores evenly.

We have done extensive measurements to understand
and optimize Pingmesh Agent’s performance. Figure 3
shows the CPU and memory usages of the Pingmesh
Agent on a typical server. During the measurement,
this Pingmesh Agent was actively probing around 2500
servers. The server has 128GB memory and two In-
tel Xeon E5-2450 processors, each with 8 cores. The
average memory footprint is less than 45MB, and the
average CPU usage is 0.26%.

We note that the probing traffic generated by a Pingmesh
Agent is small, typically tens of Kb/s. As a comparison,
our data center network provides several Gb/s through-
put between any two servers in a data center.

3.5 Data Storage and Analysis
For Pingmesh data storage and analysis, we use the

well established existing systems, Cosmos/SCOPE and
Autopilot’s Perfcounter Aggregator (PA) service, in-
stead of reinventing the wheel.

The Pingmesh Agent periodically uploads the aggre-
gated records to Cosmos. Similar to the Pingmesh Con-
troller, the front-end of Cosmos uses load-balancer and
VIP to scale out. At the same time, the Pingmesh

Agent performs local calculation on the latency data
and produces a set of performance counters including
the packet drop rate, the network latency at 50th the
99th percentile, etc. All these performance counters are
collected and aggregated and stored by the PA service
of Autopilot.

Once the results are in Cosmos, we run a set of SCOPE
jobs for data processing. We have 10-min, 1-hour, 1-day
jobs at different time scales. The 10-min jobs are our
near real-time ones. For the 10-min jobs, the time in-
terval from when the latency data is generated to when
the data is consumed (e.g., alert fired, dashboard fig-
ure generated) is around 20 minutes. The 1-hour and
1-day pipelines are for non real-time tasks including
network SLA tracking, network black-hole detection,
packet drop detection, etc. All our jobs are automati-
cally and periodically submitted by a Job Manager to
SCOPE without user intervention. The results of the
SCOPE jobs are stored in a SQL database, from which
visualization, reports, and alerts are generated.

In practice, we found this 20-minute delay works fine
for system level SLA tracking. In order to further re-
duce response time, we in parallel use the Autopilot
PA pipeline to collect and aggregate a set of Pingmesh
counters. The Autopilot PA pipeline is a distributed de-
sign with every data center has its own pipeline. The PA
counter collection latency is 5 minutes, which is faster
than our Cosmos/SCOPE pipeline. The PA pipeline is
faster than Cosmos/SCOPE, whereas Cosmos/SCOPE
is more expressive than PA for data processing. By
using both of them, we provide higher availability for
Pingmesh than either of them.

We differentiate Pingmesh as an always-on service
from a set of scripts that run periodically. All the com-
ponents of Pingmesh have watchdogs to watch whether
they are running correctly or not, e.g., whether pinglists
are generated correctly, whether the CPU and mem-
ory usages are within budget, whether pingmesh data
are reported and stored, whether DSA reports network
SLAs in time, etc. Furthermore, the Pingmesh Agent is
designed to probe thousands of peers in a light-weight
and safe way.

All the Pingmesh Agents upload 24 terabytes latency
measurement results to Cosmos per day. This is more
than 2Gb/s upload rate. Though these look like large
numbers, they are only a negligible fraction of the total
capacity provided by our network and Cosmos.

4. LATENCY DATA ANALYSIS
In this section, we introduce how Pingmesh helps us

better understand network latency and packet drops,
define and track the network SLA, and determine if a
live-site incident is because of network issues or not. All
the data centers we describe in this section have similar
network architecture as we have introduced in Figure
1, though they may vary in size and may be built at
different times.

144

4.1 Network latency
Figure 4 shows the intra-DC latency distribution of

two representative data centers DC1 in US West and
DC2 in US Central. DC1 is used by distributed storage
and MapReduce and DC2 is by an interactive Search
service. Servers in DC1 are throughput intensive and
the average server CPU utilization is as high as 90%.
Servers in DC1 use the network heavily and transmit
and receive several hundreds of Mb/s data on average
all the time. DC2 is latency sensitive and servers have
high fan-in and fan-out in that a server needs to com-
municate with a large number of other servers to service
a Search query. The average CPU utilization in DC2 is
moderate and the average network throughput is low
but the traffic is bursty.

The CDFs in Figure 4 are calculated from latency
data of one normal working day, when there were no
network incidents detected and no live-site incidents be-
cause of the network. We track both intra-pod and
inter-pod latency distributions, with and without TCP
payload. If not specifically mentioned, the latency we
use in the paper is the inter-pod TCP SYN/SYN-ACK
RTT without payload.

Figure 4(a) shows the overall inter-pod latency dis-
tributions and Figure 4(b) shows the inter-pod distri-
bution at high percentile. We once expected that the
latency of DC1 should be much larger than DC2 since
servers and the network in DC1 are highly loaded. But
this turned out not the case for latencies at the 90th or
lower percentile.

