Category Theory

Lecture Notes
by Andrew Pitts

X I Oy s W IN =

Links to lectures

10
11
12
13
14
15
16

Lecture 1

What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Scott, Relating theories of the A-calculus, p406

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view —
understand structures not via their elements, but by
how they transform, i.e. via morphisms.

(Both theories are part of Logic, broadly construed.)

GENERAL THEORY OF NATURAL EQUIVALENCES

BY
SAMUEL EILENBERG AND SAUNDERS MacLANE

CONTENTS

Introduction .
1. Categori
1. Definition of categories. .
2. Examples of categories.
3. Functors in two arguments.
4
5.

. Examples of functors.
. Slicing of functors. .

6. Foundations
11. Natural equivalence of functors.
7. Transformations of functors. .

8. Categories of functors. . .

9. Composition of functors
10. Examples of tmmformauons

y
13 Combination of the arguments of functors.

258

111. Functors and groups. 260
14. Subfunctors 260
15. Quotient functors 262
16. Examples of subfunctors. 263
17. The isomorphism theorems. 265
18. Direct products of functors. 267
19, Characters............. 270
272

V. Partially ordered sets and projective limits
20. Quasi-ordered sets.
21. Direct systems as functors
22. Inverse systems as functors.

23. The categories Dir and Jnv. 277
24. The lifting principle. .. . 280
25. Functors which commute with limits . 281
V. Applications to topology . . 283
26. Complexes. 283
21. Homology and cohomology groups 284
28. 287
29. Universal coefficient theorems 288
30. Cech homology groups. 290
31. Miscellaneous remarks. 292
Appendix. Representations of categories . 292

Introduction. The subject matter of this paper is best explained by an
example, such as that of the relation between a vector space L and its “dual”

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.
231

Category Theory emerges

1945 Eilenberg’ and MacLane’
General Theory of Natural Equivalences,
Trans AMS 58, 231-294

(algebraic topology, abstract algebra)
1950s Grothendieck™ (algebraic geometry)
1960s Lawvere' (logic and foundations)
1970s Joyal and TierneyT (elementary topos theory)
1980s Dana Scott, Plotkin

(semantics of programming languages)

Lam bekT (linguistics)

Category Theory and
Computer Science

“Category theory has...become part of the standard
“tool-box” in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads
April 2014

See http://www.appliedcategorytheory.org/events for
recent examples of category theory being applied (not just in
computer science).

http://www.appliedcategorytheory.org/events

This course

basic concepts of category theory

adjunction < natural transformation

category functor

typed lambda-calculus
functional programming

applied to {

Definition

A category C is specified by

> aset | objC|whose elements are called C-objects

> foreach X,Y € obj C, aset|C(X,Y)|whose
elements are called C-morphisms from X to Y

> a function assigning to each X € obj C an element
idyx € C(X, X) |called the identity morphism for
the C-object X
» a function assigning to each f € C(X,Y) and
€ C(Y,Z2) (where X,Y,Z € obj C) an element
go f € C(X,Z)|called the composition of
C-morphisms f and g and satisfying...

Definition, continued
satisfying...

> associativity: forall X, Y, Z, W € obj C,
feC(X,Y),geC(Y,Z)and he C(Z,W)

ho(gef)=(hog)ef

> unity: forall X, Y e objCand f € C(X,Y)

idyef=f=feidyx

Example: category of sets, Set

> obj Set = some fixed universe of sets
(more on universes later)
> Set(X,Y) =
{f € X xY| fissingle-valued and total}

Cartesian product of sets X and Y is the
set of all ordered pairs (x,y) with x € X
andy €Y.

Equality of ordered pairs:

(xy =Ey)ox=xAy=vy

Example: category of sets, Set

> obj Set = some fixed universe of sets
(more on universes later)
> Set(X,Y) =
{f € X xY| fissingle-valued and total}

Vx € X,Vy,y €, VxeX,Jy ey,
xyefrxy)ef=y=vy (x.y) € f

Example: category of sets, Set

obj Set = some fixed universe of sets

(more on universes later)

Set(X,Y) =

{f € X xXY| fissingle-valued and total}

idy = {(x,x) | x € X}

composition of f € Set(X,Y) and g € Set(Y, 2) is

gof={(x2) |
Jy ey, (x,y) € fA(y,2) €g}

(check that associativity and unity properties hold)

Example: category of sets, Set

Notation. Given f € Set(X,Y) and x € X, it is usual to

write

Thus

fx

(or f(x)) for the unique y € Y with (x,y) € f.

idyx =x

(gef)x=9g(fx)

Domain and codomain

Given a category C,

writef:X—>YorXi>Y

to mean that f € C(X,Y),

in which case one says
object X is the domain of the morphism f
object Y is the codomain of the morphism f

and writes
X =dom f Y=codf

(Which category C we are referring to is left implicit with this notation.)

Commutative diagrams

in a category C:

a diagram is
a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition

Examples:

Commutative diagrams

x- oy

S

he(gof)

f l hOg/

w

=

Y Z

Y

Alternative notations

| will often just write
C forobjC
id for idy
Some people write
Homc (X, Y) for C(X,Y)
1X for idX
gfforgef
| use “applicative order” for morphism composition;
other people use “diagrammatic order” and write

fig(orfg)forgef

Alternative definition of category

The definition given here is “dependent-type friendly”.

See [Awodey, Definition 1.1] for an equivalent
formulation:
One gives the whole set of morphisms mor C
(in bijection with Xy ycop5c C(X, Y) in my definition)
plus functions
dom, cod :mor C — objC
id: objC —- mor C
and a partial function for composition
o:morCXmorC —morC
defined at (f,g) iff cod f = domg
and satisfying the associativity and unity equations.

Lecture 2

Recall

A category C is specified by

> aset | objC|whose elements are called C-objects

> foreach X,Y € obj C, aset|C(X,Y)|whose
elements are called C-morphisms from X to Y

> a function assigning to each X € obj C an element
idx € C(X, X) |called the identity morphism for
the C-object X
> a function assigning to each f € C(X,Y) and
€ C(Y,Z2) (where X,Y,Z € obj C) an element
go f € C(X,Z)|called the composition of
C-morphisms f and g and satisfying associativity
and unity properties.

Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _
i.e. a binary relation on P that is
reflexive: Vx € P, x C x
transitive: Vx,y,z € P, xEyAyCz=>xLCz

A partial order is a pre-order that is also
anti-symmetric: Vx,y € P, xCyAyCx = x=y

Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _

» morphisms: Preord((P;,C), (P, C5)) =
{f € Set(Py, P,) | f is monotone}

Vx,x" € Py, xC1x' = fxC, f«

Example:
category of pre-orders, Preord

objects are sets P equipped with a pre-order _C _
morphisms: Preord((P;,C1), (P2, C3)) =

{f € Set(Py, P,) | f is monotone}

identities and composition: as for Set

Q: why is this well-defined?

A: because the set of monotone functions contains identity functions and
is closed under composition.

