Algorithm

any algorithm

InsertSort

BinarylnsertSort

SelectSort
QuickSort
MergeSort

HeapSort

Worst-case
running time

Q(nlogn)

@ #comparisons is 0(nlogn)

@ #writes is 0(n)
@ average case is O(nlogn)

uses O(n) extra memory

& Db

2.11 Quicksort

let rec quicksort = function
| [1-> L[]
| [x] -> [x]
| pivot::xs ->
let rec partition lefts rights = function
| []1 -> (quicksort lefts) @ (pivot :: quicksort rights)
| y::ys ->
if (y <= pivot) then
partition (y::lefts) rights ys
else
partition lefts (y::rights) ys

in
partition [] [] xs

Our OCaml quicksort copies the items. It is still pretty fast, and it is much
easier to understand. It is not hard to prove that quicksort does nlogn

comparisons, in the average case.

Let’s implement it more carefully, being explicit about assignments as well as
comparisons, so we can find the total running time.

def quicksort(x):

1.

Pick the last item to be the
pivot, p = x[len(x) —1].

. Partition the array, so that

it has the form
(items < p) :: p :: (items = p)

. The pivot p is now in its

correct place. Call quicksort
on the left portion, and on the
right portion.

def quicksort(x):

1. Pick the last item to be the
pivot, p = x[len(x) —1].

2. Partition the array, so that
it has the form
(items < p) :: p == (items = p)

3. The pivot p is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

def partition(x, p):
i = just before first item
j = just before p
while True:
while i < j and x[i] <= p: i++
while i < j and x[j-1] >= p: j--
if i < j:
swap x[i] with x[j-1]
i++, j--
swap p with x[j]

W \ \ L [|] |

>p p

e 1 e, R I O W | \ ' . 1

R »
A4 find an out—of —order N
N o’ N, . S <
NS pair and swap them

[
.

L U }
! \\\~~~~ -
into place
;
AN O \‘k \ [O

[Partitioning complete!]

def quicksort(x):

1. Pick the last item to be the
pivot, p = x[len(x) —1].

2. Partition the array, so that
it has the form
(items < p) :: p == (items = p)

3. The pivot p is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

def partition(x, p):
i = just before first item
j = just before p
while True:
while i < j and x[i] <= p: i++
while i < j and x[j-1] >= p: j--
if i < j:
swap x[i] with x[j-1]
i++, j--
swap p with x[j]

def quicksort(x):

1. Pick the last item to be the
pivot, p = x[len(x) —1].

2. Partition the array, so that
it has the form
(items < p) :: p == (items = p)

3. The pivot p is now in its
correct place. Call quicksort
on the left portion, and on the
right portion.

def partition(x, p):
i = just before first item
j = just before p
while True:
while i < j and x[i] <= p: i++
while i < j and x[j-1] >= p: j--
if i< 3:
swap x[i] with x[j-1]
i++, j--
swap p with x[j]

(W \" \l |||: . | 'bl 'l | | |‘| |" \ ‘I \ © | ' ll \1| \ J

L‘\,J'l‘l. l‘l'l'l.\ _‘ \‘441"\‘\\1

QUESTION

If we manage to split the array in half each pass,
what’s the running time (0)?

FACT. In the input is random (all permutations equally likely)
then the expected running time is @(nlogn).

QUESTION

What’s the worst-case running time (£2)?

EXERCISE. The worst-case running time is 0 (n?).

FACT. In fact, QuickSort’s best-case running time is Q(nlogn).

S"PM" we h“ffw\ fo f1‘w:‘ o fiqaf £ ek
partitiany the oy perfectly infe ewo
hawes % Size ~ N,

N rhems
* . cost & powtitimivy N ey § @W
— ———— AN . "
recvESON 2 A Rt & portitbumy 2 e 3 @O
depth . b n cout & pohitosy T ey 3 @G
.9 x

Totud vnaiy rime @ (n legn)

It we (M\PP"A fo pfek. a bad prvet,
0l that oll oChev Ty owve coamelev rhunm 1T,
an eNew siwgle pads, fhen

— ; Pom-u'h‘m h irmy: eIE N
” . pt b nl crewwy - cspt n-l
. pAMhition n-2 ihemy: oyt n-2

‘DTGA oyt > @(ﬂ")‘

Thys e wongE-cee fov QuichSov€ 3 L (n?)