But DC1 does have much higher latency at the high
percentile as shown in Figure 4(b). At P99.9, the inter-
pod latencies are 23.35ms and 11.07ms for DC1 and
DC2, respectively. At P99.99, the inter-pod latencies
become 1397.63ms and 105.84ms. Our measurement
result shows it is hard to provide low latency (e.g., sub-
milliseconds level) at three or four 9s, even when the
servers and network are both light-loaded at macro time
scale. This is because the server OS is not a real-time
operating system and the traffic in our network is burst.
We see 10−5 packet drop rate for intra-pod communica-
tions (Section 4.2) even when average network utiliza-
tion is low to moderate.

Figure 4(c) compares the intra-pod and inter-pod la-
tency distributions, and Figure 4(d) studies the inter-
pod latency with and without payload, all in DC1. For
latency measurement with payload, after TCP connec-
tion setup, we let the client send a message (typically
800-1200 bytes within one packet). The client measures
the payload latency once it receives the echoed back
message from the server.

As shown in Figure 4(c), intra-pod latency is always
smaller than inter-pod latency as expected. The 50th

(P50) and the 99th (P99) intra-pod and inter-pod laten-
cies are (216us, 1.26ms) and (268us, 1.34ms) for DC1.
The differences at P50 and P99 are 52us and 80us, re-
spectively. These numbers show that the network does

Data center Packet drop rate
Intra-pod Inter-pod

DC1 (US West) 1.31× 10−5 7.55× 10−5

DC2 (US Central) 2.10× 10−5 7.63× 10−5

DC3 (US East) 9.58× 10−6 4.00× 10−5

DC4 (Europe) 1.52× 10−5 5.32× 10−5

DC5 (Asia) 9.82× 10−6 1.54× 10−5

Table 1: Intra-pod and inter-pod packet drop rates.

introduce tens of microsecond latency due to queuing
delay. But the queuing delay is small. Hence we can in-
fer that the network provides enough network capacity.

Figure 4(d) shows the latency difference with and
without payload. With payload, the latency increases
from 268us to 326us at P50, and from 1.34ms to 2.43ms
at P99, respectively. The increase is mainly because of
the increased transmission delay 1 and the user space
processing overhead for the receiving servers to echo
back the message. In most cases, the latency distribu-
tions with and without payload are similar. We intro-
duced payload ping because it can help detect packet
drops that are related to packet length (e.g., fiber FCS
errors and switch SerDes errors that are related to bit
error rate).

Based on the Pingmesh data, we are able to calculate
not only the latency distributions of the data centers,
but also the latency CDFs for all the applications and
services. From these results, we are able to track net-
work latency for all of them all the time.

4.2 Packet drop rate
Pingmesh does not directly measure packet drop rate.

However, we can infer packet drop rate from the TCP
connection setup time. When the first SYN packet is
dropped, TCP sender will retransmit the packet after
an initial timeout. For the rest successive retries, TCP
will double the timeout value every time. In our data
centers, the initial timeout value is 3 seconds, and the
sender will retry SYN two times. Hence if the measured
TCP connection RTT is around 3 seconds, there is one
packet drop; if the RTT is around 9 seconds, there are
two packet drops. We use the following heuristic to
estimate packet drop rate:

probes with 3s rtt + probes with 9s rtt

total successful probes
.

Note that we only use the total number of successful
TCP probes instead of the total probes as the denom-
inator. This is because for failed probes, we cannot
differentiate between packet drops and receiving server
failure. In the numerator, we only count one packet
drop instead of two for every connection with 9 second
RTT. This is because successive packet drops within a
connection are not independent: the probability the sec-
ond SYN is dropped is much higher if the first SYN is
1We have disabled cut-through switching at the
switches in our data centers. This is to stop FCS er-
rors from propagation.

145

(a) (b) (c) (d)

Figure 4: (a)Inter-pod latency of two data centers. (b) Inter-pod latency at high percentile. (c) Intra-pod and
inter-pod latency comparison. (d) Latency comparison with and without payload.

dropped. We have verified the accuracy of the heuristic
for a single ToR network by counting the NIC and ToR
packet drops.

In our network, SYN packets are treated the same as
other packets. Hence the drop rate of SYN packets can
be considered representative drop rate of the other data
packets in normal condition. This assumption, however,
may not be true when packet drop rate is related to
packet size, e.g., due to FCS errors. We did see packets
of larger size may experience higher drop rate in FCS
error related incidents. In what follows, the results we
present are when the networks were in normal condition.

Our network does not differentiate packets of different
IP protocols (e.g., TCP vs. UDP). Hence, our packet
drop calculation holds for non-TCP traffic as well.

Table 1 shows the packet drop rates of five data cen-
ters. We show both the intra-pod and inter-pod packet
drop rates. For intra-pod packet drops, those are drops
at ToR switch, NIC, and end-host network stack. The
inter-pod packet drops may come from the Leaf and
Spine switches and the corresponding links, in addition
to the ToR, NIC, and end-host stack.

