Advanced Operating Systems

Through tracing, analysis, and experimentation

ACS/Part Il L41: Advanced Operating Systems
Part II: Advanced Operating Systems

Lecture 1, Part 3: Kernel dynamics
Prof. Robert N. M. Watson
2022-2023

he kernel: “Just a C program”?

* | claimed that the kernel was mostly “just a C program”
* This is indeed mostly true, especially in higher-level subsystems

Userspace Kernel

crt/csu

rtlid

Shared objects
main()

libc

POSIX threads API
POSIX filesystem API
POSIX sockets API

DTrace

locore

Kernel linker

Kernel modules

main(), platform_start()
libkern

kthread KPI

VFS KPI

socket KPI

DTrace

The kernel: not just any C program

e Core kernel: =3.4M LoC in =6,450 files

* Kernel runtime: Run-time linker, object model, scheduler,
memory allocator, threads, debugger, tracing, |/O routines,
timekeeping

* Base kernel: VM, process model, IPC, VFS w/20+ filesystems,
network stack (IPv4/IPv6, 802.11, ATM, ...), crypto framework

* Includes roughly =70K lines of assembly over =6 architectures
 Alternative C runtime —e.g., SYSINIT, curthread
* Highly concurrent — really very, very concurrent
 Virtual memory makes pointers .. odd
* Debugging features —e.g., WITNESS lock-order verifier
* Device drivers: =3.0M LoC in =3,500 files

e 415 device drivers (may support multiple devices)

Spelunking the kernel

Makefile ddb/ libkern/ nfs/ teken/
amd64/ dev/ mips/ nfsclient/ tests/
arm/ dts/ modules/ nfsserver/ tools/
arme4/ fs/ net/ nlm/ ufs/
bsm/ gdb/ net80211/ ofed/ vm/
cam/ geom/ netgraph/ opencrypto/ x86/
cddl/ gnu/ netinet/ powerpc/ xdr/
compat/ i386/ netinet6/ riscv/ xen/
conf/ isa/ netipsec/ rpc/

contrib/ kern/ netpfil/ security/

crypto/ kgssapi/ netsmb/ sys/

% 1s kern

Make.tags.inc
Makefile

bus_if.m
capabilities.conf
clock_if.m
cpufreq_if.m

kern_sendfile.c
kern_sharedpage.c
kern_shutdown.c
kern_sig.c
kern_switch.c
kern_sx.c

subr_prng.c
subr_prof.c
subr_rangeset.c
subr_rman.c
subr_rtc.c
subr_sbuf.c

* Kernel source livesin /fusr/src/sys:
« kern/ — core kernel features
* sys/ —core kernel headers

How work happens in the kernel

* Kernel code executes concurrently in multiple threads
User threads in the kernel (e.g., a system call)
Shared worker threads (e.g., callouts)
Subsystem worker threads (e.g., network-stack workers)
Interrupt threads (e.g., Ethernet interrupt handling)

Idle threads

procstat -at

PID
0
0

10
11
11
11

11
11
11
739
740
751

TID
100000
100006

100002
100003
100004
100005

100018
100019
100020

100064
100079
100089

COMM
kernel
kernel

idle
intr
intr
intr

intr
intr
intr

login
csh
procstat

TDNAME
swapper
dtrace_taskq

swi3: vm
swi4: clock (0)
swil: netisr 0

intrlé: ti_adcO
intr9l: ti_wdto
swi@: uart

PRI
84
84

255
36
40
28

20
20
24

108
140
140

STATE
sleep
sleep

run
wait
wait
wait

wait
wait
wait

sleep
sleep
run

WCHAN
swapin

wait
ttyin

Work processing and distribution

Many operations begin with system calls in a user thread

But may trigger work in many other threads; for example:
* Triggering a callback in an interrupt thread when I/O is complete
* Eventually writing back data to disk from the buffer cache
* Delayed transmission if TCP isn’t able to send immediately

We will need to be careful about these things, as not all
work we are analysing will be in the obvious user thread

Multiple mechanisms provide this asynchrony; e.g.:

Closure called after wall-clock delay
eventhandler Closure called for key global events

Closure called .. eventually

SYSINIT Function called when module loads/unloads

* Where closure in C means: function pointer, opaque data pointer

Wrapping up

* In this lecture, we have:
* Explored the idea of an operating system
* Detailed the structure of the course and its expectations
* The dynamics of kernel execution (just a taster)

e Our next prerecorded lecture (intended to be watched
before you start on Lab 1) will explore:
* DTrace, the kernel tracing facility we will use
* The probe effect and its impact
e Our lab environment

e Readings for the next lecture:
e Paper - Cantrill, et al. 2004
* McKusick, et al. Chapter 3 (Kernel Subsystems)

