SECTION 7/
Advanced data structures

SECTION 7.1

Aggregate analysis

oo w v,

- E P - -

S - -
. -

2

ST You’ve heard the
W (\’-" \\\ «
AN moral: “slow and

TRy ni ¥ » BRRI R steady wins the race”

~
l.c‘\
QW

\

st Three WiFi Call = 14:48 @ 4 96% = o' Three WiFi Call = 14:48 @ 7 96%

Analysis Analysis
Time min/km Time min/km
151
3.
10+
2,
5,
“.
01 | . . | 01 | : ‘ , .
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
10km 10km

My version: “whoever

) 5 = o O = finishes the race
® ® & ® ®© 5 fastest wins the race”

Explore Record Profile Training Explore Record Profile Training

page 51
Running time of each operation,
in a run of Dijkstra’s algorithm

M popmin M push decreasekey

with a binary heap
Don’t worry about the

II I I I I worst-case cost of each
H =N

individual operation.

time
Worry about the
worst-case aggregate cost

I I of a
al B_E O sequence of operations.

time

with a cleverer heap

total time = O(V) X Cpopmin
+0(E) X Cpush/dec.key

Advanced data structures involve a clever design tradeoff,
to make sequences of operations cheaper:

o’

»* individual operations are usually cheap, but occasionally expensive

NS

» the worst-case aggregate cost of a sequence of m operations is
cheaper than m times the worst-case of a single operation

DOUBLY-LINKED LIST PYTHON LIST

X = DoublylLinkedList(:::) n ftewms X = [+] 0 1cems

x[i] on) x[i] o)

x.append(-) o©cCl) x.append(:) o) o5 velly,

sometives O(n)
head G

hut M = appenel £
s AVWAYS o %6 CH)

value: 3 j,
nextO

prev () value: 1

next @

prev O

To design advanced data structures,
we need to be able to reason about
aggregate costs. How?

’0

» Just be clever and
work hard

4

»* Use an accounting trick called
amortized costs

x.append(:) (N C2UY
sometives O(n)

bt WM = appencl ()
s AVWAYS onx O

SECTION 7.2, 7.3
Amortized costs

page 53

class MinList<T>: Stage O
def append(T value): append O) = Use a linked list
append a new value mn 0(n) " min iterates over the entire
def flush(Q): a =i cpems, list
empty the list
def foreach(f): A mi"
do f(x) for each item opP ? J Stage 1
def T minQ): 100 DODD w Use alinked list
return the smallest . " min caches its result, so that
. . . Mmin s O(n) . .
(without removing it) WOVt o4, next time it only needs to

iterate over newer values

Stage 2

quev\J shll ©€V) = Use a linked list
min tsmew 00) = Store the current minimum,

BuE fook Hhue b & and update it on every append
wosred work ?

Stage 3

= min caches its result,
the same as Stage 1

= ... but weargueit’sjust as
good as Stage 2