From Table 1, several observations can be made. First,
the packet drop rates are in the range of 10−4 − 10−5.
We track the packet drop rates for all our data cen-
ters every day and we find the drop rate is in this
range unless network incidents happen. Second, the
inter-pod packet drop rate is typically several times
higher than that of intra-pod. This indicates most of
the packet drops happen in the network instead of the
hosts. Third, the intra-pod drop rate is around 10−5,
which is larger than we have expected.

Our experience tells us packet drops may occur due
to many reasons, e.g., switch buffer overflow, NIC re-
ceiving buffer overflow, optical fiber FCS errors, switch-
ing ASIC malfunction, etc. Though our measurement
results suggest that the packet drop rate at normal con-
dition is around 10−4 − 10−5, we are still at the early
phase in understanding why it stays in this range.

Many data center applications, e.g., Search, may use
hundreds or even thousands of TCP connections simul-
taneously. For these applications, high latency tail there-
fore becomes the norm due to the large number of con-

(a) The 99th percentile la-
tency

(b) Packet drop rate

Figure 5: The 99th network latency and packet drop
rate metrics for a service.

nections used. Applications have introduced several ap-
plication level tricks to deal with packet drops [10].

From the per server latency data, we can calculate
and track network SLAs at server, pod, podset, and
data center levels. Similarly, we can calculate and track
network SLA for individual services.

4.3 Is it a network issue?
In large distributed data center systems, many parts

may go wrong. When a live-site incident happens, it
is not easy to identify which part causes the problem.
There are occasions that all the components seem fine
but the whole system is broken. If the network cannot
prove it is innocent, the problem will then be called a
“network problem”: I did not do anything wrong to my
service, it must be the fault of the network.

The network team is then engaged to investigate. A
typical procedure is as follows. The network on-call
engineer asks the service which is experiencing issues
for detailed symptoms and source-destination pairs; he
then logs into the source and/or destination servers and
runs various network tools to reproduce the issue; he
may also look at the switch counters along the possible
paths for anomaly; if he cannot reproduce, he may ask
for more source-destination pairs. The procedure may
need several rounds of iterations.

The above approach does not work well for us, since
it is a manual process and does not scale. If the issue
turns out not to be caused by the network, the service
owners waste their time in engaging with the wrong

146

team. If the issue is indeed because of the network,
the manual process causes long time-to-detect (TTD),
time-to-mitigate (TTM), and time-to-resolve (TTR).

Pingmesh changed the situation. Because Pingmesh
collects latency data from all the servers, we can always
pull out Pingmesh data to tell if a specific service has
network issue or not. If Pingmesh data does not cor-
relate to the issue perceived by the applications, then
it is not a network issue. If Pingmesh data shows it is
indeed a network issue, we can further get detailed data
from Pingmesh, e.g., the scale of the problem (e.g., how
many servers and applications are affected), the source-
destination server IP addresses and TCP port numbers,
for further investigation.

We define network SLA as a set of metrics includ-
ing packet drop rate, network latency at the 50th per-
centile and the 99th percentile. Network SLA can then
be tracked at different scopes including per server, per
pod/podset, per service, per data center, by using the
Pingmesh data. In practice we found two network SLA
metrics: packet drop rate and network latency at the
99th percentile are useful for telling if an issue is caused
by the network or not. Figure 5 shows these two met-
rics for a service in one normal week. The packet drop
rate is around 4× 10−5 and the 99th percentile latency
in a data center is 500-560us. (The latency shows a pe-
riodical pattern. This is because this service performs
high throughput data sync periodically which increases
the 99th percentile latency.) If these two metrics change
significantly, then it is a network issue.

We currently use a simple threshold based approach
for network SLA violation detection. If the packet drop
rate is greater than 10−3 or the 99th percentile latency
is larger than 5ms, we will categorize this as a network
problem and fire alerts. 10−3 and 5ms are much larger
than the normal values. We keep Pingmesh historical
data for 2 months, and we run various data analysis
on top of the Pingmesh data to track the network SLAs
for different data centers and customers. There are huge
opportunities in using data mining and machine learn-
ing to get more value out of the Pingmesh data.

In Section 5, we will study one specific packet drop
in detail: switch silent packet drops.

5. SILENT PACKET DROP DETECTION
In this section, we introduce how Pingmesh helps de-

tect switch silent packet drops. When silent packet
drops happen, the switches for various reasons do not
show information about these packet drops and the switches
seem innocent. But applications suffer from increased
latency and packet drops. How to quickly identify if
an ongoing live-site incident is caused by switch silent
packet drops therefore becomes critical.

In the past, we have identified two types of switch
silent packet drops: packet black-hole and silent random
packet drops. Next, we introduce how we use Pingmesh
to detect them.

Figure 6: The number of switches with packet black-
holes detected.

