|A Algorithms 1 and 2

Dr Damon Wischik

What sort of activity is working on algorithms?

MODELLING MACHINE LEARNING

Tight definitions Tough proofs of correctness.

(but trivial proofs). Cunning implementations

Elegant API design. to get optimal performance.

SECTION 2

Sorting algorithms

§2.1 Insertion sort

Insertion Sort

rec ins = function

X, [1 == [X] . .

X, yiiys -> e |[tems from input are copied
if x <= y then

X 11y t: ys to the output

else

y :: ins (X, ys)

41 _ _ . * Inserted in order, so the
et rec insort = function)
| 11> 1] output is always sorted

| x::xs -> ins (x, insort xs)

NOTATION ALERT
Indexes refer to
positions between cells.)

| 1 | | l \
[2. 3 4+ S .
° x [¢] = oM just @
1— F the niM-df 1
g 3)] = zCZJ-':
x 1]
n - (en(x) ol
x [(n] X 005 Portor
| .--- lut(x)'\ 2[“"-3 ‘Nte‘("md'
rncWwsive
def insert_sort(x): ////)V
for i in 1..(len(x)-1): (\
assert x[0:1] is sorted \ \
j:i_1 1|_LL'LI|_I
while j >= 0 and x[j] > x[j+11: =
swap x[j] with x[j+1] q,(mul‘p
gaeie

j=3-
assert x[0:1+1] is sorted

~.

N/

** Is this algorithm correct?

N/

** What is its performance?
Can we do better?

def insert_sort(x):
for i in 1..(len(x)-1):
assert x[0:1] is sorted
j=i-1

while j >= 0 and x[j] > x[j+11]:
swap x[j] with x[j+1]
j=13-1

assert x[0:1+1] 1s sorted

v ES Department c nputer Scier X +

< c 2% cl.cam.ac.uk/teaching/2 Algorithm1/materials.html

I Teaching / Courses 2023-24 / Algorithms 1 / Course materials

Course pages 2023-24

4

% lecture notes
Algorithms 1

S)UIELIVEE Course materials 00

Information for supervisors

X4

slides (uploaded the night before,
and re-uploaded after the lecture)

Algorithms 1 Lecture notes — printed notes © Frank Stajano 2023 and short handout

Databases Exercises — Example sheets 1, 2, 3 (the same exercises as for 2022/23)

s example sheets & ticks

Digital Electronics Announcements, Q&A, tick submission — Moodle

Discrete Mathematics Schedule

This is the planned lecture schedule. It will be updated as and when actual lectures

0 .
. o0
Foundations of deviate from schedule. Slides will be uploaded the night before a lecture. ** reco rd I ngs
Computer Science

2. Sorting

Lecture 01 2.1 Insertsort

[slides] 2.3 Big-O notation

Lecture 02 2.4 The cost of sorting
2.6-2.9 Selectsort, binary insertsort, bubblesort
2.9 Mergesort

Lecture 03 2.10 Heapsort

Hardware Practical
Classes

Introduction to
Graphics

Object-Oriented
Programming Lecture 04 2.11 Quicksort

2.12 Median and order statistics using quicksort

2.13 Stability

2.14 Faster sorting: couting sort, bucket sort, radix sort
Sorting algorithms compared

OCaml Practical Classes

Registration
Example sheet 1, and Tick 1 (due 5 Feb)

Scientific Computing

Practical Course

3. Algorithm design

Pre-recorded videos
from Prof Frank Stajano

v @ Official Part la Algorithms cour: X &

C %5 youtube.com/playlist?list=PLbyWO0t9gkXgONtXelY... ¥ ¢ (b 2 O

3 YouTube Se a2 @

THBEE HAR[) ~ officiat Part Ia Algorithms course

at the University of Cambridge

‘ PBUBLEMS Frank Stajano Explains

28 videos 21,027 views Last...

= 2

= i UN IVE RS ITY OF | have been lecturing the introductory
K CAM%BI DG E Algorithms course at the University of C ...More

P Playall >3 shuffle

Introducing Algorithms: three hard problems (Algorithms @
,Tuagﬁ HARD
PRUBLEMS Cambridge)

UNIVFRS feeaaesll Frank Stajano Explains * 2.9K views * 11 months ago

" CANIBR 20:45

T Algorithms: insertsort
{NSERTSORT e

) Frank Stajano Explains * 2.2K views * 3 years ago

ERE"UNIVERSITY OF

" CAMIBR 22:18

{/ i[RI} Algorithms: asymptotic complexity, big-O notation, big-Theta,

Shs | NOTATION
‘J/ }F?UNWFRS Tvor [JEEd
Aathmyic ANIBR 19:04
Algorithms: the cost of sorti

(= Vi SUR"NG Frank Stajano Explains * 1.2K views * 3 years ago
JF
+ UNWFRS .'ll';/ :?(;-‘

AR AN

Consent to recordings of
live lectures

https://www.educationalpolicy.admin.cam.ac.uk/
files/recording_policy.pdf

For any teaching session where your
contribution is mandatory or expected, we
must seek your consent to be recorded.

You are not obliged to give

this consent, and you have the right
to withdraw your consent after it has
been given.