We com wlgo chow (usl‘\y a st lewr o\nyuwwwé) tHhot e wemt e 13 O(v\‘)
7

hewte the wont o 8 @ (n?),

2.9 MergeSort

def mergesort(src, dst):
n = len(src)
m = int(n/2)

X, = new array of length m
mergesort(src=src[@:m], dst=x,)

X, = new array of length n-m
mergesort(src=src[m:n], dst=x,)

merge x, and x, into dst
free x; and x,

(unless n==7, in which case
Just copy srcl[0] into dst[0])

def merge(x,, x,, dst):
assert len(dst) == len(x,)+len(x,)
i, i, = 0,0
for j in 0..(len(dst)-1):
dst[j] = min(x,[i,], x,[i,D)
advance i, or i, appropriately

Src

dst

(10]

[—__,1\ AN AN b AN /1_’,1
AL_ N
~\~_¢,'\\~\~_f" \s_,”\\~,_¢”\\\~_¢"
a
R AN AN AN AN AN AN ANEES AN AN

def mergesort(src, dst):
n = len(src)
m = int(n/2)

X, = new array of length m
mergesort(src=src[0@:m], dst=x,)

X, = new array of length n-m
mergesort(src=src[m:n], dst=x,)

merge x, and x, into dst
free x; and x,

(unless n==7, in which case
Just copy srcl[0] into dst[0])

def merge(x,, x,, dst):
assert len(dst) == len(x,)+len(x,)
i, i, = 0,0
for j in 0..(len(dst)-1):
dst[j] = min(x,[i,], x,[i,D)
advance i, or i, appropriately

Assume that the time to create an array of size m, and to free it, is O(m).

n chews
/\/\/_—\
-~ { rw\m‘by(-u'm ®n)
0‘—5;0" — ot eacl MJ?
re¢ !
—t— e vecursion.

$o fatad rumm"y cwme @(n lo;n),

Tick 1, deadline 5 Feb at noon

cl.cam.ac.

Algorithms tick: mergesort
Bottom-up memory-constrained mergesort

In this tick you will implement a memory-efficient version of mergesort, mentioned at the end of section

ottom-up, as opposed to the standard top-down (recursive) version. In t
airs and sorts e pair by r 1g two chunks of size 1. In the
rts each quadruple by merging two chunk

(6) sorted x[0:7]

3crdpass oo ——— A

@ sorted x[0H] @ sorted X[47]
A A

2nd pass

sorted x[0:2] sorted x[2:4] sorted x[4:6]
otpars (DD D sorted A2 () sortpd 4]

X3 X4 X5 X6

To merge two chunks, the strategy is to copy the right-hand chunk into scratch space, then merge the
two chunks b into the original array. The merge should be performed right-to-left in order to avoid
overwriting values from the left-hand chunk. You are given a scratch space of size (It's this
tight limit on scratch space that for us to merge in this way. In the example above with n = 7, the
final step merges a chunk of size 4 and a chunk of size 3, and the scratch space is too small to fit the
size-4 chunk.)

| asked ChatGPT for code, and its two attempts are both incorrect. Nonetheless, it has the general idea
right.

Task 1. Demonstrate that ChatGPT’s code doesn’t work. You should find an array which causes

ChatGPT’'s mergesort1 to fail with an exception, and another array for which me ort2 doesn't
trigger an exception but d result in an incorrect answer. Both arrays should have size > 4.

With cunning, we can
implement mergesort using
only |n/2| extra space.

Can we sortin O(nlogn) without using extra memory?

Backwards SelectSort

lar gest, in order

OUR STARTING POINT: SELECTSORT repeatedly

select the
largest of what

SelectSort is in-place, and it’s efficient in terms of swaps. But it e, and
uses very many comparisons, because on each pass it re-scans place t
all remaining items to find the maximum.

Al

QUESTION
In each scan we do lots of comparisons, and learn

a lot about the values. How might we save this
information, to reuse in the next scan?