5.1 Packet black-hole
Packet black-hole is a special type of switch packet

drops. For a switch that is experiencing packet black-
holes, packets that meet certain ‘patterns’ are dropped
deterministically (i.e., 100%) by the switch. We have
identified two types of packet black-holes. In the first
type of black-hole, packets with specific source destina-
tion IP address pairs get dropped. The symptom is as
following: server A cannot talk to server B, but it can
talk to servers C and D just fine. All the servers A-D
are healthy.

In the second type of black-hole, packets with spe-
cific source destination addresses and transport port
numbers are dropped. Note that for this type of black-
hole, packets with the same source destination address
pair but different source destination port numbers are
treated differently. For example, Server A can talk to
Server B’s destination port Y using source port X, but
not source port Z.

The first type of black-holes is typically caused by
TCAM deficits (e.g., parity error) in the switching ASIC.
Some TCAM entries in the TCAM table may get cor-
rupted, and the corruption causes only packets with
certain source and destination address patterns been
dropped. (Since only destination address is used for
next-hop lookup for IP routing, on may wonder why
source IP address plays an role. Our guess is that a
TCAM entry includes not only destination address but
also source address and other meta data.)

We know less about the root causes of the second
type of black-hole. We suspect it may be because of
errors related to ECMP which uses source and destina-
tion IP addresses and port numbers to decide the next
forwarding hop.

Based on our experience, these two types of packet
black-holes can be fixed by reloading the switch. Hence
the question becomes how to detect the switches with
black-holes.

We have devised a ToR switch black-hole detection
algorithm based on Pingmesh data. The idea of the
algorithm is that if many servers under a ToR switch
experience the black-hole symptom, then we mark the

147

Figure 7: Silent random packet drops of a Spine switch
detected by Pingmesh during an incident.

ToR switch as a black-hole candidate and assign it a
score which is the ratio of servers with black-hole symp-
tom. We then select the switches with black-hole score
larger than a threshold as the candidates. Within a pod-
set, if only part of the ToRs experience the black-hole
symptom, then those ToRs are blacking hole packets.
We then invoke a network repairing service to safely
restart the ToRs. If all the ToRs in a podset experience
the black-hole symptom, then the problem may be in
the Leaf or Spine layer. Network engineers are notified
to do further investigation.

Figure 6 shows the number of ToR switches with
black-holes the algorithm detected. As we can see from
the figure, the number of the switches with packet black-
holes decreases once algorithm began to run. In our
algorithm, we limit the algorithm to reload at most 20
switches per day. This is to limit the maximum num-
ber of switch reboots. As we can see, after a period of
time, the number of switches detected dropped to only
several per day.

We would like to note that the TCP source port of
the Pingmesh Agent varies for every probing. With
the large number of source/destination IP address pairs,
Pingmesh scans a big portion of the whole source/destination
address and port space. After Pingmesh black-hole de-
tection came online, our customers did not complain
about packet black-holes anymore.

5.2 Silent random packet drops
The higher the tier a switch is located in the net-

work, the more severe impact it will have when it begins
to drop packets. When a Spine switch drops packets
silently, tens of thousands of servers and many services
will be impacted and live-site incidents with high sever-
ity will be triggered.

Here we introduce how Pingmesh helped locate silent
random packet drops of a Spine switch. In one inci-
dent, all the users in a data center began to experience
increased network latency at the 99th percentile. Us-
ing Pingmesh, we could confirm that the packet drops

in that data center has increased significantly and the
drops were not deterministic. Fig. 7 shows the packet
drop rate change of a service. Under normal condi-
tion, the percentage of latency should be at around
10−4 − 10−5. But it suddenly jumped up to around
2× 10−3.

Using Pingmesh, we could soon figure out that only
one data center was affected, and the other data centers
were fine. Packet drops at ToR and Leaf layers cannot
cause the latency increase for all our customers due to
the much smaller number of servers under them. The
latency increase pattern shown in Figure 8(d) pointed
the problem to the Spine switch layer.

But we could not find any packet drop hint (FCS
errors, input/output packet discards, syslog errors, etc.)
at those switches. We then suspected that this is likely a
case of silent packet drops. The next step was to locate
the switches that were dropping packets.

Again, by using Pingmesh, we could figure out several
source and destination pairs that experienced around
1%-2% random packet drops. We then launched TCP
traceroute against those pairs, and finally pinpointed
one Spine switch. The silent random packet drops were
gone after we isolated the switch from serving live traf-
fic. The postmortem analysis with the switch provider
revealed that the packet drops were due to bit flips of a
fabric module of that switch.

The above case is one of the first silent random packet
drop cases we met and it took us long time to resolve.
After that we ran into more cases and we have improved
both Pingmesh data analysis and other tools for better
automatic random silent packet drop detection. Our
experiences told us that random silent packet drops may
be because of different reasons, e.g., switching fabric
CRC checksum error, switching ASIC deficit, linecard
not well seated, etc. These types of switch silent packet
drops cannot be fixed by switch reload and we have
to RMA (return merchandise authorization) the faulty
switch or components.