Q. Do you consent?

How to learn effectively

PASSIVE LEARNING ACTIVE LEARNING REFLECTIVE LEARNING
= attend lectures " copy out any hand- = example sheets
: writing from lectures and ticks
= read code snippets,
watch animations, " annotate the code = execute algorithms by
see examples snippets in the hand, and invent test
handout cases to achieve full

= read notes,

] code coverage
watch videos 5

= skeptical reading

§2.2 Proving correctness

'/Ilish} from dthe bea'-nninj_ ond all '}hru;.-‘j}\ the
course, we siress Yhot the program mec's lask s
not ust lo wri}ﬁ cdown o program, hut that his
mMoin -Tl'ns\k 15 4031'-;2 Ca ‘E-érmnj]::rau-P H’ln} ‘]'}'Il:

program he proposes meets Yhe equally ﬁprmnl
?um:'l-ic:nn"i ﬁ?eciﬁcahuﬂ.

Edsger Dijkstra, 1930—2002

What is an algorithm?

ChatGPT
An algorithm is a set of well-defined instructions or a step-by-step procedure

designed to perform a specific task or solve a particular problem.

You
Are you an algorithm?

ChatGPT
Yes, | am a product of complex algorithms. Specifically, I'm powered by a
type of algorithm known as a machine learning model.

You
If you are an algorithm, then what is the particular problem you solve?

ChatGPT
The overarching problem | solve is bridging the gap between human

communication and machine understanding, making information and
interaction more accessible through natural language processing.

0O N O Ul B WN B

def insert_sort(x):

for 1 in 1..(len(x)-1): Problemy staement :
assert x[0:1] 1s sorted . N .
=i ewen em W x, sofC 1€ o/L-PIQ\& .

while j >= 0 and x[j]1 > x[j+1]:
swap x[j] with x[j+1]
=31
assert x[0:1+1] 1s sorted
preef % amectness & ingert-sort :

we P> ke Ha predicate "The st an (e 3 it fanl ot T
oGy — ~ s

Lemma. ?(Q g VAR, /

‘ 3 - —— ¢e2 EX-Sheatl.
Le MMR, pLid = Q (). (e ¢ & bntz)-|

QL) = P(L+1) ‘{W ¢ ¢ a0 \/ crivied.

P he = n-1\ ren o [o: 1] s Sarno(ét (e 2)
Bj I‘V\chf-l'w\ G(na\) fo trwe , e wWhn = o nj
% _

s & The (ag€ e § o thet's wh, S0 X comt choan subm%,

Lemnsy

LN

Thws, wiwn He olg, raminakes 2 55 sarked

§2.3 Computational complexity

Asymptotic complexity refers to how
program costs grow with increasing inputs

Usually space or time, with 1
larger than the

Question: if we double our p
much does our computatior

Insertion Sort

let rec ins = function
| %, [1 => [x]) .
| x, yiiys > e |tems from input are copied
if x <= y then

Xty t:ys to the output

else

y :: ins (x, yS)

41 . B . e |nserted in order, so the
et rec insort = function)
| 11 -> 11 output is always sorted

| x::xs -> ins (x, insort xs)

Complexity is O(n%) comparisons
vs the theoretical best case of O(n log n)

We'll analyze our algorithm’s running time on large problems,
and pretend we’re running on an idealized machine:

= we can create arrays as large as we’ll need, in time proportional to array size
= any array element x[i] can be accessed in constant time

= all numerical operations take constant time

@t n° Qﬂlz\.
def insert_sort(x): pomg N7 WS
for i in 1..(len(x)-1): guter (=P . \
j = 1 - 1 ‘nnu (@P r\I'\S L 1 i,
while j >= 0 and x[j1 > x[jH11: : . .
swap x[j] with x[j+1] oyt & invar lip £ R,) Gt
j=3 -1

Jotteost & Z, (B2 +ke) ko
(2 1
oxa (€ P'cifu'k*

= '2,: k' n (,/\fl) 4 kz(ﬂ“') .

Why is this this style of complexity analysis OK?

" |t’s the conventional mathematical playground for this discipline
" |t’s often a good approximation to real performance, unless ...

Q. In what situations would this
sort of analysis be a bad idea?

%* Cache locality:
it’s faster if our code has a small working set,
so that most memory accesses hit the CPU’s cache.

4

L)

* Large constants:
complexity analysis just says “constant cost”, it doesn’t say what
the constant is — and it may be huge.

L)

4

L)

» Small problems:
if n is small then there’s no point in asymptotic analysis,
and we should just benchmark.

4

L)

* Arbitrarily large problems:
for an array of length n we need @(logn) bits to even store a pointer,
so memory access isn’t really O(1).

D)

	Slide 1: IA Algorithms 1 and 2
	Slide 2: What sort of activity is working on algorithms?
	Slide 3: Sorting algorithms
	Slide 4: §2.1 Insertion sort
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: §2.2 Proving correctness
	Slide 12: What is an algorithm?
	Slide 13
	Slide 14: §2.3 Computational complexity
	Slide 15: We’ll analyze our algorithm’s running time on large problems, and pretend we’re running on an idealized machine:
	Slide 16

