We’ve designed a beautiful search-tree data structure that keeps itself

roughly balanced. Now, let’s translate this design back into a simple
binary search tree.

Why?

= |t’s easier to code a BST than a B-tree
= |t clarifies the logic we’re applying inside each node
= |t may give us ideas for other self-balancing designs
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Let’s look at 2-3-4 trees, i.e. #keys € {1,2,3} at each node. Let’s translate as follows:
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Let’s look at 2-3-4 trees, i.e. #keys € {1,2,3} at each node. Let’s translate as follows:
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A 2-3-4 tree corresponds to a roughly-balanced BST, called a red-black tree.
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Let’s translate 2-3-4 tree operations into red-black operations.

insert(k™,v™)
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There are lots of cases to work through.
And we still have to deal with the harder “welling up” cases!



For the “welling up” cases, let’s insert the new key at the bottom, and let the impact “well up” towards the root.

The general case: a node receives a key from below, and perhaps sends one of its keys up.
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For the “welling up” cases, let’s insert the new key at the bottom, and let the impact “well up” towards the root.

The general case: a node receives a key from below, and perhaps sends one of its keys up.
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For the “welling up” cases, let’s insert the new key at the bottom, and let the impact “well up” towards the root.

The general case: a node receives a key from below, and perhaps sends one of its keys up.
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This “rotation” trick is behind a host of other self-
balancing tree data structures.



Born

Died

Occupation
Language

Spouse

Georges Perec

7 March 1936
Paris, France

3 March 1982 (aged 45)
lvry-sur-Seine, France

French

Paulette Petras

Georges Perec
%f) AVOID
- Transased from the Fremch

by Galdert Adawr

A Void, translated from the original French La Disparition, is
a 300-page French novel by Georges Perec, entirely without
using the letter e, following Oulipo constraints.

Oulipo, short for Ouvroir de littérature potentielle, is a loose
gathering of French-speaking writers and mathematicians
who seek to create works using constrained writing
techniques.



Can we characterize valid red-black trees, without reference to 2-3-4 trees?
Why?
= To debug our insert/delete code, it’s useful to have a formal test “is this a valid red-black tree”?

= A perfectly satisfactory test is “does it translate to a valid 2-3-4 tree?”
= Let’s be Oulipo coders, and come up with a characterization that doesn’t mention 2-3-4 trees.

A red-black tree is a binary search tree that
satisfies the following properties:

V—W ygdfb(“—\.(lﬂ. tree

Every node is either black or red 2
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The root is black

A red node’s children are black

= M

All paths from the root to the bottom of the
tree have the same number of black nodes

5. All nodes have 2 children, apart from the
leaves, which are keyless childless black nodes
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We could then analyse all our cases for insert / \" w
delete and prove that they maintain these ’w_y\‘_“
properties. (If we had no taste.) GLSOR s
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A red-black tree is a binary search tree that

satisfies the following properties:
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2. The root is black key : k.
3. Ared node’s children are black value * V
4. All paths from the root to the bottom of the
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5. All nodes have 2 children, apart from the
leaves, which are keyless childless black nodes



FINAL LECTURE

A correctness proof
for bfs-all
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Algorithms assignment grade-chatgpt:
Grading ChatGPT’s proof

Can ChatGPT be persuaded to give a proper proof of correctness of an algorithm? Here are three
attempts, for an algorithm that solves the bfs-all tick:

» Catley, Prynn, and Huang.

Please mark these attempts, on a scale of 0—20. Your mark should be for the final proof, not for how
well it was elicited. Please submit your grades on Moodle. I'll pick the most controversially-marked
answer and go through it in lectures. Please use the following marking scheme:

mark meaning

9 Coherent fragments

9 Coherent in parts, but with serious gaps

13 A basically correct argument but with some signs of confusion
17 Essentially correct, but not fully rigorous

19 Nearly all correct, only minor technical holes

How well does ChatGPT generate algorithms? For interest, here are the attempts to get ChatGPT
to design the algorithm:

» Catley, Shen, Chen, Prynne, and Huang.




marks marks marks

Each coloured line
represents a
different assessor’s
marks
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TODO: Please reviewm code and proof before the final lecture.
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