How (not) to compute the Fibonacci numbers
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return 1 if n<2 else f(n-2) + f(n-1) Why is this a daft implementation?
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How fred to compute the Fibonacci numbers

FO:F1:1
Igl — I'n—2 + I?n,_]_ forn = 2

We can get ©(n) running time by leveraging
duplication in the dependency graph.
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def f(n):
X = np.ones(n+1)
for i in range(2,n+1):
x[1] = x[1-2] + x[i-1]
return x[n]

cache = {}
def f(n):
if n in cache:
return cachel[n]

time  @n), spae @ ()

\W"‘A@W‘:‘-

else:
res = 1 if n<2 else f(n-2)+f(n-1)
rfocch ht
cache[n] = res :rPU;::*. ne f+cH7
return res 1
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3.1 Practical dynamic programming

The naive recursive solution to the Bellman
equation is often impractical, since the
computation tree typically grows exponentially

)
with the size of the problem. !ﬂ,}d}@
o

In many interesting problems, there is substantial overlap in the subproblems,
permitting polynomial-time solution, using ...

" top-down memo-ization
Simply implement the recursion, and cache the results

= or bottom-up iteration
Start from the leaves and work up
(but we first need to figure out the dependency graph)



A DIY supplier has a steel rod of length n € N, and a machine that can cut it into smaller pieces.
Different lengths can be sold for different prices; a piece of length £ € N fetches p,.

How should it be cut, to maximize profit?

Bellman equation: Let v(n) be the maximum profit achievable from a rod of length n. Then

0 ifn=20
v() =\max {p; +v(n—0)} ifn>0 & vw dapends gn V(11D ( (n=2), v ()
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Example 3.1.1 Matrix chain multiplication

The cost of multiplying two matrices depends on their dimensions:

[. N -k o . [ - ‘.] Ymn multiplications + #(1m — 1)n additions
R T Let’s take the total cost to be Ymn.

£ Xm
mXxXn

If we want to compute the product of several matrices, we have a choice about the order of
multiplication (because matrix multiplication is associative). For example,

ABCDE = (AB)((CD)E) = A (B((CD)E))

Find the least-cost way to compute the product Ay - A - =+ - A4
do X dq di Xd, dn_1 Xd,

Bellman equation: Let v({i, j) be the minimum cost for multiplying A;A; 4 -+ Aj_4, for i <j. Then

0 ifj =i+1
v(&,J) =3 min {didid; +v(i, k) +v(k, )} ifj>i+1
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Bellman equation: Let v(i, j) be the minimum cost for multiplying A;A; 41 -+ Aj_4, fori < j. Then

0 ifj =i+1
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Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s.
Given two strings s and t, what’s the longest subsequence they have in common?

l T H E B A R B I E M| O Vv | E Let’s frame the task as
S R N N I IR N N N N IR N IR choosing a sequence
from these actions:
b O P P E N H E I M E R
I N NN NN i decrement i
\_/ \_/ - S \_/ \_/ \_/ Nu? - y: decrement j
j m  match a character and
decrement 1 & j

Bellman equation: Let v; ; be the length of the LCS between s[0:1i]and t[0:]]. Then

0 ifi=00rj=0
Vi ={Vi-1j VVij-1V (1 + Ui—1,j—1) ifi >0andj > 0and s[i-1]=t[j-1]
Vi_1,j VVijq ifi >0andj >0ands[i-1]+# t[j-1]



Bellman equation: Let v; ; be the length of the LCS between s[0:i]and t[0:]]. Then

0 ifi=00rj=0
Vi =4 Vi-1,j VVij-1V (1 + vi—l,j—l) ifi >0andj > 0ands[i-1]=t[j-1]
Vi_1,j V Vi1 ifi >0andj > 0and s[i-1]+# t[j-1]
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How to extract the programme

v(5) When we compute the maximum
/ v(x) = max {rewardx,a + v(nextx,a)}
let’s also store which a achieved the maximum.
v(4)
v(3
\ ) To find an optimal path, just start at the top and
5 repeatedly pick the best action.
v(2)
v(1)
\ This works whether we’re computing the values
bottom-up, or top-down with memo-ization.
v(0)

QUESTION
What would you do if there are
two equally-good actions?



Example 3.1.2 Longest common subsequence

We produce a table of v; ; = length of longest common subsequence between s[0:i]and t[0:j]

At the same time, we store the optimal action at each state (i, j)

To extract the match, start at the initial state (i, j) = (1en(s),len(t)), then follow the optimal actions.
A longest common substring of ALGORITHM and LOGARITHM is LGRITHM

t = “logarithm” !
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The art of dynamic programming is to formulate the problem
so that we maximize overlap between subproblems.

Example. Find the least-cost way to compute the matrix product AyA; -+ 4,,_4
Recall that matrix multiplication is associative: ABCDE = (AB)((CD)E) =A (B((CD)E))

Let’s think of the problem as “repeatedly, choose a pair of adjacent matrices to multiply”.

Ao de A5 A ds Let v(e) be the minimum cost of multiplying matrices

A B CD E with dimension-sequence e = |e,, €4, ..., €, ]. Then
= n
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do 4y 4,
My, My

A As This is yucky because the dependency graph has lots of nodes

M4 (one node for every possible e for a given list of matrices).

For our other approach, #nodes is quadratic in n.



Example 3.2.1 Resource allocation

Several different university societies have all requested to book the sports hall, request k having start time u; € R
and end time v, € R. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

09:00 12:00 15:00 18:00 21:00

f(X\ = wmax i requushy thok con be simvlbomtonsly semified from o ceb X

£(9) =0 rex:
£(X) = max gl 4 f(“mfukg> r -(( %"VA 5
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EXERCISE wish Jefeve b ¢lowl thot gfeud
Find a different formulation, not based on f" o«-ﬂwv R Q.V\JS
sets, so that the subproblems overlap better.
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