Adam Smith (1723 —1790), an
economist and philosopher of the
Scottish Englightenment.

He argued that if individuals act
greedily in their own self-interest
then the outcome will be beneficial
for society.

“IThe individual who acts for his own
gain] is led by an invisible hand to
promote an end which was no part
of his intention.”

Example 3.2.1 Resource allocation

Several different university societies have all requested to book the sports hall, request k having start time u; € R

and end time v, € R. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

09:00 12:00 15:00 18:00 21:00

Let f(X) be the maximum number of requests in a set X that can be simultaneously satisfied. Then

0 ifX=0
fx) = max {1 +f (events in X that end) +f (events in X that start

)} itx =0

kEX before k starts after k ends

QUESTION
Can we find a different way to set up
this task so that the states aren’t sets?

Example 3.2.1 Resource allocation

‘-Vlh\ , G(k)& N ea(‘_)'
Several different university societies have all requested to book the sports hall, request k having start time wZz&€R
and end time v—&1R: The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

k)€ NV

to tq ty t3 Uy ts te ty tg g tiot11 t12 t13 t14

A

Let's woke ehis problem a ble more odg or it - {rdwcﬂj by ok ing it eliscrete,
Iin§bead Gf using real nombers (U, VR) € RXR fov gront auncd end Erwes (@R Uge
nkegey givne inddexas (U (R), V(B) e wx N, Sncloxes fwko o (€ S
Crwheres g imeporntS < 6 LK € R

“All problems in computer science can be “Adding a layer of indirection creates more
solved by adding a layer of indirection.” problems than it solves.”

Example 3.2.1 Resource allocation Ak € N

"g(‘;\ , G(h§€ N ea(‘_)'
Several different university societies have all requested to book the sports hall, request k having start time wZ&R
and end time v—&1R: The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

to tq ty t3 Uy ts te ty tg g tiot11 t12 t13 t14

A

-

Let 3(([’3\ - mox H v\ecIMSfS ehat com e sod‘(‘sl\&ol m [t éJ] for Ly,
e wowtk £ (on) (whore the " tutereseing” Elwe points awe €, L6, € - < Ea).

The Bellman equation Is
o ‘ C=)
f(L‘J:))_’ < ("(h))g
ER %(r{h,u\lh)) rf(vIR,)

R € X(5) - e
Wlhwe X ((:/J\ = §N7M€3FS Ehet foE in (t‘[,(‘_sz = gﬁ e X M(ﬂ) 7 C avwd Vv =) D=

3.2 Greedy algorithms

To compute the best action from state x using the Bellman recursion,

we need to evaluate v(+) for all of x’s children in the dependency graph.

What if instead we use a simple heuristic to choose the next action?

The greedy strategy, with heuristic function h,

is to pick action

arg max h(x, a)
a€eA

Heuristics are fast, but typically don’t give an optimal
solution to the overall problem.

However, in some cases, if we set the problem up carefully,
we can show that a greedy strategy is optimal.

v(5)

SN
\ v(3)
v(2) 5/

\ v(1)

v(0)

09:00

12:00

15:00

18:00

21:00

Heuristic 1: always pick the shortest available activity X Poes " ofwerys wodl

A

C

B

[

Heuristic 2: always pick the available activity with the fewest overlaps X Poesnf W*’Y’ ol

A

B

C

D

Heuristic 3: pick the available activity with the earliest end-time

What olaey f“*;d anen weam ¢ How con we express it o« ol fraposin‘a\/\
tl/‘av‘"(j aAML(N‘AbeO Pmdf? (,el"S ot (,gcvzt sbont \bjl Mwlf-(\‘*y SsowQ dgfi\m;hw,

let X be o set o requasfs. D
Let EE(X) =X e the wet & evewts M X Wit the eowlidst epd-tiwe, | There woy be vware fhaw ome, E.:,
let Y &£X e a wmakinmed wor(up-ﬁm subsct- —
TheorewA W EEX)
_ \ (l:j‘/ <

Ths fsat enen true . Covg ielov 7 Thea reitber the eNemby g ¢ EECX) owe i Y.

N

plso, t (sat M,ofu(’.

this sus DR e EEX), which & onkalpfl, feoune X dgesnt fU o wiich keEE ()

we shouled pick,
W hat we mw{/y wowt fo sou " we dont (55 cwtff“'w:'y é] Prcuy oMe aré;fffm\ly ke EECR)"
FI\V\‘J M’Q“fb
w Y kR éEE(’() :ZY’,C.X such tHaot keyl amel y|f‘sa\1ex{oxffmm,\9! ‘Yr[=|y'.