Example:
category of pre-orders, Preord

> objects are sets P equipped with a pre-order _ C _
> morphisms: Preord((P1,C;), (P, C3)) =
{f € Set(Py, P,) | f is monotone}

> identities and composition: as for Set

Pre- and partial orders are relevant to the denotational

semantics of programming languages (among other
things).

Example:
category of monoids, Mon

> objects are monoids (M, -, e) — set M equipped with
a binary operation _- _: M X M — M which is
associative Vx,y,ze M, x-(y-z)=(x-y) -z
haseasitsunitVxe M, e-x=x=x-e

CS-relevant example of a monoid: (List 3, @,nil) where

ListX = set of finite lists of elements of set >
@ = list concatenation
nil@t="~¢
(azt)@f' =a=(t@)
nil = empty list

20

Example:
category of monoids, Mon

> objects are monoids (M, -, e)
» morphisms: Mon((M, -1, €1), (Ma, -2, €2)) =
{f €Set(My, Mz) | fer =ex A
Vx,y e My, f(x-1y)=(fx)2(fy}

It’s common to denote a monoid (M, -, e) just by its underlying set M,
leaving _ - _and e implicit (hence the same notation gets used for different
instances of monoid operations).

20

Example:
category of monoids, Mon

objects are monoids (M, -, e)
morphisms: Mon((My, -1, e1), (Ma, -2, €2)) =
{f €Set(My, Mz) | fer =ex A

Vx,y € My, f(x-1y) =(fx)2(fy)}
identities and composition: as for Set
Q: why is this well-defined?

A: because the set of functions that are monoid morphisms contains
identity functions and is closed under composition.

20

Example:
category of monoids, Mon

> objects are monoids (M, -, e)
» morphisms: Mon((M, -1, €1), (Ma, -2, €2)) =
{f €Set(My, Mz) | fer =ex A
Vx,y e My, f(x-1y)=(fx)2(fy}

> identities and composition: as for Set

Monoids are relevant to automata theory (among other
things).

20

Example: each pre-order
determines a category
Given a pre-ordered set (P,C),
we get a category Cp by taking
> objects objCp =P
1 ifxCy
0 ifxZy

(where 1 is some fixed one-element set and 0 is the empty set)

» morphisms Cp(x,y) =

21

Example: each pre-order
determines a category
Given a pre-ordered set (P,C),
we get a category Cp by taking
> objects objCp =P
1 ifxCy
0 ifxZy

> identity morphisms and composition are uniquely
determined (why?)

» morphisms Cp(x,y) = {

21

Example: each pre-order
determines a category

Given a pre-ordered set (P,C),
we get a category Cp by taking
> objects objCp =P
1 ifxCy
0 ifxZy

> identity morphisms and composition are uniquely
determined (why?)

» morphisms Cp(x,y) = {

E.g. when (P, E) has just one element 0

)\
0 id
Cp = V\/O

one object, one morphism

21

Example: each pre-order
determines a category

Given a pre-ordered set (P,C),
we get a category Cp by taking
> objects objCp =P
1 ifxCy
0 ifxZy

> identity morphisms and composition are uniquely
determined (why?)

» morphisms Cp(x,y) = {

E.g. when (P, E) has just two elements 0 C 1
o1 3

two objects, one non-identity morphism

Cp -

21

Example: each pre-order
determines a category

Given a pre-ordered set (P,C),
we get a category Cp by taking
> objects objCp =P
1 ifxCy
0 ifxZy

> identity morphisms and composition are uniquely
determined (why?)

» morphisms Cp(x,y) = {

Example of a finite category that does not arise from a pre-ordered set:

ih 07 17 1w
e T

two objects, two non-identity morphisms

21

Example: each monoid
determines a category

Given a monoid (M, -, e),
we get a category Cy; by taking
> objects: obj Cy =1 = {0} (one-element set)
» morphisms: Cy(0,0) = M
> identity morphism: idy = e € M = Cy(0,0)
> composition of f € Cy(0,0) and g € Cy(0,0) is
g-feM=Cy(0,0)

22

Definition of isomorphism

Let C be a category. A C-morphism f : X — Y is an
isomorphism if there is some g : Y — X for which

x- oy

g\

X—Y
f

is a commutative diagram.

23

Definition of isomorphism

Let C be a category. A C-morphism f : X — Y is an
isomorphism if there is some g : Y — X with

gof =1idx and f o g =idy.

» Such a g is uniquely determined by f (why?) and

we write

f—l

for it.

> Given X, Y € C, if such an f exists, we say the
objects X and Y are isomorphic in C and write

(There may be many different f that witness the fact that X and Y are

isomorphic.)

23

Theorem. A function f € Set(X, Y) is an isomorphism
in the category Set iff f is a bijection, that is

> injective: Vx,x" € X, fx=fx" = x=x
> surjective: Vy € Y, Ix € X, fx=y

Proof...

24

Theorem. A function f € Set(X, Y) is an isomorphism
in the category Set iff f is a bijection, that is

> injective: Vx,x" € X, fx=fx" = x=x

> surjective: Vy e Y,Ix € X, fx =y
Proof...

Theorem. A monoid morphism
f € Mon((Mjy, -1, e1), (My, -5, €2)) is an isomorphism in
the category Mon iff f € Set(My, M,) is a bijection.

Proof...

24

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

25

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

Theorem. A monotone function

f € Poset((P,C1), (P2, C5)) is an isomorphism in the
category Poset iff f € Set(Py, P,) is a surjective function
satisfying

> reflective: Vx,x" € P, fxCy fx' = xC1 x’

Proof...

25

Define Poset to be the category whose objects are posets
= pre-ordered sets for which the pre-order is
anti-symmetric, but is otherwise defined like the
category Preord of pre-ordered sets.

Theorem. A monotone function

f € Poset((P,C1), (P2, C5)) is an isomorphism in the
category Poset iff f € Set(Py, P,) is a surjective function
satisfying

> reflective: Vx,x" € P, fxCy fx' = xC1 x’

Proof...

(Why does this characterisation not work for Preord?)

25

Lecture 3

26

Category-theoretic properties

Any two isomorphic objects in a category should have
the same category-theoretic properties — statements

that are provable in a formal logic for category theory,
whatever that is.

Instead of trying to formalize such a logic, we will just
look at examples of category-theoretic properties.

Here is our first one...

27

Terminal object

An object T of a category C is terminal if for all X € C,
there is a unique C-morphism from X to T, which we
write as| ()x : X — T|.
VX eC, ()x € C(X,T)

VX e CVf e C(X,T), f={x

(So in particular, idr = ()1)

So we have

Sometimes we just write ()x as ().

Some people write !x for ()x — there is no commonly accepted notation;
[Awodey] avoids using one.

28

Examples of terminal objects

> In Set: any one-element set.

> Any one-element set has a unique pre-order and
this makes it terminal in Preord (and Poset)

> Any one-element set has a unique monoid structure
and this makes it terminal in Mon.

29

Examples of terminal objects

In Set: any one-element set.

Any one-element set has a unique pre-order and
this makes it terminal in Preord (and Poset)

Any one-element set has a unique monoid structure
and this makes it terminal in Mon.

