SECTION 7/
Advanced data structures

SECTION 7.1

Aggregate analysis
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Running time of each operation,
in a run of Dijkstra’s algorithm

M popmin M push decreasekey

with a binary heap
Don’t worry about the

II I I I I worst-case cost of each
H =N

individual operation.

time
Worry about the
worst-case aggregate cost

I I of a
al B_E O sequence of operations.

time

with a cleverer heap

total time = O(V) X Cpopmin
+0(E) X Cpush/dec.key




Advanced data structures involve a clever design tradeoff,
to make sequences of operations cheaper:

o’

»* individual operations are usually cheap, but occasionally expensive

NS

» the worst-case aggregate cost of a sequence of m operations is
cheaper than m times the worst-case of a single operation
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To design advanced data structures,
we need to be able to reason about
aggregate costs. How?
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» Just be clever and
work hard

4

»* Use an accounting trick called
amortized costs
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SECTION 7.2, 7.3
Amortized costs
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class MinList<T>: Stage O
def append(T value): append O) = Use a linked list
# append a new value mn 0(n) " min iterates over the entire
def flush(Q): a =i cpems, list
# empty the list
def foreach(f): A mi"
# do f(x) for each item opP ? J Stage 1
def T minQ): 100 DODD w Use alinked list
# return the smallest . " min caches its result, so that
. . . Mmin s O(n) . .
# (without removing it) WOVt o4, next time it only needs to

iterate over newer values

Stage 2

quev\J shll ©€V) = Use a linked list
min tsmew 00) = Store the current minimum,

BuE fook Hhue b & and update it on every append
wosred work ?

Stage 3

= min caches its result,
the same as Stage 1

= ... but weargueit’sjust as
good as Stage 2




