
Algorithm
Worst-case 

running time

any algorithm Ω(𝑛 log 𝑛)

InsertSort Θ(𝑛2)

BinaryInsertSort Θ(𝑛2) #comparisons is 𝑂(𝑛 log𝑛)

SelectSort Θ(𝑛2) #writes is 𝑂(𝑛)

QuickSort Θ(𝑛2) average case is Θ(𝑛 log 𝑛)

MergeSort 𝑂(𝑛 log 𝑛) uses Θ(𝑛) extra memory

HeapSort 𝑂(𝑛 log𝑛)



2.11 Quicksort

Let’s implement it more carefully, being explicit about assignments as well as 
comparisons, so we can find the total running time.

let rec quicksort = function
  | [] -> []
  | [x] -> [x]
  | pivot::xs ->
      let rec partition lefts rights = function
        | [] -> (quicksort lefts) @ (pivot :: quicksort rights)
        | y::ys ->
            if (y <= pivot) then
               partition (y::lefts) rights ys
            else
               partition lefts (y::rights) ys
      in
      partition [] [] xs

Our OCaml quicksort copies the items. It is still pretty fast, and it is much 
easier to understand. It is not hard to prove that quicksort does 𝑛 log 𝑛 
comparisons, in the average case.



pdef quicksort(x):

1. Pick the last item to be the 
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that 
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its 
correct place. Call quicksort 
on the left portion, and on the 
right portion.

items ≤ p items ≥ p



items ≤ p items ≥ p

i j

p

i j

find an out-of-order 
pair and swap them

i
j

repeat

…

>p

<p

swap the pivot
into place

Partitioning complete!

def quicksort(x):

1. Pick the last item to be the 
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that 
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its 
correct place. Call quicksort 
on the left portion, and on the 
right portion.

def partition(x, p):
  i = just before first item
  j = just before p
  while True:
    while i < j and x[i] <= p: i++
    while i < j and x[j-1] >= p: j--
    if i < j:
      swap x[i] with x[j-1]
      i++, j--
  swap p with x[j]



def quicksort(x):

1. Pick the last item to be the 
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that 
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its 
correct place. Call quicksort 
on the left portion, and on the 
right portion.

p

def partition(x, p):
  i = just before first item
  j = just before p
  while True:
    while i < j and x[i] <= p: i++
    while i < j and x[j-1] >= p: j--
    if i < j:
      swap x[i] with x[j-1]
      i++, j--
  swap p with x[j]



p

QUESTION
If we manage to split the array in half each pass, 
what’s the running time (𝑂)?

def quicksort(x):

1. Pick the last item to be the 
pivot, 𝑝 = 𝑥[len 𝑥 − 1].

2. Partition the array, so that 
it has the form
(items ≤ 𝑝) ∷ 𝑝 ∷ (items ≥ 𝑝)

3. The pivot 𝑝 is now in its 
correct place. Call quicksort 
on the left portion, and on the 
right portion.

def partition(x, p):
  i = just before first item
  j = just before p
  while True:
    while i < j and x[i] <= p: i++
    while i < j and x[j-1] >= p: j--
    if i < j:
      swap x[i] with x[j-1]
      i++, j--
  swap p with x[j] QUESTION

What’s the worst-case running time (Ω)?

FACT. In fact, QuickSort’s best-case running time is Ω(𝑛 log 𝑛).

EXERCISE. The worst-case running time is 𝑂(𝑛2).

FACT. In the input is random (all permutations equally likely) 
then the expected running time is Θ(𝑛 log𝑛).







2.9 MergeSort

𝑖1

𝑖2

𝑗

def mergesort(src, dst):
  n = len(src)
  m = int(n/2)

  x1 = new array of length m
  mergesort(src=src[0:m], dst=x1)

  x2 = new array of length n-m
  mergesort(src=src[m:n], dst=x2)

  merge x1 and x2 into dst
  free x1 and x2

  (unless n==1, in which case
  just copy src[0] into dst[0])

2 6 9 3 8 5 11 4 1 7 102 6 9 3 8 5 11 4 1 7 10src

x1

x2

dst

2 6 93 85

1141 7 10

def merge(x1, x2, dst):
  # assert len(dst) == len(x1)+len(x2)
  i1,i2 = 0,0
  for j in 0..(len(dst)-1):
    dst[j] = min(x1[i1], x2[i2])
    advance i1 or i2 appropriately



def mergesort(src, dst):
  n = len(src)
  m = int(n/2)

  x1 = new array of length m
  mergesort(src=src[0:m], dst=x1)

  x2 = new array of length n-m
  mergesort(src=src[m:n], dst=x2)

  merge x1 and x2 into dst
  free x1 and x2

  (unless n==1, in which case
  just copy src[0] into dst[0])

def merge(x1, x2, dst):
  # assert len(dst) == len(x1)+len(x2)
  i1,i2 = 0,0
  for j in 0..(len(dst)-1):
    dst[j] = min(x1[i1], x2[i2])
    advance i1 or i2 appropriately

Assume that the time to create an array of size 𝑚, and to free it, is Θ(𝑚). 