A pre-ordered set (P,C), regarded as a category Cp,

has a terminal object iff it has a
greatest element T, thatis: Vx e P, x C T

When does a monoid (M, -, e), regarded as a
category Cy, have a terminal object?

29

Terminal object

Theorem. In a category C:

(a) If T is terminal and T = T’, then T’ is terminal.
(b) If T and T’ are both terminal, then T = T’ (and

there is only one isomorphism between T and T’).

In summary: terminal objects are unique up to unique
isomorphism.

Proof...

30

Terminal object

Theorem. In a category C:

(a) If T is terminal and T = T’, then T’ is terminal.

(b) If T and T’ are both terminal, then T = T’ (and
there is only one isomorphism between T and T’).

In summary: terminal objects are unique up to unique
isomorphism.

Proof...

Notation: from now on, if a category C has a terminal
object we will write that object as

30

Opposite of a category

Given a category C, its opposite category is defined
by interchanging the operations of dom and cod in C:

> objC° = objC

> C°P(X,Y) = C(Y,X), for all objects X and Y

> identity morphism on X € obj C°P is
idy € C(X,X) = C°P(X, X)

> composition in C°P of f € C°P(X,Y) and
g € C°P(Y,Z) is given by the composition
fogeC(Z,X)=CP(X,Z)inC
(associativity and unity properties hold for this
operation, because they do in C)

31

The Principle of Duality

Whenever one defines a concept / proves a theorem in
terms of commutative diagrams in a category C,

one obtains another concept / theorem, called its dual,

by reversing the direction or morphisms throughout,
that is, by replacing C by its opposite category C°P.

For example...

32

Initial object

is the dual notion to “terminal object”:

An object 0 of a category C is initial if for all X € C,
there is a unique C-morphism 0 — X, which we write as
[Ix:0— X|.

VX € C, []x € C(0,X)
VX € C,Vf € C(0,X), f =[lx

(So in particular, idy = []o)

So we have

By duality, we have that initial objects are unique up to isomorphism and that
any object isomorphic to an initial object is itself initial.
(N.B. “isomorphism” is a self-dual concept.)

33

Examples of initial objects

> The empty set is initial in Set.

> Any one-element set has a uniquely determined
monoid structure and is initial in Mon. (why?)

So initial and terminal objects co-incide in Mon

An object that is both initial and terminal in a category is sometimes

called a zero object.

> A pre-ordered set (P,C), regarded as a category Cp,
has an initial object iff it has a least element L, that
is:VxeP, 1L Cx

34

Example:
free monoids as initial objects

(relevant to automata and formal languages)

The free monoid on a set X is (List X, @,nil) where

ListXY = set of finite lists of elements of 2
@ = list concatenation
nil = empty list

35

Example:
free monoids as initial objects

(relevant to automata and formal languages)

The free monoid on a set X is (List X, @,nil) where

ListXY = set of finite lists of elements of 2
@ = list concatenation
nil = empty list

The function

Ny 12 — ListX
a +— [a] =a:nil (one-element list)

has the following “universal property”...

35

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. For any monoid (M, -, e) and function
f : 2 — M, there is a unique monoid morphism
f € Mon((List2, @,nil), (M, e)) making
>—"1ist> commute in Set.

R,

Proof...

35

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. VM € Mon, Vf € Set(Z, M), 3!J7 € Mon(List X, M),]_C ony =f

The theorem just says that 3 : ¥ — List X is an initial
object in the category >/Mon:

> objects: ((M, -, e), f) where (M,-,e) € obj Mon and
f € Set(2, M)

> morphisms in

S/Mon(((My, -1, e1), f1), ((Ma, -2, €2), f2)) are
f € Mon((My, -1, e1), (My, -2, e2)) such that fo f; = f;
> identities and composition as in Mon

35

Example:
free monoids as initial objects

(relevant to automata and formal languages)

Theorem. YM € Mon,Vf € Set(Z, M), 3!}7 € Mon(List X, M),]_” ony =f

The theorem just says that 5 : ¥ — List X is an initial
object in the category ¥/Mon:

So this “universal property” determines the monoid List ¥ uniquely up to
isomorphism in Mon.

We will see later that ¥ +— List X is part of a functor (= morphism of categories)
which is left adjoint to the “forgetful functor” Mon — Set.

35

Lecture 4

36

Binary products

In a category C, a product for objects X, Y € Cis a
diagram X & P 25 Y with the universal property:

For all X s 7% Yin C, there is a unique C-morphism
h : Z — P such that the following diagram commutes in

C: Z
f g
N

37

Binary products

In a category C, a product for objects X, Y € Cis a
diagram X & P 25 Y with the universal property:

For all X s 7% Yin C, there is a unique C-morphism
h:Z — P such that
f=meochandg=moh

So (P, 71, m2) is a terminal object in the category with

> objects: (Z, f,g) where X <i Zi YinC

» morphisms h: (Z1, fi,g1) = (Z, f2,92) are h € C(Z1, Z5) such that
fi=fachandgi =g20h

> composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to
(unique) isomophism.

37

Binary products

In a category C, a product for objects X, Y € Cis a
diagram X & P 25 Y with the universal property:

For all X s 7% Yin C, there is a unique C-morphism
h:Z — P such that
f=meochandg=moh

N.B. products of objects in a category do not always exist. For example in the
category

i T
Q#O 1V1

two objects, no non-identity morphisms

the objects 0 and 1 do not have a product, because there is no diagram of the
form 0 «? — 1 in this category.

37

Notation for binary products

Assuming C has binary products of objects, the product
of X, Y € C is written

1 9
X—XXY—>Y

and givenXiZi Y, the unique h: Z — X X Y with
moh=fand my o h = g is written

(f,9):Z —>XXY

38

Examples of products

In Set, category-theoretic products are given by the
usual cartesian product of sets (set of all ordered pairs)

XxY={(x,y) |xeXAyeY}
mi(x,y) = x
m(xy) =y

because...

39

Examples of products
In Preord, can take product of (P;,C;) and (P, C5) to be

(P1 X Py,)

(x1,%2) C (y1,y2) ©

roduct in Set
P x1 iy Ax2 B 1

Examples of products
In Preord, can take product of (P;,C;) and (P, C5) to be

(Py X P,,0)

- (x1,%2) C (Y1, 42) ©
roduct in Set
produ X1 E1 Y1 Ax2 Ep Yo

The projection functions P, X P; X P, R P, are
monotone for this pre-order on P; X P, and have the

universal property needed for a product in Preord
(check).

40

In Mon, can take product of (M, -1, e1) and (M, -2, €2) to

be

Examples of products

(My X My, -, (eg,ez))

product in Set

(x1,%2) - (Y1, y2) =
(x1 1 Y1, X2 "2 Y2)

41

Examples of products

In Mon, can take product of (M, -1, e1) and (M, -2, €2) to
be
(My X My, -, (e1,e2))

roduct in Set
P (X1 1 Y1, X2 "2 Y2)

| (x1,%2) - (Y1,42) =

The projection functions M; S M; X M, R M, are
monoid morphisms for this monoid structure on

M; X M and have the universal property needed for a
product in Mon (check).

