TODAY’S TOPIC 1/3
Analysis of the Fibonacci Heap

= Nodes that have lost one child
are marked @ and nodes that lose two
children are disowned by their parents

— _’_‘_ == = Stores a collection of trees,
{ each of them a heap

§ locydvobe gevakesy \% —p mifjom't-hm
"keep trees bushy’

m(adq‘c\W\W\ — @

0\\4300‘(‘((1\0\/\ + & — dW\O&n‘zgcl ow\eo..(:gs(‘s

For good amortized costs, we want
degree = O(log N).
Does our algorithm actually achieve this?

TODO: SHAPE THEOREM

In a Fibonacci heap with < N items,
every node has degree < logy N

SHAPE THEOREM page74
In a Fibonacci heap with N items, every node has degree < logy N

Fib. nombers
£ % & Fa Fs K "7

L v 2 3 0§ ¢ 13

SHAPE LEMMA

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F4,, where F;, F,, ... are the Fibonacci numbers

v
I
e v,
reelo § f@%
#nokes 3 T,
1{/ N meaj =3
. ey =2 - ﬂ:no&S?, S
odks 7
oot ™ P
4 3

74
SHAPE THEOREM _page74.

In a Fibonacci heap with N items, every node has degree < logy N

Proof of theorem.
Pick a node with maximum degree, call it d,
and consider the subtree rooted at this node.

N = num.nodes in subtree

> F wm
as2 | hy lmine SHAPE LEMMA

> : hora :
D7 linear W"}o“ . Consider a subtree in a Fibonacci heap. If the subtree’s root
Henced <logyN. ¥, = -9 has d children, then the number of nodes in the subtree is
J5 > Fy., where F;, F,, ... are the Fibonacci numbers

Recol: A a binemiad heosp ..,
of trer whax rout hou clzjvez d hag 2" nodag,

A b(‘ﬁ‘w‘-"

b\ oonia] haed,
In & bin # nodes A - 24

!\/ ks [emges € €rer
oot degrer & d>lompesé dley.
ot el finosles d‘ . & {_;’q& 7 m enlfire haep

Mmax olz,m & ‘072 “~

74
SHAPE LEMMA Page74.

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F;., where F;, F,, ... are the Fibonacci numbers

M page 65-66

72
@ @
6

def popmin():
take note of minroot.value and minroot.key

delete the minroot node, and promote its children to be roots 'ﬂ/\“s W\e\ra) ‘~S e O@

cleanup the roots V*j

while there are two roots with the same degree: N\O.C(I\OW\ SN t’b\fd\lj‘/\ Wi ch
merge those two roots, by making the larger root a child of the smaller

update minroot to point to the root with the smallest key o) V\OQLQ cay) Ol u,‘,/e c,(/li(d/EV\,

return the value and key we noted in line 13 ‘T

popmin() M
setM 9
o> :

extract min ro o

74
SHAPE LEMMA _Page 74

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F;., where F;, F,, ... are the Fibonacci numbers

GRANDCHILD RULE
A node x is said to satisfy the grandchild rule if its children can be ordered, call them
Y1, -, Y4, such thatforall i € {1, ...,d}

num. grandchildren of x viay; =1 — 2

ALGORITHMIC CLAIM
In a Fibonacci heap, at every instant in time, every node x satisfies the grandchild
rule, when we order its children y4, ..., y; by when they became children of x

I

when x acquired when x acquired each y; might Y1 how has = 0 children
¥, X had a child ¥3, X had two have lost a single Yy, now has > 0 children
already, so y, did children already, child y3 how has = 1 child
too so y; did too :

Y4 now has = d — 2 children

74
SHAPE LEMMA Page 74

Consider a subtree in a Fibonacci heap. If the subtree’s root
has d children, then the number of nodes in the subtree is
> F;., where F;, F,, ... are the Fibonacci numbers

GRANDCHILD RULE
A node x is said to satisfy the grandchild rule if its children can be ordered, call them
Y1, - Y, such thatforall i € {1, ...,d}

num. grandchildren of x viay; =1 — 2

MATHEMATICAL CLAIM
Consider a tree where all nodes satisfy the grandchild rule. Let N; be the smallest
number of nodes in a tree whose root has d children. Then N; = F;.,,.

num.nodesintree > Ny_, + Nyg_3+ -+ N; + Ny + Ny + 1

/ NA, - Nd-l * Ncl-'s""' 4+ N+ No +)
— . . Ny, = Nyor- 4 Ny+ N +)
o y‘(_ ¢ v °
L o ®Y2 i
/’“\ /I\ ‘ % > NOL = NJ—)_* Nd-l

2 Ny is fihenacct nombers

child y; has degree > i — 2,
so its subtree has > N;_, nodes

TODAY’S TOPIC 2/3

SECTION 7.7
Implementing the

Fibonacci heap

|

graph vertex parent node
in heap

heap node
containing
payload w

children
in heap

def dijkstra(g, s):

toexplore = PriorityQueue()
toexplore.push(s, key=0)

while not toexplore.is_empty():
v = toexplore.popmin()
for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost

toexplore.decreasekey(w, key=dist_w)

QUESTION. How can decreasekey be
O(logN)?