Tick 1, deadline 5 Feb at noon

With cunning, we can 
implement mergesort using 
only ⌊ Τ𝑛 2⌋ extra space.



Can we sort in 𝑂(𝑛 log 𝑛) without using extra memory?

OUR STARTING POINT: SELECTSORT

SelectSort is in-place, and it’s efficient in terms of swaps. But it 
uses very many comparisons, because on each pass it re-scans 
all remaining items to find the maximum.

Backwards SelectSort

largest, in order
repeatedly 
select the 
largest of what 
remains, and 
place it

QUESTION
In each scan we do lots of comparisons, and learn 
a lot about the values. How might we save this 
information, to reuse in the next scan?

WHAT WE WANT

A data structure that is efficient for repeatedly 
extracting the maximum item.

???

largest, in order



2.10 HeapSort

A heap is an almost-full binary tree that satisfies the heap property.
every level except possibly 
the bottom is full, and any 
spaces in the bottom level 
come at the right-hand end

everywhere in the tree, 
parent value ≥ child values

F

C E

DB A

F ≥ C  and  F ≥ E

C ≥ B  and  C ≥ A

E ≥ D

A heap with 𝑛 items has height ⌈log2 𝑛⌉.

n = 6
log2 n = 2.58..
height = 2



F

C E

DB A

0 1 2 3 4 5 6 7 8 9 10

We’ll use a heap to store the items 
that have yet to be placed into the 
“sorted” part of the array.

Conveniently, we can use the 
array itself to store the heap.

Let the children of 𝑥[𝑖] be 
𝑥[2𝑖 + 1] and 𝑥[2𝑖 + 2].

G H I J K



2 6 9 3 8 5 11 4 1 7 10

𝑖

def heapsort(x):
  n = len(x)

  for i in 1..n-1:
    # assert x[0:i] is a heap
    add x[i] to heap and re-heapify

  # assert x[0:n] is a heap

  for i in n..1:
    # assert x[i:n] has largest n-i
    # assert x[0:i] is a heap
    swap x[0] with x[i-1]
    re-heapify x[0:i-1]

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

It’s handy to visualize the data both as an array 
and as a tree, simultaneously. But internally 
there is just a single array of size 𝑛.

11



2

6

9

3

8

5

11

4

1

7

10

𝑖

def heapsort(x):
  n = len(x)

  for i in 1..n-1:
    # assert x[0:i] is a heap
    add x[i] to heap and re-heapify

  # assert x[0:n] is a heap

  for i in n..1:
    # assert x[i:n] has largest n-i
    # assert x[0:i] is a heap
    swap x[0] with x[i-1]
    re-heapify x[0:i-1]

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

It’s handy to visualize the data both as an array 
and as a tree, simultaneously. But internally 
there is just a single array of size 𝑛.

# Re-heapify by bubbling up from i

j = i

while j > 0 and x[j] > x[parent(j)]:
  swap x[j] with x[parent(j)]
  j = parent(j)

heap ok

heap 
violation

heap 
violation

11
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2

6

9

3

8 5

11

4

1 7

10

𝑖

def heapsort(x):
  n = len(x)

  for i in 1..n-1:
    # assert x[0:i] is a heap
    add x[i] to heap and re-heapify

  # assert x[0:n] is a heap

  for i in n..1:
    # assert x[i:n] has largest n-i
    # assert x[0:i] is a heap
    swap x[0] with x[i-1]
    re-heapify x[0:i-1]

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

It’s handy to visualize the data both as an array 
and as a tree, simultaneously. But internally 
there is just a single array of size 𝑛.

# Re-heapify by bubbling up from i

j = i

while j > 0 and x[j] > x[parent(j)]:
  swap x[j] with x[parent(j)]
  j = parent(j)

# Re-heapify by bubbling down from 0

j = 0

while x[j] < max(x[child1(j)], x[child2(j)]):
  swap x[j] with larger child
  j = larger child

heap 
violation

heap 
violation

heap 
ok

11

𝑗



def heapsort(x):
  n = len(x)

  for i in 1..n-1:
    # assert x[0:i] is a heap
    add x[i] to heap and re-heapify

  # assert x[0:n] is a heap

  for i in n..1:
    # assert x[i:n] has largest n-i
    # assert x[0:i] is a heap
    swap x[0] with x[i-1]
    re-heapify x[0:i-1]

# Faster heap creation

for i in (⌊n/2⌋-1)..0:
  # assert trees rooted at (i+1)..n are heaps

  re-heapify the tree rooted at x[i]
  by bubbling down

2 6 9 3 8 5 11 4 1 7 10

𝑖

0 1 2 3 4 5 6 7 8 9 10

0

1 2

3 4 5 6

7 8 9 10

In fact, we can create the initial heap in 𝑂(𝑛).

11
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