41

Examples of products

Recall that each pre-ordered set (P,C) determines a
category Cp.

Given p,q € P = obj Cp, the product p X g (if it exists) is
a greatest lower bound (or glb, or meet) for p and g in
(P,C):

lower bound:

PXqEp A pXqglq

greatest among all lower bounds:

VreP, rEp NTEq = rCpXgqg

Notation: glbs are often written or

42

Duality

A binary coproduct of two objects in a category C is
their product in the category C°P.

43

Duality

A binary coproduct of two objects in a category C is

their product M C°P.

(Thus the coproduct of X, Y € C
if it exists,

inl .
isadiagramXi)X+Y<—1£Y

with the universal property:
vixLzEy),

h
N X+Y—>2),
f=hoinl Ag=hoinr

43

Duality

A binary coproduct of two objects in a category C is
their product in the category C°P.

E.g. in Set, the coproduct of X and Y

inl inr

X—X+Y —Y
is given by their disjoint union (tagged sum)

X+Y={(0,%) | xeX}U{(Ly) |ye Y}
inl(x) = (0,x)
inr(y) = (1,y)

(prove this)

43

Lecture 5

44

Exponentials

Given X, Y € Set, let YX € Set denote the set of all
functions from X to Y.

YX =Set(X,Y) = {f C X x Y| fis single-valued and total}

Aim to characterise YX category theoretically.

45

Exponentials

Given X, Y € Set, let YX € Set denote the set of all
functions from X to Y.

Aim to characterise YX category theoretically.

Function application gives a morphism
app : YX X X — Y in Set.

X
app(f,x) = fx (feY',x€eX)
so as a set of ordered pairs, app is

{((f.%),y) € Y xX)x Y| (xy) € f}

45

Exponentials
Given X, Y € Set, let YX € Set denote the set of all
functions from X to Y.
Aim to characterise YX category theoretically.

Function application gives a morphism
app : YX X X — Y in Set.

Currying operation transforms morphisms
f:ZxX — Y in Set to morphisms cur f : Z — YX

Ccurfzx:f(z,x) (feYX zeZxeX)

cur fz={(xy) | ((z,x),y) € f}
cur f ={(z.9) | g={(xy) | ((zx),y) € f}}

45

Haskell Curry

Haskell Brooks Curry
(/'heeskal/; September 12,
1900 — September 1, 1982)

was an American
mathematician and

logician. Curry is best
known for his work in
combinatory logic; while
the initial concept of
combinatory logic was
based on a single paper by
Moses Schénfinkel, "]
much of the development
was done by Curry. Curry
is also known for Curry's
paradox and the Curry—

Howard correspondence.
There are three
programming languages
named after him, Haskell,
Brook and Curry, as well as
the concent of curruing. a

Haskell Brooks Curry

Born

Died

Nationality

Alma mater

Known for

September 12, 1900
Millis, Massachusetts

September 1, 1982
(aged 81)
State College, Pennsylvania

American
Harvard University

Combinatory logic
Curry—Howard

correspondence

46

For each function f : Z X X — Y we get a commutative
diagram in Set:

YX x x PP Y

curfxidXT /

Z XX

(cur fz,x)——cur fzx = f(z,x)

| —

(2, x)

47

For each function f : Z X X — Y we get a commutative
diagram in Set:

YX x x PP Y

curfxidXT /

ZxX

Furthermore, if any function g : Z — YX also satisfies

YX x x PP Y

gxide /

ZxX

then g = cur f, because of function extensionality...

47

Function Extensionality

Two functions f,g € Y are equal if (and only if)
VxeX, fx=g¢gx.

This is true of the set-theoretic notion of function, because then

{(.fx) | xeX}={(xg9x) | x € X}
ie. {x,y) | (x,y) € f} ={(x,v) | (x,y) € g}
ie. f=g

(in other words it reduces to the extensionality property of sets: two sets are
equal iff they have the same elements).

48

Exponential objects

Suppose a category C has binary products, that is, for
every pair of C-objects X and Y there is a product

diagram X Exxy Sy,

Notation: given f € C(X,X’) and f" € C(Y,Y"), then‘f Xf:XxXY—-X xY
stands for (f o 71, f’ o m3),
that is, the unique morphism g € C(X x Y, X’ X Y’) satisfying

ﬂlongoﬂlandﬂzo_q:floﬂg.

49

Exponential objects

Suppose a category C has binary products.
An exponential for C-objects X and Y is specified by
object YX + morphism app: YA x X — Y
satisfying the universal property
forall Z €e Cand f € C(Z X X,Y), there is a unique
g€ C(Z,YX) such that YX x X% Y
gxide

commutes in C. Z XX

Notation: we write | cur f | for the unique g such that
appe(g X idx) = f.

49

Exponential objects

The universal property of app : YX X X — Y says that
there is a bijection

C(Z, Y% =C(ZxX,Y)
g — appe(g X idx)
cur f « f
appe(cur f X idy) = f
g = cur(appe(g X idx))

50

Exponential objects

The universal property of app : YX X X — Y says that
there is a bijection...
It also says that (YX, app) is a terminal object in the following category:

> objects: (Z, f) where f € C(Z X X,Y)

» morphismsg: (Z,f) — (Z’,f’) are g € C(Z,Z’) such that
fre(gxidx) = f

> composition and identities as in C.

So when they exist, exponential objects are unique up to (unique) isomorphism.

50

Cartesian closed category

Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Notation: an exponential object YX is often written as

51

Cartesian closed category

Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.

Examples:

> Set is a ccc — as we have seen.

> Preord is a ccc: we already saw that it has a terminal object and binary
products; the exponential of (P;,C1) and (P2, C2) is (P; — P2,C) where

Py — P, = Preord((P1, &), (P2, C2))
fEg © VxebP, fxEygx

(check that this is a pre-order and does give an exponential in Preord)

51

Lecture 6

52

CCC

Recall:

Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products and
exponentials of any pair of objects.

53

Non-example of a ccc

The category Mon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

Set(1,List 1) = Mon(List 1,List 1)
~ Mon(1 X List1,List1)

by Ex.Sh. 2, qu. 2
(1 is terminal in Mon)

by universal property of
the free monoid List 1
on the one-element set 1

54

Non-example of a ccc

The category Mon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

Set(1,List 1) = Mon(List 1,List 1)
~ Mon(1 X List1,List1)

Since Set(1,List 1) is countably infinite, so is Mon(1 X List 1,List 1).

Since the one-element monoid is initial (see Lect. 3) in Mon, for any M € Mon we
have that Mon(1, M) has just one element and hence

Mon(1 xList 1,List1) #¢ Mon(1, M)

Therefore no M can be the exponential of the objects List 1 and List 1 in Mon.