Doesn’t it take O(N) in the first place,
to find the heap node that we want to
decrease?

page 69

‘ page 69

graph vertex parent node §F Algorithms tick: fib-heap X + M - s <
n heap < C @ clcamacuk/teaching/2223/Algorithm?2/ticks/fib-heap.html Q@ 1w 0 9 O » 0O . :

/’Lﬁ % e node Algorithms tick: fib-heap
payload w Fibonacci Heap

In this tick you will implement the Fibonacci Heap. This is an intricate data structure - for
some of you, perhaps the most intricate programming you have yet programmed. If you
‘ children haven’t already completed the dis-set tick, that’s a good warmup.

in heap

-

def dijkstra(g, s):

Step 1: heap operations

toexplore = PriorityQueue()

toexplore.push(s, key=0) ~
while not toexplore.is_empty(): //I o l
v = toexplore.popmin() :L,I_.)'

for (w,edgecost) in v.neighbours:
dist_w = v.distance + edgecost

. The first step is to implement a FibNode class to represent a node in the Fibonacci heap,

toexplore.decreasekey(w, key=dist_w and a FibHeap class to represent the entire heap. Each FibNode should store its priority

key k, and the FibHeap should store a list of root nodes as well as the minroot.

TODAY’S TOPIC 3/3

Crunch-time Charlie Timely Terry Fastidious Frances
(quick and dirty, (no sweat, (everything pristine
too harried to learn) plans ahead) all of the time)

push is fast, 0(1) push is fast, 0(1) push is slow, O(logN)
popmin is slow, O(N) popmin is fast, O(log N) popmin is fast, O(log N)

TODAY’S TOPIC 3/3

SECTION 7.9
Disjoint sets

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:
partition.add_singleton(v)
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.get_set_with(u)
g = partition.get_set_with(v)
if p !=q:
tree_edges.append((u,v))
partition.merge(p, q)

n h2l|

Ilh1 n

IMPLEMENTATION O

handles = {a:"h1", b:"h1", c:"h2", d:"h2", e:"h2", f:"h2", g:"h3"}

0 def merge(x,y):

for every item in the entire collection:
if the item’s handle is y then update it to be x

O

AbstractDataType DisjointSet:
Holds a dynamic collection of disjoint sets

Add a new set consisting of a single item (assuming It's not been added already)
add_singleton(Item x)

Return a handle to the set containing an 1tem.
The handle must be stable, as long as the DisjointSet is not modified.

Handle get_set_with(Item x)

Merge two sets into one
merge(Handle x, Handle y)

IMPLEMENTATION 0O

Each item points to a representative item for its set

handles = {a:a, b:a, c:e, d:e, e:e, f:e, g:g}

IMPLEMENTATION 1 “FLAT FOREST”

Each item points to a representative item for its set

Each set has a linked list, starting at its representative
50 T can J'U% wo e rhm,'ﬁ fheny thot readl o be

vplakad, on Mmerys: :
def merge(x,y): wWeogt-cose OCN)’ N=8itbemy, 5{*1‘(”"
for every item in set y: et 2xch repl.
update it to belong to set x Shive fhe i F
s st .
def get_set_with(x): 9 (i) : we'll pré.
return x's parent Fhe s’m. Uer sorr
‘b ura(oh .
(Do egnt

O(N) wonf <%,
bot- is an jwptwement.)

~

(4

/’
/’
‘ %
@--» @&-->
J)

n W¢|'7“€d Ul\l'tV‘ !
ha uf r shx.

24

[%‘* ‘ '!2
merge > f,,’\r

e)

S S

RS

IMPLEMENTATION 1 “FLAT FOREST”

Each item points to a representative item for its set
Each set has a linked list, starting at its representative

def merge(x,y):
for every item in set y:
update it to belong to set x

def get_set_with(x):
return x's parent

O
merge > / T \

quick and dirty
too harried to learn

QUESTION. How can we
design a DisjointSet so
that mergeis 0(1)?

everything pristine
all of the time

b

®
0/ 3\\\00

FLAT FOREST
get_set_withis O(1)
merge is O(N)

IMPLEMENTATION 2 “DEEP FOREST”