Compared to packet drops due to network congestion
and link FCS errors, packet black-holes and silent ran-
dom drops are new and less understood to us. Due to
the whole coverage and always-on properties of Pingmesh,
we are able to confirm that switch silent packet drops
do happen in real-world and categorize different silent
packet drop types, and further locate where the silent
packet drops happen.

6. EXPERIENCES LEARNED
Pingmesh is designed to be scalable. We understand

that not all the networks are of our size. We believe
that the lessons we learned from Pingmesh are bene-
ficial to networks of both large and small scales. One
of the lessons we learned is the value of trustworthy
latency data of full coverage. If the data is not trust-
worthy, then the results built on top of it cannot be
trusted. Our experience told us that not all SNMP

148

data are trustworthy. A switch may drop packets even
though its SNMP tells us everything is fine. We trust
Pingmesh data because we wrote the code, tested and
ran it. When there are bugs, we fixed them. After sev-
eral iterations, we knew we can trust the data. Because
of the full coverage and trustworthy of its latency data,
Pingmesh could carry out accurate black-hole and silent
packet drop detection. As a comparison, simply using
switch SNMP and syslog data does not work since they
do not tell us about packet black-holes and silent drops.

In what follows, we introduce several additional lessons
we have learned from building and running Pingmesh,
which we believe can be applied to networks of different
scales as well.

6.1 Pingmesh as an always-on service
From the beginning of the project, we believed that

Pingmesh needs to cover all the servers and be always-
on. But not everyone agreed. There were arguments
that latency data should only be collected on-demand;
that we should only let a few selected servers participate
in latency measurement, so as to reduce the overhead.
We disagree with both of them.

In its essence, the first argument is always-on vs on-
demand. One may argue that it is a waste of resource if
the always-on latency data is not used, hence we should
only collect latency data when it is needed.This argu-
ment has two issues. First, we cannot predict when
the latency data will be needed since we do not know
when a live-site incident will happen. When a live-site
incident occurs, having network latency data readily at
hands instead of collecting them at that time is a much
better choice. Second, when something bad happens,
we typically do not know which network devices caused
the trouble, hence we do not even have the source des-
tination pairs to launch latency measurement.

Using only a small number of selected servers for
latency measurement limits the coverage of Pingmesh
data, and poses challenges on which servers should be
chosen. As we have demonstrated in the paper, letting
all the servers participate gives us the maximum pos-
sible coverage, and easily balance the probing activity
among all the servers. As we have demonstrated in the
paper, the CPU, memory and bandwidth overhead in-
troduced by Pingmesh is affordable.

Having latency data that is always-on brings benefits
that we did not recognize in the beginning. After experi-
encing a few live-site incidents due to packet black-hole
and switch silent packet drops, we found that we could
use the Pingmesh data to automatically detect these
types of switch failures, because of the whole coverage
and always-on nature of Pingmesh data (Section 5).

6.2 Loosely coupled components help evolve-
ment

Pingmesh benefits from a loosely coupled system de-
sign. Pingmesh Controller and Pingmesh Agent interact
only through the pinglist files, which are standard XML

files, via standard Web API. Pingmesh Agent provides
latency data as both CSV files and standard perfor-
mance counters.

Due to its loosely coupled design, Pingmesh could be
built step by step in three phases. In the first phase,
we focused on Pingmesh Agent. We built a simple
Pingmesh Controller which statically generates pinglist
files using a simplified pinglist generation algorithm.
The latency data was simply put into Cosmos without
automatic analysis. This phase demonstrated the feasi-
bility of Pingmesh. At the end of this phase, the latency
data was already used for network SLA calculation.

In the second phase, we built a full fledged Pingmesh
Controller which automatically updates pinglists once
network topology is updated or configuration is adjusted.
The new version of Pingmesh Controller is also of higher
capacity and more fault tolerant by setting up multiple
controllers in geo-distributed data centers.

In the third phase, we focused on data analysis and
visualization. We built a data processing pipeline which
automatically analyzes the collected latency data in ev-
ery 10 minutes, one hour, one day, respectively. The
processed results are then stored in database for visu-
alization, report and alert services.

