
Adam Smith (1723 – 1790), an
economist and philosopher of the
Scottish Englightenment.

He argued that if individuals act
greedily in their own self-interest
then the outcome will be beneficial
for society.

“[The individual who acts for his own
gain] is led by an invisible hand to
promote an end which was no part
of his intention.”

Example 3.2.1 Resource allocation
Several different university societies have all requested to book the sports hall, request 𝑘 having start time 𝑢𝑘 ∈ ℝ
and end time 𝑣𝑘 ∈ ℝ. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

09:00 12:00 15:00 18:00 21:00

A

B

C

D

E

F

G

H

I

Let 𝑓(𝑋) be the maximum number of requests in a set 𝑋 that can be simultaneously satisfied. Then

𝑓 𝑋 = ቐ
0 if 𝑋 = ∅

max
𝑘∈𝑋

1 + 𝑓
events in 𝑋 that end

before 𝑘 starts
+ 𝑓

events in 𝑋 that start
after 𝑘 ends

if 𝑋 ≠ ∅

QUESTION
Can we find a different way to set up
this task so that the states aren’t sets?

Example 3.2.1 Resource allocation
Several different university societies have all requested to book the sports hall, request 𝑘 having start time 𝑢𝑘 ∈ ℝ
and end time 𝑣𝑘 ∈ ℝ. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

𝑡0 𝑡1 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14

A

B

C

D

E

F

G

H

I

𝑡2

“All problems in computer science can be
solved by adding a layer of indirection.”

“Adding a layer of indirection creates more
problems than it solves.”

Example 3.2.1 Resource allocation
Several different university societies have all requested to book the sports hall, request 𝑘 having start time 𝑢𝑘 ∈ ℝ
and end time 𝑣𝑘 ∈ ℝ. The hall can only fit one activity at a time. What is the maximum number of requests that
can be satisfied without overlap?

𝑡0 𝑡1 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14

A

B

C

D

E

F

G

H

I

𝑡2

3.2 Greedy algorithms
To compute the best action from state 𝑥 using the Bellman recursion,
we need to evaluate 𝑣 ⋅ for all of 𝑥’s children in the dependency graph.

The greedy strategy, with heuristic function ℎ,
is to pick action

arg max
𝑎∈𝐴

 ℎ(𝑥, 𝑎)

Heuristics are fast, but typically don’t give an optimal
solution to the overall problem.

However, in some cases, if we set the problem up carefully,
we can show that a greedy strategy is optimal.

𝑣(5)

𝑣(4)

𝑣(2)

𝑣(0)

𝑣(3)

𝑣(1)

What if instead we use a simple heuristic to choose the next action?

B

A C

Heuristic 1: always pick the shortest available activity

09:00 12:00 15:00 18:00 21:00

A

B

C

D

E

F

G

H

I

Heuristic 2: always pick the available activity with the fewest overlaps

A B C D

E

F

G

H I

J

K

Heuristic 3: pick the available activity with the earliest end-time

I call this a “might as well” proof.

We “might as well” pick some arbitrary 𝑘 ∈ EE(𝑋), and it won’t hurt us
i.e. won’t prevent us from achieving an optimal allocation.

The proof structure is:
1. Take an optimal solution 𝑌
2. Propose a tweaked version 𝑌′ that satisfies the property we want
3. Show that 𝑌′ is also an optimal solution

To be able to prove (3), we need to choose a very cunning tweak for (2)!

𝑣𝑖,𝑗 = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝑣𝑖−1,𝑗 ∨ 𝑣𝑖,𝑗−1 ∨ 1 + 𝑣𝑖−1,𝑗−1 if 𝑖 > 0 and 𝑗 > 0 and s[i−1]=t[j−1]

𝑣𝑖−1,𝑗 ∨ 𝑣𝑖,𝑗−1 if 𝑖 > 0 and 𝑗 > 0 and s[i−1] ≠ t[j−1]

Example 3.1.2 Longest common subsequence
A subsequence of a string 𝑠 is any string obtained by dropping zero or more characters from 𝑠.
Given two strings 𝑠 and 𝑡, what’s the longest subsequence they have in common?

T H E B A R B I E M O V I E

O P P E N H E I M E R
i

j

Bellman equation: Let 𝑣𝑖,𝑗 be the length of the LCS between s[0:i] and t[0:j]. Then

Let’s frame the task as
choosing a sequence
from these actions:

𝒾 decrement i

𝒿 decrement j

𝓂 match a character and
decrement i & j

3.2.2 Huffman codes
We have a string that we’d like to compress a string into a sequence of bits.
We want a code that says how each character is to be encoded, e.g.

A B C D E F G H I ⋯

1100 111101 01010 11011 001 110101 110100 0001 0111

Our code has to produce uniquely decodable bit sequences. We
can ensure this by insisting on a code that takes the form of a
tree, called a prefix-free code.

0001001101111011110001011001010

Problem statement. Find a prefix-free code that
minimizes the average codelength 𝐿 = σ𝑖 𝑝𝑖ℓ𝑖,
where 𝑝𝑖 is the frequency of letter 𝑖
and ℓ𝑖 is the length of its codeword.

Beautiful greedy algorithm. Left as an optional tick.

	Slide 1
	Slide 2: Example 3.2.1 Resource allocation
	Slide 3: Example 3.2.1 Resource allocation
	Slide 4: Example 3.2.1 Resource allocation
	Slide 6: 3.2 Greedy algorithms
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Example 3.1.2 Longest common subsequence
	Slide 13: 3.2.2 Huffman codes

