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he kernel: “Just a C program”?

* | claimed that the kernel was mostly “just a C program”
* This is indeed mostly true, especially in higher-level subsystems
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The kernel: not just any C program

e Core kernel: =3.4M LoC in =6,450 files

* Kernel runtime: Run-time linker, object model, scheduler,
memory allocator, threads, debugger, tracing, |/O routines,
timekeeping

* Base kernel: VM, process model, IPC, VFS w/20+ filesystems,
network stack (IPv4/IPv6, 802.11, ATM, ...), crypto framework

* Includes roughly =70K lines of assembly over =6 architectures
 Alternative C runtime —e.g., SYSINIT, curthread
* Highly concurrent — really very, very concurrent
 Virtual memory makes pointers .. odd
* Debugging features —e.g., WITNESS lock-order verifier
* Device drivers: =3.0M LoC in =3,500 files

e 415 device drivers (may support multiple devices)



Spelunking the kernel

Makefile ddb/ libkern/ nfs/ teken/
amd64/ dev/ mips/ nfsclient/ tests/
arm/ dts/ modules/ nfsserver/ tools/
arme4/ fs/ net/ nlm/ ufs/
bsm/ gdb/ net80211/ ofed/ vm/
cam/ geom/ netgraph/ opencrypto/ x86/
cddl/ gnu/ netinet/ powerpc/ xdr/
compat/ i386/ netinet6/ riscv/ xen/
conf/ isa/ netipsec/ rpc/

contrib/ kern/ netpfil/ security/

crypto/ kgssapi/ netsmb/ sys/

% 1s kern

Make.tags.inc
Makefile

bus_if.m
capabilities.conf
clock_if.m
cpufreq_if.m

kern_sendfile.c
kern_sharedpage.c
kern_shutdown.c
kern_sig.c
kern_switch.c
kern_sx.c

subr_prng.c
subr_prof.c
subr_rangeset.c
subr_rman.c
subr_rtc.c
subr_sbuf.c

* Kernel source livesin /fusr/src/sys:
« kern/ — core kernel features
* sys/ —core kernel headers



How work happens in the kernel

* Kernel code executes concurrently in multiple threads
User threads in the kernel (e.g., a system call)
Shared worker threads (e.g., callouts)
Subsystem worker threads (e.g., network-stack workers)
Interrupt threads (e.g., Ethernet interrupt handling)

Idle threads

# procstat -at
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TDNAME
swapper
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swi3: vm
swi4: clock (0)
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PRI
84
84

255
36
40
28

20
20
24

108
140
140

STATE
sleep
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WCHAN
swapin

wait
ttyin



Work processing and distribution

Many operations begin with system calls in a user thread

But may trigger work in many other threads; for example:
* Triggering a callback in an interrupt thread when I/O is complete
* Eventually writing back data to disk from the buffer cache
* Delayed transmission if TCP isn’t able to send immediately

We will need to be careful about these things, as not all
work we are analysing will be in the obvious user thread

Multiple mechanisms provide this asynchrony; e.g.:

Closure called after wall-clock delay
eventhandler Closure called for key global events

Closure called .. eventually

SYSINIT Function called when module loads/unloads

* Where closure in C means: function pointer, opaque data pointer



Wrapping up

* In this lecture, we have:
* Explored the idea of an operating system
* Detailed the structure of the course and its expectations
* The dynamics of kernel execution (just a taster)

e Our next prerecorded lecture (intended to be watched
before you start on Lab 1) will explore:
* DTrace, the kernel tracing facility we will use
* The probe effect and its impact
e Our lab environment

e Readings for the next lecture:
e Paper - Cantrill, et al. 2004
* McKusick, et al. Chapter 3 (Kernel Subsystems)