. E(X) Ly
—1 @m can ‘bl‘ck eirber c? the EEX) l::]Wmm
e requats, wdf“"“’l soL ———

"’—”ﬁ'% 1
AN o’P{'MMl y / dP(-(\MAaL)" cd\/\l‘ou‘uﬁ.ﬁ‘j F.

E(ﬂ
(&= / w ! M@f"/j

a7V l::Jmm
/.@zm -

Thaorem v k € EECD) Ty ex suchthot kReY' awsl V' 5 overby frez amst

/

(Y[=171

&‘ﬁ Pick. em M"N“:'y gutian Y o the resource allocation PPJb(LW\,
omdl Mo\Mm\f:luAy R e EE),

Either R eV mwhich core et V' 27, and we e olave,

or R&Y, in which cout Lts pick some L e EE()’) ool et }/' =YV gb.i\ %*Q.;'

@ ceam: keY amd Y isoverlpfrer ond (y'(= (%1
A R e sl one Fem, rewmoved ove s

ety built
we exel=y L Rowenins To Prove, [y (=171

Y fo ive
G CLAIM. Y’ i overtep-frez.
© SoppRe v ¢ soppec fheve xsme a,b € Y', a#b, that ovexlop,

£ ither otk owd bFh M which cog¢ o, b€, but 7 S overtap-free Y 4
ov azkor b=R, wleg azR. Sue bey' andl b¥4&, beY.

gine beY ool LeY, b dres kb overfep with L.
So Eittawr b stowts afrer L enly — but RefE(F) so end () £ end (2), » b cait overlop b,

o b ends befpre L sfonty —— ,W\Po.sSl.bQ, by chore g Lwobe € EEC), K
We conelole that ® s fedd, @ @ S € Ty proves @

%
EE(*‘ —
)g ¢ zfzm Y’j
A

c:% L
l:j
MCZ]:ﬁ C:ﬁ

! ' y'=1rl
Theorem Y kR € EECD) T Y'eX swhthet ke awsl V' & overby frea avdl |

I call this a “might as well” proof.
We “might as well” pick some arbitrary k € EE(X), and it won’t hurt us
i.e. won’t prevent us from achieving an optimal allocation.

The proof structure is:

1. Take an optimal solution Y

2. Propose a tweaked version Y’ that satisfies the property we want
3. Show that Y’ is also an optimal solution

To be able to prove (3), we need to choose a very cunning tweak for (2)!

Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s.
Given two strings s and t, what’s the longest subsequence they have in common?

Let’s frame the task as

l T|HJ|E|(B|A|]R|B | E| M| O |V | E choosing a sequence
r N AN AN AN A A AN A A A AN from these actions:
X (0] P P E N H E I M E R 1 decrement 1
1 ‘\- ,/"\ /’k\ /’K\ /’K\ ,/'k\ ,/V\ /’R\ /"’\ ,/l j decrement J
m match a character and

decrement 1 & j

Bellman equation: Let v; ; be the length of the LCS between s[0:i]and t[0:J]. Then

ifi=0o0rj =40

ifi>0andj>0and

Vi_1,j V Vi1 ifi >0andj > 0ands[i-1]# t[j-1]

| Three actiond oweu b (.
ClalMm:> We Mlyu' W wel plch Mu M ackion
Preot sevcivee. bt 9 e an a—pe"mq(action seqUlA e Cyuldiag 9 (-Cs)

ETMhar g vses this g o Fere's a Yy’ jUst ag good ehat dog,

3.2.2 Huffman codes

We have a string that we’d like to compress a string into a sequence of bits.
We want a code that says how each character is to be encoded, e.g.

A B C D E F G H I

1100 111101 01010 11011 001 110101 110100 0001 0111

Our code has to produce uniquely decodable bit sequences. We
can ensure this by insisting on a code that takes the form of a
tree, called a prefix-free code.

O [El O Q O Q Q Q

00010011011110111100071011001010
Rl M B oM@ B o060 R QM Q

<l Q o L1 L] [© [b] O Q

] RS Lo
Problem statement. Find a prefix-free code that

minimizes the average codelength L =). p;?;,
where p; is the frequency of letter i 3
and Z; is the length of its codeword.

vl R (& ¢ [B]

Beautiful greedy algorithm. Left as an optional tick. =

	Slide 1
	Slide 2: Example 3.2.1 Resource allocation
	Slide 3: Example 3.2.1 Resource allocation
	Slide 4: Example 3.2.1 Resource allocation
	Slide 6: 3.2 Greedy algorithms
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Example 3.1.2 Longest common subsequence
	Slide 13: 3.2.2 Huffman codes