54

Cartesian closed pre-order

Recall that each pre-ordered set (P,C) gives a category
Cp. It is a ccc iff P has

> agreatest element T:Vpe P, pC T
> binary meets p A g:
VreP, rCpAq © rEpATrCyq
» Heyting implications p — ¢:
VreP,rCp—-q © rApCyq

55

Cartesian closed pre-order

Recall that each pre-ordered set (P,C) gives a category
Cp. It is a ccc iff P has

> agreatest element T:Vpe P, pC T
> binary meets p A g:
VreP, rCpAq © rEpATrCyq
» Heyting implications p — ¢:
VreP,rCp—-q © rApCyq

E.g. any Boolean algebra (withp - g =-p V g).
1 ifp<gq

E.g. ([0,1],<) with T =1, p A ¢ = min{p, q} andp—>q:{]
q ifg<p

55

Intuitionistic Propositional Logic (IPL)

We present it in “natural deduction” style and only consider the fragment with

conjunction and implication, with the following syntax:

Formulas of IPL: ¢, 9,0, ... ==
p,q,7,... propositional identifiers
true truth
&Y conjunction
o> implication
Sequents of IPL: & == o empty
®,9» non-empty

(so sequents are finite snoc-lists of formulas)

IPL entailment ® + ¢

The intended meaning of @ + ¢ is “the conjunction of the formulas in ® implies
the formula ¢”. The relation _ + _is inductively generated by the following rules:

NN NN ORI/
@,(pl—(p(AX) q),l/”_(p(WK) Sy (cuT)
—— (TRUE) 2re (I)l—lﬁ(&l) M(=>l)
® I true dro&y dro=>Y
Orop&y Orop&y Pro=>y Pro
(D—l_(P(&El) W(&EZ) ory (=)

57

For example, if @ =<, 0 = ¢,y = 0, then® + ¢ =0 is
provable in IPL, because:

ey re=>Y EAX)

o=y WK)
Srysg W Soresy Y Tore (’:‘)
Do+ yY=>0 (Wi D0y ()
O,00 ()

Orp=>0 1)

58

Semantics of IPL
in a cartesian closed pre-order (P,)

Given a function M assigning a meaning to each propositional
identifier p as an element M(p) € P, we can assign meanings to IPL
formula ¢ and sequents @ as element M[¢], M[®] € P by recursion
on their structure:

Mp] = M(p)
M[true] =T greatest element
Mo &] = Mo] A M[¢] binary meet
Mo = ¢] = M[e] - M[y] Heyting implication
Mlo] =T greatest element
M[®, ¢] = M[®] A M[@] binary meet

59

Semantics of IPL
in a cartesian closed pre-order (P,)

Soundness Theorem. If ® + ¢ is provable from the
rules of IPL, then M[®] C M[¢] holds in any cartesian
closed pre-order.

Proof. exercise (show that {(®, ¢) | M[®] C M[¢]} is closed under the rules
defining IPL entailment and hence contains {(®,¢) | ® + ¢})

59

Example

Peirce’s Law o+ ((p=>¢) = @) = ¢
is not provable in IPL.

(whereas the formula ((¢ = /) = @) = ¢ is a classical tautology)

60

Example

Peirce’s Law o+ ((p=>¢) = @) = ¢

is not provable in IPL.

(whereas the formula ((¢ = /) = @) = ¢ is a classical tautology)

Forif o + ((¢ = /) = ¢) = ¢ were provable in IPL, then by the
Soundness Theorem we would have

T =M[o] € M[((¢ > ¢) = ¢) = ¢].

But in the cartesian closed partial order ([0, 1], <), taking
M(p) = 1/2 and M(q) = 0, we get

M[((p=>q) =>p)=>p]=((/2—-0) = 1/2) = /2
= (011 > 2
=1-1/2
=1/,

z1

60

Semantics of IPL
in a cartesian closed pre-order (P,)

Completeness Theorem. Given ®, ¢, if for all cartesian
closed pre-orders (P,C) and all interpretations M of the
propositional identifiers as elements of P, it is the case
that M[®] C M[¢] holds in P, then ® ¢ is provable in
[PL.

61

Semantics of IPL
in a cartesian closed pre-order (P,)

Completeness Theorem. Given ®, ¢, if for all cartesian
closed pre-orders (P,C) and all interpretations M of the
propositional identifiers as elements of P, it is the case
that M[®] C M[¢] holds in P, then ® ¢ is provable in
[PL.

Proof. Define

P
Ty

{formulas of IPL}
o,¢ + 1 is provable in IPL

> 1

Then one can show that (P,C) is a cartesian closed pre-ordered set.
For this (P,), taking M to be M(p) = p, one can show that M[®] T M[¢] holds
in Piff ® + ¢ is provable in IPL. m]

61

Lecture 7

62

IPL entailment @ F ¢

Recall the rules:
D r ol Lot
(AX) Y wi) v vy (cuT)
D0k Ve s
D+ @ Pt
(TRUE) v v (&1) vy =
D F true Cro&y brezy
L&y L&y Pro>y oy
(ze1) (&e2) =
o F ®ry vy

63

Proof theory

Two IPL proofs of 0,0 = 4,y 2> 0+ ¢ = 0

EAX)

. WR) wi) (AX)
T(AX) (WK) @,(/JF(P—>¢ DQoro (=>E)
Dory=>0 LA Y
Qo0
Tres0 OV where @ £ 0,0 = 1, > 0
_ EAx) EAX)
— (WK —— (WK)
Vrg>y b Vg Ez‘)) yry=0 " Wy E::Z)
Yry i vyro (cuT)
Y6

o py=0rp=0

where ¥ £ 0,0 => 1, = 0,¢

64

Proof theory

Two IPL proofs of 0,0 = 4,y 2> 0+ ¢ = 0

EAX)

—_— (AX) , ¢j=>“l;K)(WK)) ore (AX)
Qory=>0 (Wi DQo+y (=€) =9
Qo0
m =9 where @ £ 0,0 2> ¢,y = 0
(R)
ooy ™ wrg®) Fyryeo ™ wyrg ™
Y (=€) A o (=€)
Yo (=1)

Qo> y=>0re=>0

where ¥ £ 0,0 => 1, = 0,¢

Why is the first proof simpler than the second one?

64

Proof theory

dro ONCN) ONONRA
CD,(pl—(p(AX) <I>,lﬁl—(p(WK) ory (cuT)
—— (TRUE) ore (I)Hﬁ(&l) M(=>l)
O+ true OPro&y Oro=>9y
Oro&y Oro&y Pro=>y Do
(D—w(&El) ‘D—W(&EZ) ory (=F)

FACT: if an IPL sequent ® + ¢ is provable from the rules, it is
provable without using the (cuT) rule.

Proof theory

dro ONCN) ONONRA
CD,(pl—(p(AX) @,lﬁl—(p(WK) ory (cuT)
—— (TRUE) ore (I)Hﬁ(&l) M(=>l)
O+ true OPro&y Oro=>9y
Pro&y Pro&y Pro=>y Pro
q)—}_(p(&El) ‘D—W(&EZ) ory (=F)

FACT: if an IPL sequent ® + ¢ is provable from the rules, it is
provable without using the (cuT) rule.

