
SECTION 5.7

Using dynamic
programming to find
shortest paths

3.1 The Bellman equation and dynamic programming

Let 𝑣(𝑥) be the total reward that can be gained starting in state 𝑥. Then

𝑣 𝑥 = ൝
termreward𝑥MMMMMMMMNMM if 𝑥 is terminal

max
𝑎∈𝐴

reward𝑥,𝑎 + 𝑣 nextstate𝑥,𝑎 otherwise

a b

c

d

1

2

3

-4

4

I’d like to find a minimum-weight path from 𝑎 to 𝑑.
Can I use dynamic programming for this?

How can I frame my task as
“find an optimal sequence
of actions”?

▪ What are the actions?
▪ What is the value/cost that I’m optimizing?

a b

c

d

1

2

3

-4

4

Theorem
Let 𝑔 be a directed graph where each edge is labelled with a weight.
Assume 𝑔 has no –ve weight cycles.

Then, 𝐹𝑡(𝑠, 𝑉 − 1) is the minimum weight from 𝑠 to 𝑡 over paths of any length.

Algorithm
To find a minweight path from 𝑠 to 𝑡, just compute 𝐹𝑡(𝑠, 𝑉 − 1)
then reconstruct the optimal programme as usual, by replaying the optimal actions.

page 25

EXERCISE. Add in a detection
subroutine (similar to Bellman-
Ford) that detects whether 𝑔
satisfies the assumption.

Algorithm
To find a minweight path from 𝑠 to 𝑡, just compute 𝐹𝑡(𝑠, 𝑉 − 1)
then reconstruct the optimal programme as usual.

𝐹𝑡 𝑣, 𝑛 = min 𝐹𝑡 𝑣, 𝑛 − 1 , min
𝑤:𝑣→𝑤

weight 𝑣 → 𝑤 + 𝐹𝑡(𝑤, 𝑛 − 1)

𝐹𝑡 𝑣, 0 = ቊ
0 if 𝑣 = 𝑡
∞ if 𝑣 ≠ 𝑡

Running time

Dijkstra
if all weights ≥ 0

𝑂 𝐸 + 𝑉 log 𝑉

Dijkstra
if some weights < 0

??? (might not even terminate)

Bellman-Ford 𝑂(𝑉𝐸)

dynamic prog. 𝑂(𝑉2 + 𝑉𝐸)

SECTION 5.8

Finding all-to-all
shortest paths

P

Definition
The betweenness centrality
of an edge is the number of
shortest paths that use that
edge, considering paths
between all pairs of vertices
in the graph

page 27

cost cost if 𝐸 = 𝑉 𝛼, 𝛼 ∈ [1,2]

𝑉 × Dijkstra
for weights ≥ 0

𝑉 × 𝑂(𝐸 + 𝑉 log 𝑉) 𝑂(𝑉1+𝛼 + 𝑉2 log 𝑉)

𝑉 × Bellman-Ford 𝑉 × 𝑂(𝑉𝐸) 𝑂(𝑉2+𝛼)

𝑉 × dyn.prog. 𝑉 × 𝑂(𝑉2 + 𝑉𝐸) 𝑂(𝑉2+𝛼)

What’s the cost of finding all-to-all minimum weights?
page 27

Johnson same as Dijkstra,
but works with –ve edge weights

dynamic prog.
with matrix trick 𝑂(𝑉3 log 𝑉) 𝑂(𝑉3 log 𝑉)

See Discrete Maths lecture
14 for how to write the
Bellman recursion as a
matrix multiplication.

Johnson’s algorithm

0

0 0 0

0

S

1. The augmented graph
Add a new vertex 𝑠, and run Bellman-Ford
to compute minimum weights from 𝑠,

𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0 2. The helper graph
Define a new graph with modified
edge weights

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

3

2

1

-2
-1 4

-2
0. The graph where we want all-to-all minweights
Denote the edge weights by 𝑤(𝑢 → 𝑣)

3. Run Dijkstra to get all-to-all distances in
the helper graph, distance′(𝑢 to 𝑣)

4. Translation
minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞

page 28

0

0 0 0

0

S

𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

Lemma. The edge weights in the helper graph are all ≥ 0

3

2

1

-2
-1 4

-2

edge weights 𝑤(𝑢 → 𝑣)

page 28

original: helper:

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

3

2

1

-2
-1 4

-2

edge weights 𝑤(𝑢 → 𝑣)

3

2

3

0
0 7

0

Lemma. The translation step computes correct minweights:

minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞

page 28

original: helper:

0

0 0 0

0

S

1. The augmented graph
Add a new vertex 𝑠, and run Bellman-Ford
to compute minimum weights from 𝑠,

𝑑𝑣 = minweight(𝑠 to 𝑣)

3

2

3

0
0 7

0 2. The helper graph
Define a new graph with modified
edge weights

𝑤′ 𝑢 → 𝑣 = 𝑑𝑢 + 𝑤 𝑢 → 𝑣 − 𝑑𝑣

3

2

1

-2
-1 4

-2
0. The graph where we want all-to-all minweights
Denote the edge weights by 𝑤(𝑢 → 𝑣)

3. Run Dijkstra to get all-to-all distances in
the helper graph, distance′(𝑢 to 𝑣)

4. Translation
minweight 𝑝 to 𝑞 = distance′ 𝑝 to 𝑞 − 𝑑𝑝 + 𝑑𝑞

page 28

so
lve

Johnson’s algorithm is an example
of the translation strategy.

problem we
want to solve

helper
problem

solution

solution

As well as specifying
the two translations,
we also need to prove
that this procedure
does indeed solve the
original problem!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

