Adam Smith (1723 —1790), an
economist and philosopher of the
Scottish Englightenment.

He argued that if individuals act
greedily in their own self-interest
then the outcome will be beneficial
for society.

“IThe individual who acts for his own
gain] is led by an invisible hand to
promote an end which was no part
of his intention.”



Example 3.2.1 Resource allocation

Several different university societies have all requested to book the sports hall, request k having start time u; € R

and end time v, € R. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

09:00 12:00 15:00 18:00 21:00

Let f(X) be the maximum number of requests in a set X that can be simultaneously satisfied. Then

0 ifX=0
fx) = max {1 +f (events in X that end) +f (events in X that start

)} itx =0

kEX before k starts after k ends

QUESTION
Can we find a different way to set up
this task so that the states aren’t sets?




Example 3.2.1 Resource allocation
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Several different university societies have all requested to book the sports hall, request k having start time wZz&€R
and end time v—&1R: The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?
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“All problems in computer science can be “Adding a layer of indirection creates more
solved by adding a layer of indirection.” problems than it solves.”
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3.2 Greedy algorithms

To compute the best action from state x using the Bellman recursion,

we need to evaluate v(+) for all of x’s children in the dependency graph.

What if instead we use a simple heuristic to choose the next action?

The greedy strategy, with heuristic function h,

is to pick action

arg max h(x, a)
a€eA

Heuristics are fast, but typically don’t give an optimal
solution to the overall problem.

However, in some cases, if we set the problem up carefully,
we can show that a greedy strategy is optimal.

v(5)

SN
\ v(3)
v(2) 5/

\ v(1)

v(0)
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Heuristic 1: always pick the shortest available activity X Poes " ofwerys wodl

A

C

B

[

Heuristic 2: always pick the available activity with the fewest overlaps X Poesnf W*’Y’ ol

A

B

C

D

Heuristic 3: pick the available activity with the earliest end-time
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I call this a “might as well” proof.
We “might as well” pick some arbitrary k € EE(X), and it won’t hurt us
i.e. won’t prevent us from achieving an optimal allocation.

The proof structure is:

1. Take an optimal solution Y

2. Propose a tweaked version Y’ that satisfies the property we want
3. Show that Y’ is also an optimal solution

To be able to prove (3), we need to choose a very cunning tweak for (2)!



Example 3.1.2 Longest common subsequence

A subsequence of a string s is any string obtained by dropping zero or more characters from s.
Given two strings s and t, what’s the longest subsequence they have in common?

Let’s frame the task as

l T|HJ|E|(B|A|]R|B | E| M| O |V | E choosing a sequence
r N AN AN AN A A AN A A A AN from these actions:
X (0] P P E N H E I M E R 1 decrement 1
1 ‘\- ,/"\ /’k\ /’K\ /’K\ ,/'k\ ,/V\ /’R\ /"’\ ,/l j decrement J
m  match a character and

decrement 1 & j

Bellman equation: Let v; ; be the length of the LCS between s[0:i]and t[0:J]. Then
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Vi_1,j V Vi1 ifi >0andj > 0ands[i-1]# t[j-1]
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3.2.2 Huffman codes

We have a string that we’d like to compress a string into a sequence of bits.
We want a code that says how each character is to be encoded, e.g.

A B C D E F G H I

1100 111101 01010 11011 001 110101 110100 0001 0111

Our code has to produce uniquely decodable bit sequences. We
can ensure this by insisting on a code that takes the form of a
tree, called a prefix-free code.

O [El O Q O Q Q Q

00010011011110111100071011001010
Rl M B oM@ B o060 R QM Q

<l Q o L1 L] [ © [b] O Q

] RS Lo
Problem statement. Find a prefix-free code that

minimizes the average codelength L = ). p;?;,
where p; is the frequency of letter i 3
and Z; is the length of its codeword.

vl R (& ¢ [B]

Beautiful greedy algorithm. Left as an optional tick. =
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