Simply-Typed Lambda Calculus provides a language for describing
proofs in IPL and their properties...

65

Simply-Typed Lambda Calculus (STLC)

Types: A, B,C, ... =
G,G,G”... “ground” types
unit unit type
AXB product type

A—-B function type

66

Simply-Typed Lambda Calculus (STLC)

Types: A, B,C, ... =
GG,G"...

unit
AXB
A— B

Terms: s, t, 1,

CA

x
0

(s, 1)
fstt
Ax : At
st

snd t

“ground” types
unit type
product type
function type

constants (of given type A)
variable (countably many)
unit value

pair

projections

function abstraction
function application

66

STLC

Some examples of terms:

» 1z: (A—-B) X (A—-0C).Ax: A. ((fstz)x, (snd z) x))
(has type ((A = B) x (A = C)) = (A~ (Bx()))

> lz:A—- (BXC).(Ax: A. fst(zx), Ay : A. snd(zy))
(has type (A — (BXC)) - ((A- B) X (A - (C)))

> Az:A—- (BXC). Ax: A. ((fstz) x, (snd z) x)
(has no type)

67

STLC typing relation, ' -t : A

I' ranges over typing environments
Fe=o|Ix:A

(so typing environments are comma-separated snoc-lists of (variable,type)-pairs

— in fact only the lists whose variables are mutually distinct get used)

The typing relation I' ¢ : A is inductively defined by the
following rules, which make use of the following
notation

means: no variable occurs more than once in T’
domI | = finite set of variables occurring in T

68

STLC typing relation, ' -t : A

Typing rules for variables

I' ok x ¢ dom I’

(VAR)
I'x:Arx:A
F'rx:A x’ ¢ domT
p p (VAR’)
IN'x A Fx:A

Typing rules for constants and unit value

I' ok
(cons)
Tt A
I' ok
(UNIT)

I'F():unit

69

STLC typing relation, T ¢ : A

Typing rules for pairs and projections

I'kFs:A I'+t:B
' (s,t):AXB

I'rt:AXB
I'rfstt: A

(PAIR)

(FsT)

I''rt:AXB

(SND)
I'-sndt:B

70

STLC typing relation, ' -t : A

Typing rules for function abstraction & application

I'x:Art:B
'rAx:A.t:A— B

(FUN)

I'rs:A— B 'rt:A
I'tst:B

(ApPP)

71

STLC typing relation, ' -t : A

Example typing derivation:

(VAR)

:A— B :A—- B
o f - Brf - (VAR))

Trf:A—B

Trg Boc ™ TixiArfiASB VAR F,x:Av—x:AEX’:FP{;
TxiArg:BoC (M%) Lx:ArfxiB
Ix:Arg(fx):C (FUN)
FrFAx:Ag(fx):A-C (FuN)

o,f:A-BrAg:B—-C.Ax:A.g(fx):(B-C)— (A-C)
orAf:A—-BAg:B-C.Ax:Ag(fx):(A-B)-(B—-C) > (A-C

) (FUN)

whereT 20, f:A—B,g:B—C

N.B. the STLC typing rules are “syntax-directed”, by the structure of terms ¢ and
then in the case of variables x, by the structure of typing environments I'.

72

Semantics of STLC types in a ccc

Given a cartesian closed category C,
any function M mapping ground types G to objects M(G) € C

extends to function A — M[A] € Cand I — M][I'] € C from STLC
types and typing environments to C-objects, by recursion on the
structure of A:

M[G] = M(G)
M[unit] =1 terminal object in C
M[A x B] = M[A] x M[B] product inC
M[A — B]] = M[A] - M[B] exponential in C

Mlo] =1 terminal object in C
M[T,x : A] = M[T] x M[A] productinC

73

Lecture 8

74

Semantics of STLC terms in a ccc
Given a cartesian closed category C,
given any function M mapping
> ground types G to C-objects M(G)

(which extends to a function mapping all types to objects, A — M[A], as
we have seen)

75

Semantics of STLC terms in a ccc

Given a cartesian closed category C,

given any function M mapping

> ground types G to C-objects M(G)
> constants ¢ to C-morphisms M(c?) : 1 — M[A]

(In a category with a terminal object 1, given an object X € C, morphisms
1 — X are sometimes called global elements of X.)

75

Semantics of STLC terms in a ccc
Given a cartesian closed category C,
given any function M mapping

> ground types G to C-objects M(G)
> constants ¢ to C-morphisms M(c?) : 1 — M[A]

we get a function mapping provable instances of the
typing relation I' + ¢ : A to C-morphisms

M[T rt: A] : M[T] - M[A]

defined by recursing over the proof of I' - ¢ : A from the
typing rules (which follows the structure of t):

75

Semantics of STLC terms in a ccc

Variables:
M[T,x : A+ x : A] = M[T] x M[A] = M[A]

M[[T,x' :A'I—x:A]] =

MI] x MIATT =5 M) 254 A

Constants:
M A
ML+ ¢ : A] = M[T] 5 1 22 Mpag
Unit value:

M+ () : unit] = M[T] 5 1

76

Semantics of STLC terms in a ccc

Pairing:

M[T + (s, t) : AXB] =

M[[r]] (M[Trs:A],M[T+¢:B])

> M[A] x M[B]
Projections:

M[T + fstt: A] =

] MEEAEL AT x MIB] 5 M[A]

77

Semantics of STLC terms in a ccc

Pairing:

M[T + (s, t) : AXB] =

M(T] (M[[I‘l—s:A]],M[[I‘I—t:B]]), MIA] x M[B]

GiventhatT' + fstt : A holds,
there is a unique type B
g such that T + ¢ : A X B already

Projections:

M[T + fstt: A] = holds.

M M[T+t:AxB] m
[T] ——— M[A] x M[B] — M[A]

Lemma. IfT'Ft: Aand T ¢ : B are provable, then A = B.

77

Semantics of STLC terms in a ccc
Pairing:
M[T + (s, t) : AXB] =

M(T] (M[[I‘l—s:A]],M[[I‘I—t:B]]), MIA] x M[B]

Projections:

M[T + sndt : B] =
M[T'+t:AXB] i
M[T] 25, MAT x M[B] 2 MBI

(As for the case of fst, if ' + sndt : B, then T + ¢ : A X B already holds for a
unique type A.)

