movies

SELECT * movie_id title year
FROM movies 0126029 Shrek 2001
WHERE year > 2015 0181689 Minority Report 2002
0212720 A.l. Artificial Intelligence 2001

0983193 The Adventures of Tintin 2011

EE) 4975722 Moonlight 2016

EE) 5010201 Dunkirk 2017

‘ 5012394 Maigret Sets a Trap 2016

This sort of query can be answered efficiently with an index.
CREATE INDEX indl ON movies (year)

year movie_id
2001 0126029
2001 0212720
2002 0181689
2011 0983193
EE) 2016 5012394
2016 4975722
2017 5010201

= Anindex contains a set of (key,value) pairs,
ordered by key.

= |t should support efficient search,
as well as efficient insert / delete.

Crunch-time Charlie
(quick and dirty,
too harried to learn)

FREE-FORM
BINARY SEARCH TREE

D
\e

/ insert/delete fast
N

search can be slow
ﬂ / \

Q
o

Timely Terry
(no sweat,
plans ahead)

Fastidious Frances
(everything pristine
all of the time)

Q. Can we design a
roughly-balanced search
tree, but without being
obsessive about it?

BALANCED
BINARY SEARCH TREE

/0\

o e
doq o

search is fast, 0
insert/delete slow

Genius idea: let’s keep the depth perfectly balanced,
but let the nodes have a variable number of children.

E.g. let’s require that each non-leaf node have 2, 3, or 4 children.

To fit the standard BST design, let’s store 1, 2, or 3 items at each node, #children = #items + 1
ki |k
all keys all keys
£ have v £ have
£ < ky all keys 2>k,
£ have

‘ ki <t<k,

SO O
000000000 0000060

Genius idea: let’s keep the depth perfectly balanced,
but let the nodes have a variable number of children.

E.g. let’s require that each non-leaf node have 2, 3, or 4 children.
To fit the standard BST design, let’s store 1, 2, or 3 items at each node, #children = #items + 1

Q1. Is this balanced enough to give O(logn) search, ky | ks
where n is the number of (key,value) pairs?
Q2. Is this flexible enough that we can do insert/delete in O(logn), ;ILI:E lehkeys

. . - v ave
while maintaining the rough balance: £ <k, all keys 0>k,

£ have
ky < €<k,
\

A B-tree is a perfectly height-balanced search tree,
where each node has #keys € {knin, -, Kmax} —~ & #childen € {km‘ - émﬂ,.lg

(apart perhaps from the root, which may have fewer) (ﬁ)

’ 1 For a node with m (key,value) pairs,
S |
i 1k = There are m + 1 child subtrees (unless it’s a leaf)
= All keys # in child ¢; satisfy k;_; < ¥ < k;

(with appropriate adjustment ati = 0 and i = m)

1

What's the smallese possBe 4 peys in e evee of haiyhe h?

(g, deptn O ¢ atbwed o howe 1 Rey by (%)

oleptn 1 : 2 nodes, each wth B heyj
% d'*?"“ 2: 25 (Bpgot) nocks, eoch with Ruain Peyf
/' /) 2 X (ﬁmm—rl)Z neces, coch wiHh IZM,‘M b‘”yf

h- ach with kwin Pey s
e ®C-Fr - —_ - 5! d)’f'_h h ! 2 x (émfm‘fl) /\DAQS,

- h- h
o, for om axbitey ra2, Hhgs 5 | 4 Zhws (14 bt s (o) ') = 2 (bnrt) |

QUESTION. For a tree with
n keys in total, what'’s the
largest possible height?

QUESTION. Why put an
upper bound on #keys
per node?

h
We've 3056 MJM ehot N 7 2 (Ru+!) ~ |

n+)

Trgove b & I3 (52)

So h s O ((C}j h) fw aV\j ‘bmfv\ 7/{

I} we didut boune #kzyj we /vu}vW: how e
a node with S20n) keys. Ted bake ¢ive SL(n)
o scan tirh e, gloning dgnin seancls & insere (et

Fof ony f{m’N boved (ZMQ,(£00, we ewngue thot

e work per vedle 5 G(r)

Pdrh\v\j thei tbrrbw, seoreh O(ch "),

SECTIONS 4.4 & 4.6

2-3-4 trees
and B-trees

insert(k,v) into atree with ki, = 1 and kpax = 3

insert
K this
LM
EASY CASE
simple
insertion G [simple insert>
into a leaf)
3 aMR
Nole: (ngerh oV h .
B(D|E| |1 B|D b ot Hu bstrom, ot
fnpernad nosleg,
QUESTION. Where
A ;r;]sert do we insert key A?
15
HARDER CASE Llm And how?
) L. Ll m)
insertion into
a full leaf
G
: D G [simple mser} D (G
The destination

leaf is full, s0 split

B|IDJ|E I it by promoting its | B l E | EE E |
median key .

P —

|
The destination
leaf is full, s0 split

it by promoting its
median key

D

The destination
leaf is full, s0 split
it by promoting its
median key

To keep our tree balanced, excess keys need to
be pushed up.

insert(k,v) into a tree with ki, = 1 and kyax

insert
this

split child,

a full leaf on a descend
full path
NIT|W
O|P|S

3

PAlo|p|s

A

def insert(k,v):

if root node is full:
split it, and create new root

X < root node

while x is not a leaf:

assert x 1s not full

scan x to find which child y we want k in

if y is not full:
X<y

else:
split y into y; and y, and promote a key
X <y, or y, as appropriate

insert (k,v) into x

QUESTION. How do
we insert key R?

