The Process Model (1)

Lecture 3, Part 1: The Process Model
Prof. Robert N. M. Watson
2023-2024



his time: The process model

* The process model and its evolution | Lecture 3, Part 1

 Brutal (re, pre)-introduction to VM
- Lecture 3, Part 2

* Where do programs come from?



The Process Model:

virtugl

processor P

memaor y

progrom
A

I - __._.-.-.—-—“-—-‘
2
1Y
{Off jates \\
h)
‘L

priviieged ,/ descriptor
state bit =7~ registers

| virtual

l processor P, /

program
B

/

A of f

l
2

shared
mat h
rouvtine

:A/

program

S

1970s foundations

Saltzer and Schroeder, The
Protection of Information in
Computer Systems, SOSP’73,
October 1973. (CACM 1974)

Multics process model

* ‘Program in execution’

* Process isolation bridged by
controlled communication via
supervisor (kernel)

Hardware foundations
e Supervisor mode
* Memory segmentation
* Trap mechanism

Hardware protection rings
(Schroeder and Saltzer, 1972)

3



The process model: today - concept

* ‘Program in execution’
* Process = address space
* Threads execute code
* Unique instance of global variables, etc.
* |solated failure domain

* Unit of resource accounting
* Open files, memory, ...

e Unit of privilege
* Process credentials — UID, OS privileges, MAC, RBAC, ...
* NB: Increasing support for per-thread credentials

* Recently: Inverted App-OS trust model

* Third-party applications cannot trust the OS ...
* E.g., Trustzone, SGX, ...



The process model today:
isolation and controlled communication

 Hardware foundations for isolation
* Rings control MMU, 1/0O, etc.
* MMU to construct mutually exclusive virtual address spaces
* Context switched threads of control

* Hardware foundations for controlled communication

* Interaction via traps: system calls, page faults, ...
e MMU to construct shared memory

_ - K~ _ -

User P ; , P Kernel- User
address 1 2 accessible address
space address space

SN . ~ | space
‘I rd ‘I
S N, S
T+ T2 Ts
- i ‘ i -
T | o . e e —
\ J .
Kernel I ‘~_- y, Hypervisor
address SNOON ~ SN N address
space e Pid e ¢ space
N, N, N, N, N,
T1 T2 T5 Tn Tm
Kernel Hypervisor




he UNIX process life cycle

* fork()

e Child inherits address space
@ fork() and other properties

- * Program prepares process
stack | @ execve(*/bin/dd”) for new binary (e.g., stdio)

'\ * Copy-on-Write (COW)

ataclk

o execve()
heap * Kernel replaces address

- space, loads new binar
/bin/sh @ exit() pace, Y,

\ starts execution

PID: 710 heap x EXIt()

¥ * Process can terminate self
(or be terminated)
«~. PID:716

, wait4() (et al)
------ * Parent can await exit status

* NB: posix_spawn()

S

R /bin/dd
@ waitd()




Evolution of the process model

1980s

stack

heap

>

1990s

stack stacki &
\ ¥
stacks :—:
L
heap heap

rtld

rtld

2000s

stacki (:

v

heap arena

stacki ::‘
v

heap arena

rtid

* 1980s: Code, heap,
and stack

* 1990s: Dynamic
linking, threading

e 2000s: Scalable
memory allocators
implement multiple
arenas (e.g., as in
jemalloc)

e Co-evolution with
virtual memory (VM)
research

e Acetta, et al: Mach
microkernel (1986)

* Navarro, et al:
Superpages (2002)