The major tasks of these three phases were finished in
June 2012. After that, many new features were added
into Pingmesh:
Inter-DC Pingmesh. Pingmesh originally worked for
intra-DC. However, extending it to cover Inter-DC is
easy. We extended the Pingmesh Controller’s pinglist
generation algorithm so as to select a set of servers from
every data center and let them carry out Inter-DC ping
and the job was done. There is no single line of code or
configuration change of the Pingmesh Agent. We did
add a new inter-DC data processing pipeline though.
QoS monitoring. After Pingmesh was deployed, net-
work QoS was introduced into our data center which dif-
ferentiates high priority and low priority packets based
on DSCP (differentiated service code point). Again, we
extended the Pingmesh Generator to generate pinglists
for both high and low priority classes. In this case, we
did need a simple configuration change of the Pingmesh
Agent to let it listen to an additional TCP port which
is configured for low priority traffic.
VIP monitoring. Pingmesh was originally designed
to measure network latency of physical networks. In
our data centers, load-balancing and IP address virtu-
alization is widely used. Address virtualization exposes
a logical Virtual IP address (VIP) to users, and the VIP
is mapped to a set of physical servers. The physical IP
addresses of these servers are called DIP (destination
IP). In our load-balancing system, there is a control
plan maintains the VIP to DIP mapping and a data
plan that delivers packets that target for a VIP to the
DIPs via packet encapsulation. When Pingmesh got
deployed, a natural extension is let Pingmesh to moni-
tor the availability of the VIPs. This again is done by
extending the Pingmesh Generation algorithm to cover

149

(a) Normal (b) Podset down (c) Podset failure (d) Spine failure

Figure 8: Network latency patterns through visualization.

the VIPs as the target, without touching the rest of the
Pingmesh pipeline.
Silent packet drop detection. As we have discussed
in Section 5, we have been using Pingmesh for silent
packet drop detection. Since the latency data is already
there, we only need to figure out the detection algorithm
and implement the algorithm in the DSA pipeline with-
out touching other Pingmesh components.
Network metrics for services. Two Pingmesh met-
rics have been used by service developers to design and
implement better services. The Pingmesh Agent ex-
poses two PA counters for every server: the 99th latency
and the packet drop rate. Service developers can use the
99th latency to get better understanding of data center
network latency at server level. The per-server packet
drop rate has been used by several services as one of the
metrics for server selection.

For the above extensions, only inter-DC Pingmesh
and QoS monitoring were by design, the rest three just
happened out of our expectation. Thanks to Pingmesh’s
loosely coupled design, all these features were added
smoothly without adjusting its architecture.

6.3 Visualization for pattern discovery
We have invested heavily in Pingmesh data analysis

and visualization. Our happy findings are that data
speaks for themselves and that visualization helps us
better understand and detect various latency patterns.

Figure 8 shows several typical visualized latency pat-
terns. In the figure, a small green, yellow, or red block
or pixel shows the network latency at the 99th percentile
between a source-destination pod-pair. Green means
the latency is less than 4ms, yellow means the latency
is between 4-5ms, and red is for latency larger than 5ms.
A white block means there is no latency data available.

Figure 8(a) shows an (almost) all-green pattern, which
means the network works fine. Though looks straight-
forward, this all-green pattern is one of the most widely
used feature of Pingmesh. Using this pattern, we can
easily tell the global healthy status of the network.

Figure 8(b) shows a pattern of a white-cross. The
width of the white-cross corresponds to a Podset, which
contains around 20 pods. This pattern shows a Podset-
down scenario. Podset-down typically is due to the loss
of power of the whole Podset.

Figure 8(c) shows a pattern of a red-cross. The width
of the red-cross again corresponds to a Podset. The
red-cross shows high network latency from and to the
Podset. This pattern shows there is a network issue
within the Podset, since the network latency of other
Podsets are normal. There may be several causes of the
Podset red-cross. If both Leaf and ToR switches are all
L3 switches, then at least one of the Leaf switches is
dropping packets. If the whole Podset is a L2 domain,
then it is possibly caused by broadcast storm, e.g., due
to some switches loss their configuration.

Figure 8(d) shows a pattern of red-color with green-
squares along the diagonal. Here each small green-
square is a Podset. It shows that the network latencies
within the Podsets are normal, but cross-Podset latency
are all out of network SLA. It shows a network issue at
the Spine switch layer.

The success of the visualization is beyond our expec-
tation. It has become a habit for many of us to open
the visualization portal regularly to see if the network
is fine. The visualization portal has been used not only
by network developers and engineers, but also by our
customers to learn if there is a network issue or not.
We also observed an interesting usage pattern: When
the visualization system was first put into use, it was
typically used by the network team to ‘prove’ to our cus-
tomers that the network was fine. Now our customers
usually use the visualization to show that there is in-
deed an on-going network issue. This is a usage pattern
change that we are happy to see.

6.4 Pingmesh limitations
During the period of running Pingmesh, we have un-

covered two limitations of Pingmesh. First, though
Pingmesh is able to detect which tier a faulty network

150

device is located in, it cannot tell the exact location. In
our network, there are tens to hundreds of switches at
the Spine layer. Knowing the Spine layer is experiencing
some issue is good but not enough. We need methods to
locate and isolate the faulty devices as fast as possible.
This is a known limitation of Pingmesh from beginning.
As described in Section 5.2, we combine Pingmesh and
TCP traceroute to address this issue.