NOTE. This code is
suitable for the
general case. It may
unnecessarily split
some nodes at the
top, but who cares?

split child,
descend

< w

S

9
y
g

o |[7]:

QUESTION. Does this

splitting operation -~
constrain ki, and ka5 ? (:-’I;—’ — Q R

\/\/\/
L

Tox €hiy 5P((‘t fo wsvlt W (zjov(Moo(ﬂS,

we neacl Row =l 7 2 Rmia,

N 7N
AN /N [\ N/

To keep our tree balanced, excess keys need to

be pushed up.

From time to time, we may have to add a new
node at the top. The tree becomes higher, but
it remains perfectly height-balanced,

delete(k) from a tree with ki, = 1 and kpax = 3

0
EASY CASE

simple u
deletion EH
simple delete

from a leaf

delete
this

HARDER CASE m
deletion from a

m,
8D

bare-bones leaf

(i.e. one with only D|G B|G Tomple delete> B|G
Kmin keys) , \
We can “fatten’
A|B E | the leaf by A El | A D |
stealing a key
delete from a sibling,
this

and “rotating".

delete(k) from a tree with ki, = 1 and kpax = 3

Lm,

HARDERER CASE
deletion from a

bare-bones leaf,
with bare-bones
siblings

G

delete
this

&

Mer ge with a
sibling, by stealing
a key from the
parent.

[

simple delete>

Lm,

A|B

QUESTION. Does this
merging operation

constrain ki, and kpax?

<—\\,

C]Cl = O

For Flals Wj;ﬁ (o regult T & &Sd V\,OG(Q/

we Md 2 ‘Zwu‘u S hmax,

(’_VL\} rs eracHy rhe goumme IM? QJA’@
we gaw when we checked P/‘(“Hvy)

delete(k) from a tree with ki, = 1 and kpax = 3

HARDEST CASE 4;3
deletion from a

bare-bones leaf A
ple) ¥ &

on a bare-bones
path

def delete(k):
X < root node

while x is not a leaf:
assert x has > ki, keys (or is root)

5& (—"IC‘. fmﬂ\ 'qf‘-fow ,‘n&mﬂl nooles.
else:
scan x to find the child y that has k
if y has kpin, keys:
either rotate or merge to make y fatter
X<y
delete k from x

if x has key k: wckure on how o le(afe Inyj

To keep our tree balanced, deletions suck in
keys from beside or above.

From time to time, we may suck down the root
when merging its children. The tree becomes

shorter, and it remains perfectly height-
balanced,

How should we choose kpin and Kyyax ?

= height = O(logn) aslong as kyjn = 1
= The work at each node is O(1) aslong as ky,x < ©

* We need k.5 = 2kyin + 1 for merging/splitting to work

Are there any other considerations that can guide us to specific choices?

e @ im] ﬂ Rethinking B-tree block sizes on = X | -

& C () https://rethinkdb.com/blog/rethinking-b-tree-block-sizes-on-ssds/

RethinkDB

Rethinking B-tree block sizes on SSDs

R RethinkDB Team OCTOBER o5, 2009

One of the first questions to answer when running databases on SSDs is what B-tree

block size to use. There are a number of factors that affect this decision:

® The type of workload
® |/O time to read and write the block size

® The size of the cache

That’s a lot of variables to consider. For this blog post we assume a fairly common
OLTP scenario - a database that’s dominated by random point queries. We will also
sidestep some of the more subtle caching effects by treating the caching algorithm as

perfectly optimal, and assuming the cost of lookup in RAM is insignificant.

community blog

Block size vs., ops/Ssec on a solid-state drive {log scale)

: : ' ' ' Uniforn dist
Nornal dist ———
Power dist

B 1 1 1 1 1 1 1
512 1824 2048 4896 8192 16384 32768 63936 131872

Block size

1kb (32 2kb (64 4kb (128 8kb (256 16kb (512 32kb (1024 64kb (2048
keys) 4579 keys) 4254 keys) 3780 keys) 3197 keys) 2186 keys) 1769 keys) 1334
IOPS I0PS 10PS IOPS 10PS I0PS I0PS

5.98 hops 4.98 hops 4.27hops 3.74hops 332hops 298 hops 2.72 hops

765 q/sec 854 qfsec 8 5 854 q/sec 658 qfsec 593 q/sec 490 q.sec

So, if we have no cache the optimal block si

If we're storing our index on an SSD:

1 block =512 kB
1 page =4 kB

= An SSD consists of many blocks, each made of many pages

= We read and write an entire page at a time

= Reading and writing to an SSD is very slow, compared to main memory access

= Choose k5% SO that a node takes up an entire page,
and choose ki as large as possible, i.e. kyin = (kmax — 1)/2, to keep pages full

(This explains the experiventol find fg from Rethink Dby thar HRB nedes owe fest..)

This is called a B-tree.

If we're storing our index in main memory ...

f\ we’ll make a different choice of k,in and ki ax-

HH—T—\ a

	Slide 1
	Slide 2
	Slide 3: Genius idea: let’s keep the depth perfectly balanced, but let the nodes have a variable number of children.
	Slide 4: Genius idea: let’s keep the depth perfectly balanced, but let the nodes have a variable number of children.
	Slide 5
	Slide 6
	Slide 7: 2-3-4 trees and B-trees
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: How should we choose k sub min and k sub max?
	Slide 20
	Slide 21: If we’re storing our index on an SSD:
	Slide 22: If we’re storing our index in main memory ...