77

Semantics of STLC terms in a ccc

Function abstraction:

M[T+Ax:At:A— B] =
cur [: M[T] = (M[A] - M[B])

where

f=M[I,x:A¥rt:B]: M[T] x M[A] — M[B]

Semantics of STLC terms in a ccc

Function application:

M[[I' Fst: B]] =
M[T] RN (M[A] — M[B]) x M[A] —> M[B]

where

A = unique type suchthatT'-s: A—- BandT'Ft: A
already holds (exists because I' + s ¢ : B holds)

f=M[lrs:A— B]: M[T] - (M[A] — M[B])
g=M[T +t:A]: M[T] - M[A]

79

Example

Consider |t = Ax : A.g(fx)|sothatT' +t: A — C when
<o, f:A—-Bg:B—C.
Suppose M[[A] = X, M[B] =Y and M[C] = Z in C. Then

M[I] = (1 xY*) x z¥
M[I,x: Al = (1 xY¥)xZ¥)x X
MD,x:Arx: Al =m

M, x:Arg:B—=C]=mem
M[L,x :Ar f:A->B]l=momem

M[T,x: A+ fx:B] =appe{m om o m, 1)
M[T,x : A+ g(fx):C|]=appe(mom,appe(m e m o m,)

ML+t :A— C] = cur(app(m ° m , app o7z © 711 © 71 , 72)))

80

STLC equations

take the form T Frs=1t: A|where+s:AandT Ft: A
are provable.

Such an equation is satisfied by the semantics in a ccc if
M|T v s: A] and M[T + ¢ : A] are equal C-morphisms
M[r] — M[A].

Qu: which equations are always satisfied in any ccc?

81

STLC equations

take the form T Frs=1t: A|where+s:AandT Ft: A
are provable.

Such an equation is satisfied by the semantics in a ccc if
M|T v s: A] and M[T + ¢ : A] are equal C-morphisms
M[r] — M[A].

Qu: which equations are always satisfied in any ccc?

Ans: (a)pn-equivalence — to define this, first have to
define alpha-equivalence, substitution and its
semantics.

81

Alpha equivalence of STLC terms

The names of A-bound variables should not affect
meaning.

E.g. Af : A— B.Ax : A. f x should have the same
meaning as Ax : A - B. Ay : A.xy

82

Alpha equivalence of STLC terms

The names of A-bound variables should not affect
meaning.

E.g. Af : A— B.Ax : A. f x should have the same
meaning as Ax : A - B. Ay : A.xy

This issue is best dealt with at the level of syntax rather
than semantics: from now on we re-define “STLC term”
to mean not an abstract syntax tree (generated as
described before), but rather an equivalence class of

such trees with respect to alpha-equivalence s =, t}
defined as follows...

(Alternatively, one can use a “nameless” (de Bruijn) representation of terms.)

82

Alpha equivalence of STLC terms

S=4 5§ t =4t t =gt
Ay Al x=ax|| 0= 0| (s.0) =4 (s, t)) || fstt=4 fstt’
t =t S=4 t =, t
sndt =, sndt’ st=4 5t

(yx)-t=q (yx')-t y does not occur in {x, x’, t,t'}

Ax At =4 Ax' 1 ALY

83

Alpha equivalence of STLC terms

S=4 5§ t =4t t=,t
c =a Allx=x||0=a O] (s.1) =4 (s, 1) || fstt =4 fst?’
t=,t S=4 t=,t

sndt =, sndt’

’

st =45t

(yx) t=q (yx) -t

y does not occur in {x, x, t,t'}

\

Ax At =4 Ax' 1 ALY

N

result of replacing all
occurrences of x with y in ¢

83

Alpha equivalence of STLC terms

S=4 5§ t =4t t =gt

c? =a Alx=ax|| 0= 0] (s,t)=q (s,) || fstt =4 fst?’

’ ’

t =4t S=¢ S t =, t

sndt =, sndt’ st=4 5t

(yx)-t=q (yx')-t y does not occur in {x, x’, t,t'}
Ax At =4 Ax' 1 ALY

E.g.
Ax A xx=q Ay 1 A yy#4 Ax: Axy
Ay :Ayx=4 (Ax:Ax)x#4 (Ax:A.x)y

Substitution

t[s/x] | = result of replacing all free occurrences of
variable x in term t (i.e. those not occurring within the
scope of a Ax : A._ binder) by the term s,
alpha-converting A-bound variables in ¢ to avoid them
“capturing” any free variables of t.

Eg (Ay:A.(y,x))[y/x]isAz: A.(z,y) andisnot Ay : A. (v, 1)

84

Substitution

t[s/x] | = result of replacing all free occurrences of
variable x in term t (i.e. those not occurring within the
scope of a Ax : A._ binder) by the term s,
alpha-converting A-bound variables in ¢ to avoid them
“capturing” any free variables of t.

Eg (Ay:A.(y,x))[y/x]isAz: A.(z,y) andisnot Ay : A. (v, 1)

The relation t[s/x] = t’ can be inductively defined by
the following rules...

84

Substitution

y+x

Als/x] = || x[s/x] =

yls/x1 =y || Ols/x] = ()

t1[s/x] = t] ta[s/x] = t;

t[s/x] =t

(t1, t2)[s/x] = (1], t3)

(fst

t)[s/x] = fstt’

t[s/x] =t ti[s/x] =t

t[s/x] =t;

(sndt)[s/x] = sndt

(t1ty)[s/x] = tit;

t[s/x] =t y # x and y does not occur in s

Ay : A t)[s/x] = Ay : At

85

Semantics of substitution in a ccc

Substitution LemmalfT'rs: AandI,x: A+t : Bare
provable, then sois T' + t[s/x] : B.

Substitution Theorem If I'+s: AandI',x: A+t :B
are provable, then in any ccc the following diagram
commutes:

M (id,M[T+s:A])

M[T] x M[A]
J/M[[I‘,x:AI—t:B]]
MIB]

M([Trt[s/x]:

86

Lecture 9

87

STLC equations

take the form T Frs=1t: A|where+s:AandT Ft: A
are provable.

Such an equation is satisfied by the semantics in a ccc if
M|T v s: A] and M[T + ¢ : A] are equal C-morphisms
M[r] — M[A].

Qu: which equations are always satisfied in any ccc?

Ans: fn-equivalence...

88

STLC fn-Equality

The relation |I' s =g, t : A|(where I ranges over typing

environments, s and t over terms and A over types) is
inductively defined by the following rules:

89

STLC fn-Equality

The relation |I' s =g, t : A|(where I ranges over typing

environments, s and t over terms and A over types) is
inductively defined by the following rules:

> [B-conversions
ILx:Avrt:B I'rs:A I'rs:A T'rt:B
[(Ax: A t)s =g, t[s/x] : B| T+ fst(s,t)=p,5:A

'krs:A '-t:B
['+snd(s,t) =g, t:B

The relation

STLC fn-Equality

FI-S:‘gUt:A

(where T ranges over typing

environments, s and t over terms and A over types) is
inductively defined by the following rules:

> [-conversions
» p-conversions

'rt:A—- B

x does not occur in t

[rt=p, (Ax:Atx):A—B

I'tt:AXB

T'Ft:unit

['+t=p, (fstt,sndt) : AXB||T+t=g,():unit

89

STLC fn

The relation|T + s =gyt A

-Equality

(where T ranges over typing

environments, s and t over terms and A over types) is
inductively defined by the following rules:

> [B-conversions
» p-conversions
> congruence rules

F,x:Al—t=ﬁ,]t':B

Fk/lx:A.t=/3,7/1x:A.t':A—>B

FFs=p,s:A—=B Trt=p,t':A

etc

Trst=p,st':B

89

STLC pn-Equality

The relation|T + s =gyt A

(where T ranges over typing

environments, s and t over terms and A over types) is
inductively defined by the following rules:

» [-conversions
» p-conversions
> congruence rules

> =g, is reflexive, symmetric and transitive

T'rt: A Fl—s:ﬁ,]t:A

Fkt:ﬁ,,t:A rl—tZﬁ,]S:A

Fl—r:ﬂns:A Fl—s:ﬁ,?t:A

rl-r=ﬁ,]t:A

89

STLC fn-Equality
Soundness Theorem for semantics of STLC in a ccc.
IfI' s =g, t:Alis provable, then in any ccc

M[T+s: Al =M][T +t: A]

are equal C-morphisms M[I'] — M[A].