The second limitation comes from Pingmesh’s current
latency measurement. Though the Pingmesh Agent can
send and receive probing messages of up to 64 KB, we
only use SYN/SYN-ACK and a single packet for sin-
gle RTT measurement. Single packet RTT is good at
detecting network reachability and packet-level latency
issues. But it does not cover the case when multiple
round trips are needed. We recently experienced a live-
site incident caused by TCP parameter tuning. A bug
introduced in our TCP parameter configuration soft-
ware rewrote the TCP parameters to their default value.
As a result, for some of our services, the initial conges-
tion window (ICW) reduced from 16 to 4. For long
distance TCP sessions, the session finish time increased
by several hundreds of milliseconds if the sessions need
multiple round trips. Pingmesh did not catch this be-
cause it only measures single packet RTT.

7. RELATED WORK
Our experiences running one of the largest data cen-

ter networks in the world taught us that all the compo-
nents including applications, OS kernel, NIC, switching
ASIC and firmware, and fibers may cause communica-
tion failures. See [4] for a summary of various failures
that may cause network partition.

[21] and [6] studied traffic and flow characteristics of
different types of data centers, by collecting network
traces. Pingmesh focuses on network latency and is
complementary to these works.

Both Pingmesh and [18] are designed to detect packet
drops in the network. Both use active probing packets
and are capable of covering the whole network. The
approaches, though, are different. [18] uses RSVP-TE
base source routing to pinpoint the routing path of a
probing packet. It hence needs to create the routing
paths and maps in advance. It also means that the
probing packets are traversing the network in LSPs (la-
bel switched paths) different from those used by the
non-probing packets. Second, RSVP-TE is based on
MPLS, which, though is widely used for WAN traffic en-
gineering, is not used within the data centers. Pingmesh
can be used for both intra-DC and inter-DC networks.
Using source routing does provide an advantage: [18]
can directly pinpoint the switches or links that drop
packets. We have shown in Section 5.2 Pingmesh can
localize faulty devices together with traceroute.

Cisco IPSLA [8] also uses active packets for network
performance monitoring. IPSLA is configured to run
at Cisco switches, and is capable of sending ICMP, IP,

UDP, TCP, and HTTP packets. IPSLA collects net-
work latency, jitter, packet loss, server response time,
and even voice quality scores. The results are stored lo-
cally at the switches and can be retrieved via SNMP or
CLI (command-line interface). Pingmesh differs from
IPSLA in several ways. First, Pingmesh uses server
instead of switches for data collection. By doing so,
Pingmesh becomes network device independent whereas
IPSLA works only for Cisco devices. Second, Pingmesh
focuses on both measurement and latency data analysis.
To achieve its goal, Pingmesh has not only Pingmesh
Agent for data collection, but also a control plane for
centralized control and a data storage and analysis pipeline.
IPSLA does not have such a control plane and data stor-
age and analysis pipeline.

NetSight [19] tracks packet history by introducing
postcard filters at the switches to generate captured
packet events called postcard. Several network trou-
bleshooting services, nprof, netshark, netwatch, ndb,
can be built on top of NetSight. Compared with Net-
Sight, Pingmesh is server-based in that it does not need
to introduce additional rules into the switches. Further
Pingmesh is capable of detecting switch silent packet
drops. It is not clear how silent packet drop rules can
be written for NetSight, since it is not known in advance
which type of packets may be dropped.

ATPG [25] determines a minimal set of probing pack-
ets that cover all the network links and forwarding rules.
Pingmesh does not try to minimize the number of prob-
ings. As long as the overhead is affordable, we prefer
to let Pingmesh run all the time. Further it is not clear
how ATPG can deal with packet black-holes where the
rules for black-holes cannot be determined in advance.

Pingmesh focused on physical network and it uses ac-
tive probings by installing the Pingmesh Agent in the
servers. For third party VMs and virtual networks, how-
ever, installing the Pingmesh Agent may not be feasi-
ble. In this case passive traffic collection as explored by
VND [24] may be used.

8. CONCLUSION
We have presented the design and implementation of

Pingmesh for data center network latency measurement
and analysis. Pingmesh is always-on and it provides
network latency data by all the servers and for all the
servers. Pingmesh has been running in Microsoft data
centers for more than four years. It helps us answer if a
service issue is caused by the network or not, define and
track network SLA at both macro and micro levels, and
it has become to be an indispensable service for network
troubleshooting.

Due to its loosely coupled design, Pingmesh turned
out to be easily extensible. Many new features have
been added while the architecture of Pingmesh is still
the same. By studying the Pingmesh latency data and
learning from the latency patterns via visualization and
data mining, we are able to continuously improve the

151

quality of our network, e.g., by automatically fixing
packet black-holes and detecting switch silent random
packet drops.

9. ACKNOWLEDGEMENT
We thank Lijiang Fang, Albert Greenberg, Wilson

Lee, Randy Kern, Kelvin Yiu, Dongmei Zhang, Yong-
guang Zhang, Feng Zhao, the members of the Wireless
and Networking Group of Microsoft Research Asia for
their support at various stages of this project. We thank
our shepherd Sujata Banerjee and the anonymous SIG-
COMM reviewers for their valuable and detailed feed-
back and comments.

10. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A

Scalable, Commodity Data Center Network
Architecture. In Proc. SIGCOMM, 2008.

[2] Alexey Andreyev. Introducing data center fabric,
the next-generation Facebook data center
network. https:
//code.facebook.com/posts/360346274145943/,
Nov 2014.

[3] Hadoop. http://hadoop.apache.org/.
[4] Peter Bailis and Kyle Kingsbury. The Network is

Reliable: An Informal Survey of Real-World
Communications Failures. ACM Queue, 2014.

[5] Luiz Barroso, Jeffrey Dean, and Urs Hölzle. Web
Search for a Planet: The Google Cluster
Architecture. IEEE Micro, March-April 2003.

[6] Theophilus Benson, Aditya Akella, and David A.
Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In Internet Measurement
Conference, November 2010.

[7] et.al Brad Calder. Windows Azure Storage: A
Highly Available Cloud Storage Service with
Strong Consistency. In SOSP, 2011.

[8] Cisco. IP SLAs Configuration Guide, Cisco IOS
Release 12.4T.
http://www.cisco.com/c/en/us/td/docs/ios-xml/
ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf.

[9] Citrix. What is Load Balancing? http:
//www.citrix.com/glossary/load-balancing.html.

[10] Jeffrey Dean and Luiz André Barroso. The Tail at
Scale. CACM, Februry 2013.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified Data Processing on Large Clusters. In
OSDI, 2004.

[12] Albert Greenberg et al. VL2: A Scalable and
Flexible Data Center Network. In SIGCOMM,
August 2009.

[13] Chi-Yao Hong et al. Achieving High Utilization
with Software-Driven WAN. In SIGCOMM, 2013.

[14] Parveen Patel et al. Ananta: Cloud Scale Load
Balancing. In ACM SIGCOMMM. ACM, 2013.

[15] R. Chaiken et al. SCOPE: Easy and Efficient
Parallel Processing of Massive Data Sets. In
VLDB’08, 2008.

[16] Sushant Jain et al. B4: Experience with a
Globally-Deployed Software Defined WAN. In
SIGCOMM, 2013.

[17] Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung. The Google File System. In
ACM SOSP. ACM, 2003.

[18] Nicolas Guilbaud and Ross Cartlidge. Google
Backbone Monitoring, Localizing Packet Loss in a
Large Complex Network, Feburary 2013.
Nanog57.

[19] Nikhil Handigol, Brandon Heller, Vimalkumar
Jeyakumar, David Mazières, and Nick McKeown.
I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks. In
NSDI, 2014.

[20] Michael Isard. Autopilot: Automatic Data Center
Management. ACM SIGOPS Operating Systems
Review, 2007.

[21] Srikanth Kandula, Sudipta Sengupta, Albert
Greenberg, Parveen Patel, and Ronnie Chaiken.
The nature of data center traffic: Measurements
& analysis. In Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement
Conference, IMC ’09, 2009.

[22] Rishi Kapoor, Alex C. Snoeren, Geoffrey M.
Voelker, and George Porter. Bullet Trains: A
Study of NIC Burst Behavior at Microsecond
Timescales. In ACM CoNEXT, 2013.

[23] Cade Metz. Return of the Borg: How Twitter
Rebuilt Google’s Secret Weapon.
http://www.wired.com/2013/03/
google-borg-twitter-mesos/all/, March 2013.

[24] Wenfei Wu, Guohui Wang, Aditya Akella, and
Anees Shaikh. Virtual Network Diagnosis as a
Service. In SoCC, 2013.

[25] Hongyi Zeng, Peyman Kazemian, George
Varghese, and Nick McKeown. Automatic Test

Packet Generation. In CoNEXT, 2012.

152

https://code.facebook.com/posts/360346274145943/
https://code.facebook.com/posts/360346274145943/
http://hadoop.apache.org/
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/12-4t/sla-12-4t-book.pdf
http://www.citrix.com/glossary/load-balancing.html
http://www.citrix.com/glossary/load-balancing.html
http://www.wired.com/2013/03/google-borg-twitter-mesos/all/
http://www.wired.com/2013/03/google-borg-twitter-mesos/all/

	Introduction
	Background
	Data center networks
	Network latency and packet drops
	Data center management and data processing systems

	Design and implementation
	Design goal
	Pingmesh architecture
	Pingmesh Controller
	The pinglist generation algorithm
	Pingmesh Controller implementation

	Pingmesh Agent
	Pingmesh Agent design considerations
	Pingmesh Agent implementation

	Data Storage and Analysis

	Latency data analysis
	Network latency
	Packet drop rate
	Is it a network issue?

	Silent Packet Drop Detection
	Packet black-hole
	Silent random packet drops

	Experiences learned
	Pingmesh as an always-on service
	Loosely coupled components help evolvement
	Visualization for pattern discovery
	Pingmesh limitations

	Related Work
	Conclusion
	Acknowledgement
	References

