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What sort of activity is working on algorithms?

MODELLING MACHINE LEARNING

Tight definitions Tough proofs of correctness.

(but trivial proofs). Cunning implementations

Elegant API design. to get optimal performance.



SECTION 2

Sorting algorithms



§2.1 Insertion sort

Insertion Sort

rec ins = function

X, [1 == [X] . .

X, yiiys -> e |[tems from input are copied
if x <= y then

X 11y t: ys to the output

else

y :: ins (X, ys)

41 _ _ . * Inserted in order, so the
et rec insort = function )
| 11> 1] output is always sorted

| x::xs -> ins (x, insort xs)
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def insert_sort(x): ////)V
for i in 1..(len(x)-1): (\
# assert x[0:1] is sorted \ \
j:i_1 1|_LL'LI|_I
while j >= 0 and x[j] > x[j+11: =
swap x[j] with x[j+1] q,(mul‘p
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j=3-
# assert x[0:1+1] is sorted
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N/

** Is this algorithm correct?

N/

** What is its performance?
Can we do better?

def insert_sort(x):
for i in 1..(len(x)-1):
# assert x[0:1] is sorted
j=i-1

while j >= 0 and x[j] > x[j+11]:
swap x[j] with x[j+1]
j=13-1

# assert x[0:1+1] 1s sorted
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For any teaching session where your
contribution is mandatory or expected, we
must seek your consent to be recorded.

You are not obliged to give
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Q. Do you consent?




How to learn effectively

PASSIVE LEARNING ACTIVE LEARNING REFLECTIVE LEARNING
= attend lectures " copy out any hand- = example sheets
: writing from lectures and ticks
= read code snippets,
watch animations, " annotate the code = execute algorithms by
see examples snippets in the hand, and invent test
handout cases to achieve full

= read notes,

] code coverage
watch videos 5

= skeptical reading



§2.2 Proving correctness
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Edsger Dijkstra, 1930—2002




What is an algorithm?

ChatGPT
An algorithm is a set of well-defined instructions or a step-by-step procedure

designed to perform a specific task or solve a particular problem.

You
Are you an algorithm?

ChatGPT
Yes, | am a product of complex algorithms. Specifically, I'm powered by a
type of algorithm known as a machine learning model.

You
If you are an algorithm, then what is the particular problem you solve?

ChatGPT
The overarching problem | solve is bridging the gap between human

communication and machine understanding, making information and
interaction more accessible through natural language processing.
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§2.3 Computational complexity

Asymptotic complexity refers to how
program costs grow with increasing inputs

Usually space or time, with 1
larger than the

Question: if we double our p
much does our computatior

Insertion Sort

# let rec ins = function
| %, [1 => [x] ) .
| x, yiiys > e |tems from input are copied
if x <= y then

Xty t:ys to the output

else

y :: ins (x, yS)

41 . B . e |nserted in order, so the
et rec insort = function )
| 11 -> 11 output is always sorted

| x::xs -> ins (x, insort xs)

Complexity is O(n%) comparisons
vs the theoretical best case of O(n log n)



We'll analyze our algorithm’s running time on large problems,
and pretend we’re running on an idealized machine:

= we can create arrays as large as we’ll need, in time proportional to array size
= any array element x[i] can be accessed in constant time

= all numerical operations take constant time
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Why is this this style of complexity analysis OK?

" |t’s the conventional mathematical playground for this discipline
" |t’s often a good approximation to real performance, unless ...

Q. In what situations would this
sort of analysis be a bad idea?

%* Cache locality:
it’s faster if our code has a small working set,
so that most memory accesses hit the CPU’s cache.

4

L)

* Large constants:
complexity analysis just says “constant cost”, it doesn’t say what
the constant is — and it may be huge.

L)

4

L)

» Small problems:
if n is small then there’s no point in asymptotic analysis,
and we should just benchmark.

4

L)

* Arbitrarily large problems:
for an array of length n we need @(logn) bits to even store a pointer,
so memory access isn’t really O(1).

D)
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