For advanced data structures like a Python list or a
Priority Queue,

** We should care about the aggregate cost of a
sequence of operations

** This might not be as bad as the per-operation
worst cases suggest

TODAY

¢ Amortized costs and potential functions are a
handy way to reason about aggregate costs

S

class MinList<T>:

def

def

def

def

append(T value):
append a new value

flush():
empty the list

foreach(f):
do f(x) for each item

T min():
return the smallest
(without removing it)

Stage O

= Use alinked list
» min iterates over the entire
list

Stage 1

= Use a linked list

min caches its result, so that
next time it only needs to
iterate over newer values

Stage 2

= Use a linked list
= Store the current minimum,
and update it on every append

Stage 3

= min caches its result,
the same as Stage 1

= ... butweargueit’sjust as
good as Stage 2

let n = #items

append is O(1)
min i5 O(n)

min is O(n)
in the worst case

append is ©(1)
min i5 0(1)

N
m l
append append append
Capp Covp Capp <, + N¢
- aecumulm'\’-m
append append append
Cop + |63 Cagp +| €y Cagp H 2

3

Stage 3

= min caches its result,
the same as Stage 1

= ... butweargueit’sjust as
good as Stage 2

page 53

page 55

<, E C, (, Cs
append sappend append min
e L’— > /
A b, / CHCt € v 4 (g C
1) LG Ch G L GG EGr GRS G F Gt 3T T
(': 0 ¢, (; ¢!
append " append append min
I L words: P’W’Ciw'fwﬁbw’
o E 7 aggregate 4 @93y

we'd (e o be o\bQ fo reogon abevt

ogg regoute frue <3, f(mm
clovery cam Ehivk op amertizd @b
¥ US, [t povkes ey ro do So,

FUNDAMENTAL INEQUALITY OF AMORTIZATION

Let there be a sequence of m operations, applied to an initially-empty
data structure, whose true costs are ¢y, €3, ..., C;. SUPPOSE someone
invents cg, €5, ..., Cpy- These are called amortized costs if

i+t <c+-+¢ forall j<m

page 55

< 2 (, Ce :
append append append min .
— ﬁH

¢, ¢, ;' Co -
append append append min %

I Ex. sheet 6 q.6 asks you to

. = S think through why this is
. a sensible restriction

FUNDAMENTAL INEQUALITY OF AMORTIZATION

Let there be a sequence of m operations, applied to an initially-empty
data structure, whose true costs are ¢4, ¢5, ..., C;. SUPPOSE someone
invents cq, €5, ..., Cpy. These are called amortized costs if

¢+t <c+-+¢ forall j<m

' 55
(I've des gned a data structure that) Page

supports push at amortized cost
0(1) and popmin at amortized cost
O(log M), assuming the number o
items never exceeds N,

wWe wonmt fo fall abovVE agqgrepass
cH3 S Sequanss X operotiovy,
ﬂl\N&(h]l\xy a Mmix q .POSL\ owd FEPMM
Tows # Thewms Fuckoade over the

oI o% Hege gpeveioy, Thody W
e bovud Jwelves tus circuitous

language abeut never exceeds N

Amortized costs make it easy for the user to reason about aggregate costs.

For any sequence of m; X push and m, X popmin,

aggregate cost < m; O(1) +m, O(logN) = 0(m; + m,logN)

I've designed a data structure that
supports push at amortized cost 0(1)
and popmin at amortized cost O(log N),
assuming the number of items never
exceeds N,

Amortized costs make it easy for the user to reason about aggregate costs.

For any sequence of m,; X push and m, X popmin,

aggregate cost < m; 0(1) + m, O(logN) = 0(m, + m,logN)

Wihaw we've (el " push ke amortizeel cea€ 00), pepmiu hoy amevtized et O(leg N) " | +Hacs

Means :
s eacl P”>l”/P°PW“"' celk M‘y(w pene s oNN 9((‘70«@ ifferent ameverzed (oz€, bot nonatihelegg

3 k=20, /\(0 = \{ N > N, .DJVeJ\y s(\ﬁ(& POP(/\A\‘V\’S ANSTE() e s £ K (a)'j W\
Ao~y s:‘vt7(< Pus&’s emortied (o 7y L K

(N any eczouev\a 5(dpS (5(0««7\7 frenm ewp@) w haare #:‘NW% s ol/wcup LN

Trom, by M Fundawawsd Traguality, (ov @y sequens f ops (stoutivy from <wply)

oke req cre
?ﬁﬁm Z m%l%‘ SO m k+ m, k(c’? N
qree

oper ey aqg,\/wt“«w whaove w = #push, my = # poprra.

SECTION 7.4
Potential functions

or, how on earth do we come up with
useful amortized costs?

» Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

“* Let the ‘accounting’ cost of an operation be: (accountmg) = (true) +(credit) —(credit)

cost cost it stores it releases

s Let’s ‘pay ahead’ for the potentially-costly operations

page 57
class MinList<T>:

def append(T value):

2 2.
def T min(): 5 5
append append min append append append min
Cq Cq cm + 2¢ Ca Ca Ca cu + 3¢ aggregate

true cost

» Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

accounting) . (true) +(credit) _(credit)
it stores it releases

s Let the ‘accounting’ cost of an operation be: (

cost cost

s Let’s ‘pay ahead’ for the potentially-costly operations

class MinList<T>:

s

def append(T value): Store | €

append a new value 4(’(:0(&
2 2,
def T minQ): Y > >
caches the result, so we rekw}{l'
only need to iterate over -
newly-appended items crco\AL‘. @ @ @ @ @
append append min append append append min
Cy Cy Cm + ZCI Cy ‘ Cy Cy Cym —+ 3CI
append appen min append appen append min
CA+€ CA+€ Cm CA+€ CA+€ CA+€ Cm
let's st € =

a[aawh\»y (ost = C(ut 26 + O -2 £.

