SECTION 5.7

Using dynamic
programming to find
shortest paths
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Can | use dynamic programming for this?
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= What are the actions?

= What is the value/cost that I’'m optimizing?
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Theorem page2s

Let g be a directed graph where each edge is labelled with a weight.
Assume|g has no —ve weight cycles. )

Then, F;(s,|V| — 1) is the minimum weight from s to t over paths of any length.
\in werds, o et Mmi'n Wn('y‘d PN, it soffeat vo ook only ok povity with ¢&(vi-) R*‘%{

Algorithm EXERCISE. Add in a detection
To find a minweight path from s to ¢, just compute F; (s, |V| — 1) subroutine (similar to Bellman-

then reconstruct the optimal programme as usual, by replaying the optimal actions. | Ford) that detects whether g
satisfies the assumption.
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F;(v,n) = min (Ft(v,n = 1),Wr:111]i_€1w{weight(v - w) + F(w,n — 1)})

0 ifv=t — o
Fe(v,0) = {oo ifv+t

Algorithm

To find a minweight path from s to ¢, just compute F; (s, |V| — 1)
then reconstruct the optimal programme as usual.
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2: T e demi el
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SECTION 5.8
Finding all-to-all
shortest paths
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Definition

The betweenness centrality
of an edge is the number of
shortest paths that use that

edge, considering paths o
between all pairs of vertices - Y
in the graph 1
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What'’s the cost of finding all-to-all minimum weights? st

cost costif |E| = |V|%, a € [1,2]

V X Dijkstra VXO(E+ViegV) OW™** +V2]ogV)

for weights > 0

V % Bellman-Ford V x O(VE) O(V?2t®)

V X dyn.prog. Vx0(V?+VE) O(V2*9)

See Discrete Maths lecture
4 for how to write the

0, (V3 log V) 0 (V3 lOg [/) Bellman recursion as a

matrix multiplication.

dynamic prog. ~
with matrix trick

.. . The (n x n)-matrix M = mat(R) of a finite directed graph ([nl,R)
J O h NSOoN same as D |J kst ra , for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix

but works with —ve edge welghts multiplication and addition as M,, where

MO - In
Mg = Lo+ (M-M)
This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.




Johnson’s algorithm
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0. The graph where we want all-to-all minweights
Denote the edge weights by w(u —= v)

1. The augmented graph

Add a new vertex s, and run Bellman-Ford
O+ _ to compute minimum weights from s,

d,, = minweight(s to v)

-3 0 o 2. The helper graph
Define a new graph with modified

2 o .
o /7 edge weights
/ \ \W’(u—>v)=du+w(u—>v)—dv
° w'=04-‘+-("3)=7

3. Run Dijkstra to get all-to-all distances in

the helper graph, distance’(u to v)
CLAIM: W'%0 on ol edlyes,

4. Translation

minweight(p to q) = distance’(p to q) —d,, + d,
CLAIM. Thas computes Forrece minwedqugs

Mm e m}]ﬂd M.



Lemma. The edge weights in the helper graph are all > 0
G
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. . . 2
Lemma. The translation step computes correct minweights: e pes clarm : page 28
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;. 0. The graph where we want all-to-all minweights
S Denote the edge weights by w(u —= v)
(S
0
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@ Add a new vertex s, and run Bellman-Ford 7yuf)h: oV)
to compute minimum weights from s, .
/" d,, = minweight(s to v) lost Bellwan-fovd: O(VE)
3
2. The helper graph
Define a new graph with modified (Rt OCE)
edge weights
\ w(u—-v)=d,+w(lu-rv)—d,
3. Run Dijkstra to get all-to-all distances in cont
A ) J &€ ) vV X
the helper graph, distance’ (u to v) O(E“”“)‘o
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4. Translation j Coye OV*
minweight(p to q) = distance’(p to q) —d, + d,



Johnson’s algorithm is an example
of the translation strategy.

-%

As well as specifying
the two translations,
we also need to prove
that this procedure
does indeed solve the
original problem!
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