Sets are stored as trees

Use the root item to represent the set ff&d\’P-’
. 5”6"{/’0.
. o) repr
def merge(x,y): | I\Z.l,"‘l‘df‘ s erex
update one of the roots to point to the other . .
callad "rank")
def get_set_with(x): ©C(N) fn wevyteoy ner mokes (e
walk up the tree from x to the root w-z:ﬂkf"“
return this root oodey the L.,%—V‘auk
reot.
wk = M“("'rﬂ [Ral "Union by
'f, rew fo f' +\ '} (l =rz “M‘

QUESTION. What’s a
sensible heuristic for merge,
® to speed up get_set_with?

rZ

o0 ° e
{ T merge > {

‘ ’

j

quick and dirty
too harried to learn

DEEP FOREST
get_set_with is slower
merge is O(1)

no sweat
plans ahead

QUESTION. Can we have
merge be 0(1), and also
manifest our get_set_with

working so that subsequent
operations benefit?

everything pristine

all of the time

S5

FLAT FOREST
get_set_withis O(1)
merge is O(N)

Can we ‘manifest” our workings so that subsequent operations benefit?

SelectSort

|ffl<\ (!

Repeatedly scan for the
largest remaining item,
and move it to the sorted-
chunk at the end.

A B C D
1. Find the largest key, and put it at the end

= Start with largest-so-far = A
» |s B.key > A.key? No.

"= Is C.key > A.key? Yes. We had a useful piece

" Is D.key > C.key? No. of information, but we

= Swap Cand D didn’t keep it for the
2nd pass.

A B D C
2. Find the largest out of [A,B,D]

The heap 15 a way to manifest what
we've learnt 5o far, 0 we can re-uvse
it in later passes, That's why
HeapSort is better than SelectSort.

quick and dirty
too harried to learn

DEEP FOREST
get_set_with is slower
merge is O(1)

no sweat
plans ahead

QUESTION. Can we have
merge be 0(1), and also
manifest our get_set_with

working so that subsequent
operations benefit?

everything pristine

all of the time

S5

FLAT FOREST
get_set_withis O(1)
merge is O(N)

IMPLEMENTATION 3 “LAZY FOREST”

def merge(x,y):
as before, using the Union by Rank heuristic

def get_set_with(x):
walk up the tree from x to the root
walk up again, and make items in this path point to root

return this root

" Pt (‘”"'Pﬂésv'cm heoriShe

o0

merge > get set_ With(x)>

Flat Forest

Deep Forest

Lazy Forest

Aggregate complexity analysis

Any m operations on up to N items takes

O(m+ NlogN)
[Ex. sheet 6 q. 13]

O(mlogN)
k:\\‘ Y b
0 (m a (N)) :XCEEJRS

a(N) =0 forN =0,1,2
= for N =3
= forN =4..7
= for N =8..2047
= for N = 2048 .. 1080

Flat Forest WEll, ol "’ '
Deep Forest

RN THAT Escnumn
nmcm 'R

Aggregate complexity analysis

Any m operations on up to N items takes

Flat Forest O(m + NlogN)
Deep Forest O(mlogN)
Lazy Forest O(ma(N))

a(N) =0 forN =0,1,2
= for N =3
= forN =4..7
=3 forN =8..2047
=4 for N = 2048 .. 10%

take a handsome stoat

define a graph
vertices on a grid, and edges
between adjacent grid cells

assign edgeweights
weight=low means vertices
have similar colours

run Kruskal
and find clusters of similar
colour

Fastidious Frances Crunchtime Charlie Timely Terry

a >ee mm = e ® ss.ae «cm 9 o me - s @ o ¢ me dse ®3en (8 Dam €@ oc pasm

TP — e ——

= 100 @Pcus W IS) « - » S - v ewm e® > L -ren (® e «om ° oo e - - . ® 200 Bewr wime vewn .o e g ST - e -

deep

; . P —— SNSRI S 0N SO A S RS-SRS e S OSSO O — - S ———————

A SaD - - - o D> aD AR L 13 » = o e b= 4 Ses @ sna ;e e -t e - W oce - ww @ e 20 @ TGP WBC TN IE &« e e ce . e - e o N

SENENNED e EaD S cEEn e - s =2 e - e - > . L - L L J - ° L .

- oI ahEED e e o Ed - . .

- AOE SE METD MIERSTD) ARSI o k=== - oo

- . - @wes & o L oad

lazy

; = . PR A S NI PR Sea S-S SOR SR Ao i s S et i S IR eh : - S —
= 2 - e > ex - > LR] e « ->se .- e ;P ex I B BDEC « e - - - " e - - = ® 290EH WBC)W EES & e . L2 - = S e 2

- L S0 s A0 * T o - . B N € tew aD mrm——— - L - o > . -e o - - °

- o . s oo . o™ B

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Can we ‘manifest’ our workings so that subsequent operations benefit?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