C =3
I,S

page 57

aggregate
true cost

aggregate
accounting cost

ace, e = CM .

» Suppose we can store ‘credit’ in the data structure, and operations can either store or release credit

. ., : accountin true ['
¢ Let the ‘accounting’ cost of an operation be: (g) a () + (credit) — (credit)
cost cost it stores it releases

s Let’s ‘pay ahead’ for the potentially-costly operations

THEOREM. These are valid amortized
costs i.e. for any sequence of operations

on an initially-empty data structure

aggregate aggregate
true < amortized
cost cost

Let () be the set of all states our data structure might be in. 3 = bowk bodonce page 57

A function ®: () — R is called a potential function if = foted crechit storeed in dwka s Enciie page 61
®(§) =0 forall S €€
d(empty) =0

scate be(am Stake afteV
For an operation S, e — Spogt with true cost ¢, define the accounting cost to be

c' :C+q)(5post)_cl)(sante) = ct+ AS

THE ‘POTENTIAL THEOREM: These are valid amortized costs.

M‘j
Cy Cm

PROOF: Consider an arbitrary sequence of operations, starting from empty: SO >51 > Sy = e — S,

aggregate
accounting =c¢; +¢c; + -+ ¢,
cost
e = —0(S,) + ¢, + Celescopic som
Ths © ‘”k{aw,,\jpu“r o — 51) +c, + (D?é[)
Hre ofsiﬂumwéf??w e.W‘Fy =0 b 6{4." cff m—l) + Cm + CD(Sm)

obe N IV\:“'W
@ P % = ¢)+c+ +cp + O(Sy)
;‘j—u s \/ 0 ! " ?omej ofun. & 2

aggregate
>ci 4 tey =
1 m true cost

page 58

EXAMPLE: DYNAMIC ARRAY initially empty

A Python list is implemented as a dynamically-sized arrays. $ =0

It starts with capacity 1, and doubles its capacity whenever

it becomes full. append() <=\ c=+€ = l+2k
Suppose the cost of writing an item is 1, and the cost of ol 3~ £

doubling capacity from m to 2m (and copying across the
existing items) is km.

Show that the amortized cost of append is O(1). | 3> €

append(), requires doubling ¢ = k+) ¢/ =K+l =(+k

Let's sk B = #rewly adeled Tremg stute . £ append(), requires df)ubling c=2Kk+) cf2K+)=lRK
|\t dovb(a/j - F-¢
(2 ¢+ A8 append() <= cl=1+ € = 142K
- 2@ 2 -2«
let’s oet | € =2k. (T""“’ W AZ "PO\75 % append(), requires doubling ¢ = ket coalthtl -<
for the voawuhle amevur &g work savdved in a(odb/fuy,) ~ 5- < = 1 +2k
O bserve thet the amoveiznd s ane 6((‘7"\"@ cuffervent append) ¢ = — C;— L é{;lz‘rzk
(some (4R, some L£26), bof e append() ¢l Jd=l+e =l+2k
ag(‘/loi‘?\;i"dm £ [+2K 2o~ ? =3 <
Tn v wWesds, am-«t & Otfpz“d 5 00), o\sywvfgf-f(P N=difems in awowy |
3 K50, No ¥ N3N, - ozt & L K/

ifewm s

EXAMPLE: DYNAMIC ARRAY (sloppy style) page 58

A Python list is implemented as a dynamically-sized et P 2+ e *J 5(2e df o
arrays. It starts with capacity 1, and doubles its capacity

whenever it becomes full. W//—//’:—[—ﬂ)

Suppose the cost of writing an itemis O(1), and the
cost of doubling capacity from m to 2m (and copying
across the existing items) is O (m).

Show that the amortized cost of append is O(1).

V\

N
Tlhere ome two Wans thot %MQ() v\/\\\y(r\i' P(uy VE.)////Co/oo_:}
* I the ey ¢i% hoy o dovbl from n o 2w, lﬂﬂj
C = o(n) + O(') §ont‘€ = 20 ~wn fpdﬂr = Z(n+l) - 2n A§= 2-Nn

:7 C' = C“" A§ = O/("/)/‘fc(\) =5 Z—),(=O(‘) EW(AM we M‘AAAj azLan leve VS : o\,v.#-pv\e_
3 ‘ol e werele O(n)
§ = (Z n - St'Zc.) A 6, omd b the eﬁc\/\uwr fote ec(uw(o Hwe comgbant hidlden ans

o T} th amrey dosnk nad devblivg — Thew, —n & really does comal ot o). |

c = oc) A®2:=2 = c':c+A§:OC'>+Z=O(l)

Tw both (o4 om-e s O0)

-

[Techniially, this B sk o potewnsl pruchin, 4 potentil function wmust be 50, and =0 whoacuff,
bot §(€W’P‘7):—l. We can creade a P‘"O’Pl/‘r Fcﬂev\h‘w((Um(hlﬂn ;' Fhot's k2 3 ercapt ak e'va(jj‘

Thiy cO\w/»ij 50 of e amortizd coats, bue m\ly —f:‘mgydy many, so b«'y—O pesolts rewacn $1UQ , juge
Werh o possi bly - (lowger K. J

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15

