
IA Algorithms 1 and 2
Dr Damon Wischik

What sort of activity is working on algorithms?

C.S. THEORY ALGORITHMS

S Y
S

T
E

M
S

MACHINE LEARNINGMODELLING

Tight definitions
(but trivial proofs).

Elegant API design.

Tough proofs of correctness.

Cunning implementations
to get optimal performance.

What is an algorithm?

Sorting algorithms

SECTION 2

§2.1 Insertion sort

1

2

3

4

5

6

7

8

def insert_sort(x):
for i in 1..(len(x)-1):

assert x[0:i] is sorted
j = i – 1
while j >= 0 and x[j] > x[j+1]:

swap x[j] with x[j+1]
j = j – 1

assert x[0:i+1] is sorted

ij j

NOTATION ALERT
Indexes refer to
positions between cells.

❖ Is this algorithm correct?

❖ What is its performance?
Can we do better?

1

2

3

4

5

6

7

8

def insert_sort(x):
for i in 1..(len(x)-1):

assert x[0:i] is sorted
j = i – 1
while j >= 0 and x[j] > x[j+1]:

swap x[j] with x[j+1]
j = j – 1

assert x[0:i+1] is sorted

❖ lecture notes

❖ slides (uploaded the night before,
and re-uploaded after the lecture)

❖ example sheets & ticks

❖ recordings

For any teaching session where your

contribution is mandatory or expected, we

must seek your consent to be recorded.

You are not obliged to give

this consent, and you have the right

to withdraw your consent after it has

been given.

https://www.educationalpolicy.admin.cam.ac.uk/
files/recording_policy.pdf

Pre-recorded videos
from Prof Frank Stajano

Consent to recordings of
live lectures

Q. Do you consent?

PASSIVE LEARNING

▪ attend lectures

▪ read code snippets,
watch animations,
see examples

▪ read notes,
watch videos

ACTIVE LEARNING

▪ copy out any hand-
writing from lectures

▪ annotate the code
snippets in the
handout

REFLECTIVE LEARNING

▪ example sheets
and ticks

▪ execute algorithms by
hand, and invent test
cases to achieve full
code coverage

▪ skeptical reading

How to learn effectively

§2.2 Proving correctness

Edsger Dijkstra, 1930—2002

What is an algorithm?

An algorithm is a set of well-defined instructions or a step-by-step procedure
designed to perform a specific task or solve a particular problem.

ChatGPT

DW You
Are you an algorithm?

Yes, I am a product of complex algorithms. Specifically, I'm powered by a
type of algorithm known as a machine learning model.

ChatGPT

DW You
If you are an algorithm, then what is the particular problem you solve?

The overarching problem I solve is bridging the gap between human
communication and machine understanding, making information and
interaction more accessible through natural language processing.

ChatGPT

1

2

3

4

5

6

7

8

def insert_sort(x):
for i in 1..(len(x)-1):
assert x[0:i] is sorted
j = i – 1
while j >= 0 and x[j] > x[j+1]:

swap x[j] with x[j+1]
j = j – 1

assert x[0:i+1] is sorted

§2.3 Computational complexity

We’ll analyze our algorithm’s running time on large problems,
and pretend we’re running on an idealized machine:
▪ we can create arrays as large as we’ll need, in time proportional to array size

▪ any array element 𝑥[𝑖] can be accessed in constant time

▪ all numerical operations take constant time

1

2

4

5

6

7

def insert_sort(x):
for i in 1..(len(x)-1):
j = i – 1
while j >= 0 and x[j] > x[j+1]:
swap x[j] with x[j+1]
j = j – 1

Arbitrarily large problems:
for an array of length 𝑛 we need Θ(log 𝑛) bits to even store a pointer,
so memory access isn’t really 𝑂(1).

Cache locality:
it’s faster if our code has a small working set,
so that most memory accesses hit the CPU’s cache.

Small problems:
if 𝑛 is small then there’s no point in asymptotic analysis,
and we should just benchmark.

Q. In what situations would this
sort of analysis be a bad idea?

Why is this this style of complexity analysis OK?

▪ It’s the conventional mathematical playground for this discipline
▪ It’s often a good approximation to real performance, unless ...

❖

❖

❖

Large constants:
complexity analysis just says “constant cost”, it doesn’t say what
the constant is — and it may be huge.

❖

	Slide 1: IA Algorithms 1 and 2
	Slide 2: What sort of activity is working on algorithms?
	Slide 3: Sorting algorithms
	Slide 4: §2.1 Insertion sort
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: §2.2 Proving correctness
	Slide 12: What is an algorithm?
	Slide 13
	Slide 14: §2.3 Computational complexity
	Slide 15: We’ll analyze our algorithm’s running time on large problems, and pretend we’re running on an idealized machine:
	Slide 16