(argest in order

WHAT WE WANT

A data structure that is efficient for repeatedly
extracting the maximum item. “(‘, ‘l\

2.10 HeapSort

A heap is an almost-full binary tree that satisfies the heap property.

every level except possibly everywhere in the tree,
the bottom is full, and any parent value = child values
spaces in the bottom level

come at the right-hand end

O :

/ N\ GD\ F>C and F>E
O O - /
/ \ O/ \O l092n=2.58..ﬁ ®) (ED

- \ heigoht=2 / \ / C>8B and C>A

d/\oéj O/ \ @@@EED

A heap with n items has height [log, n].

We’'ll use a heap to store the items
that have yet to be placed into the
“sorted” part of the array.

Conveniently, we can use the
array itself to store the heap.

Let the children of x[i] be
x[2i + 1] and x[2i + 2].

def h t(x): , . .
en :eizz(();) " It’s handy to visualize the data both as an array
for i in 1..n-1: and as a tree, simultaneously. But internally

assert x[0:1] 1s a heap there is just a single array of size n.
add x[i] to heap and re-heapify

assert x[0:n] 1s a heap

Ay 00000000000

assert x[1i:n] has largest n-i
assert x[0:1] is a heap 0 f- 2 3 4 5 6 7 8 9 0 11

swap x[0] with x[i-1]
re-heapify x[0:i-1]

def heapsort(x):
n = len(x)

for i in 1..n-1:
assert x[0:1] is a heap
add x[i] to heap and re-heapify

assert x[0:n] 1s a heap

for i inn..1:
assert x[1i:n] has largest n-i
assert x[0:1] is a heap
swap x[0] with x[i-1]
re-heapify x[0:i-1]

Re-heapify by bubbling up from i
i=i
while j > @ and x[j] > x[parent(j)]:

swap x[j] with x[parent(j)]
j = parent(j)

It’s handy to visualize the data both as an array
and as a tree, simultaneously. But internally
there is just a single array of size n.

Total cvan t‘vj e

def heapsort(x):

n = len(x) AU
for i in 1..n-1: NN “ n [be

assert x[0:1] is a heap

add x[i] to heap and re-heapify " Hae 0"“‘.75

assert x[0:n] 1s a heap

for i inn..1:
assert x[1i:n] has largest n-i
assert x[0:1] is a heap
swap x[0] with x[i-1]
re-heapify x[0:i-1]

Eou\r\ P(’\"‘K 4 (he

(hevoures It’s handy to visualize the data both as an array
s and as a tree, simultaneously. But internally
there is just a single array of size n.

the re-haopiy

eporation

one O(h”-f““j"“e o 1 2 3 4 5 6 7 8§ 9 W@ 1
e C)(way'“). IKV/A-
Thws foted cunaiy €we 33 O (n legn), i

Re-heapify by bubbling up from i
i=i

while j > @ and x[j] > x[parent(j)]:
swap x[j] with x[parent(j)]
j = parent(j)

heap
violation

Re-heapify by bubbling down from 0
j=20

swap x[j] with larger child
j = larger child

while x[j1 < max(x[child1(j)], x[child2(j)1):

In fact, we can create the initial heap in O (n). B;j ideon: at rhe depfhs

: Tt (6 S srewms
def heapsort(x): # Faster heap creation / we¢ 4"(~
n = len(x) for i in ([n/2]-1)..0: (d2h s 2 5‘3)
fa- ikin 1A n- # assert trees rooted at (i+1)..n are hgéps Hro worle nead | o ‘5hnd‘(
erft X(@XJ afweq re-heapify the tree rooted at x[i])
ade x84 1 ty/heap a by bubbling down (Aah so h-d smelk).

assert x[0:n] 1s a heap
for i in n..1:

assert x[1:n] has largest n-i
assert x[0:1] is a heap

swap x[0] with x[i-1]
re-heapify x[0:i-1]

Thax procesivre do o bobble -clows
from aNeny remcleaf pschion it
A bobble—pwe front it o
tokes vt h-l

Totel ot = (>, 27 (¥

S 6 7 8 9 10 1

000000900000
+

	Slide 1
	Slide 2: 2.11 Quicksort
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10: 2.9 MergeSort
	Slide 11
	Slide 12
	Slide 13: Can we sort in cap O open paren n log n close paren without using extra memory?
	Slide 14: 2.10 HeapSort
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