Proof is by induction on the structure of the proof of T' + s =g, t : A.
Here we just check the case of -conversion for functions.

So suppose we have I',x : A+t : Band I' - s : A. We have to see that

M[T + (Ax : A.t)s : Bl = M[T + t[s/x] : B]

90

Suppose M[r] =X
M[A] =Y
M[B] = 2

M[L,x:Art:B]=f:XxXY > Z

MTrs:Al=g: X > Z
Then

M[TFAx:At:A—Bl=curf:X — 2"

and hence

M[T - (Ax : A.t)s : B]

= app(cur f, 9)

appe(cur f X idy) o (idx, g)
fe(idx.g)

= M[T + t[s/x] : B]

as required.

since (ax b)o{(c,dy=(acc,bod)
by definition of cur f
by the Substitution Theorem

91

The internal language of a ccc, C

> one ground type for each C-object X

> for each X € C, one constant X for each
C-morphism f : 1 — X (“global element” of the
object X)

The types and terms of STLC over this language usefully describe constructions
on the objects and morphisms of C using its cartesian closed structure, but in an
“element-theoretic” way.

For example...

92

Example

In any ccc C, for any X, Y, Z € C there is an isomorphism

Z(XXY) ~ (ZY)X

93

Example

In any ccc C, for any X, Y, Z € C there is an isomorphism
Z(XXY) ~ (ZY)X

which in the internal language of C is described by the terms

oFs: (XXY)=2)- (X > (Y= 2))
ort: (X =>(Y—>2)) > ((XXY)—=2)

here 4° ZAf(XXY) > Z Ax: X Ay: Y. f(x,y)
w
=Ag: X - (Y—->2Z)Adz: X xY.g(fstz) (sndz)

Of (XXY) = Zvrt(sf)=p, f

hich satisf
whic Sa|5y{O,g:XQ(Y%Z)"S(tg):ﬂUg

93

Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single ccc
(the free ccc for that language) with an interpretation function M so that
['ks=p,t:Aisprovable iff M[T'+s: A] = M[T' +t: Al inF.

94

Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single ccc
(the free ccc for that language) with an interpretation function M so that
['ks=p,t:Aisprovable iff M[T'+s: A] = M[T' +t: Al inF.

> F-objects are the STLC types over the given set of ground types

» F-morphisms A — B are equivalence classes of STLC terms ¢ satisfying
oFt:A— B(sotisa closedterm—it has no free variables) with respect to
the equivalence relation equating s and t if o + s =g, t : A — B is provable.

> identity morphism on A is the equivalence classof o F Ax : A.x : A - A.

> composition of a morphism A — B represented by o+ s: A —» Band a
morphism B — C represented by o +- t : B — C is represented by
oFAx:At(sx):A—C.

94

Curry-Howard
correspondence

Type
Logic Theory

propositions < types
proofs < terms

E.g. IPL versus STLC.

95

Curry-Howard for IPL vs STLC

Proof of o, =,y = 0+ ¢ = 0 in IPL

—_— AX)
—_— EWK) (WK)

B T (Ax)
-_— (AX) (ONS () => lﬁ (ONS (] 3
T gm0 W 5y €)
(=)
D+ 0 (=)
o >y, y=>0F p=>0

where =0, o¢=vy, ¢¥=0, ¢

96

Curry-Howard for IPL vs STLC

and a corresponding STLC term

——— (AX) Ory:p=> (wk)
_ y:o=>y Prx:¢
CDI—z:lp=>9(WK) @I—yx:xﬁ(=>E)

D+ z(yx):0 (>
0y >0, z:Y=>0rAx:0.z(yx) :p=>0

1)

where =0, y:9=>¢,z:y=>0,x:¢

96

Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory
propositions < types <> objects
proofs < terms < morphisms

E.g. IPL versus STLC versus CCCs

97

Curry-Howard-Lawvere/Lambek

Correspondence
Type Category
Logic Theory Theory
propositions < types <> objects
proofs < terms < morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we
first need to define the notions of functor and natural transformation in order to
define the notion of equivalence of categories.

97

Lecture 10

98

Functors

are the appropriate notion of morphism between categories

Given categories C and D, a functor is
specified by:
> a function obj C — obj D whose value at X is

written

» forall X,Y € C, afunction C(X,Y) > D(FX,FY)
whose value at f : X — Y is written
Ff:FX—>FY
and which is required to preserve composition and
identity morphisms:

F(gef) = FgeoFf

F(idy) = idrx

99

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. U : Mon — Set|

{U(M, . e) =M
f f
U((My,-1,e1) = (Mg, -2,€2)) =M = M,

100

Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. U : Mon — Set|

{U(M, . €) =M
f f
U((My,-1,e1) = (Mg, -2,€2)) =M = M,

Similarly U : Preord — Set.

100

Examples of functors

Free monoid functor |F : Set — Mon|

Given X € Set,

FY = (List X, @,nil), the free monoid on %

101

Examples of functors

Free monoid functor |F : Set — Mon|

Given X € Set,

FY = (List X, @,nil), the free monoid on >

Given a function f : X1 — X, we get a function
F f :ListX; — List X, by mapping f over finite lists:

Fflay,....,anl =[fas,...,[fan]
This gives a monoid morphism FX; — F 3,; and mapping over lists preserves

composition (F(ge f) = Fgeo F f) and identities (F idx = idrsx). So we do get a
functor from Set to Mon.

101

Examples of functors

If C is a category with binary products and X € C, then
the function (1) X X : obj C — obj C extends to a
functor| () X X : C — C|mapping morphisms
f:Y—>Yto

fXidy : Y XX > Y xX

o X = o
recall that f X g is the unique morphism with 7o (fx9) fom
me(fxg) =geom

since it is the case that
idyx X idy = 1dxxy

(f"ef)xidx = (f"xidyx)e (f Xxidx)

(see Exercise Sheet 2, question 1c).

102

Examples of functors

If C is a cartesian closed category and X € C, then the
function (_)% : obj C — obj C extends to a functor

(0% : C — C|mapping morphisms f : Y — Y’ to

fX % cur(foapp) : YN - v*

(idy)* = idyx

(ge)X =g~ ofX

since it is the case that {

(see Exercise Sheet 3, question 4).

103

Contravariance

Given categories C and D, a functor F : C°? — D is
called a contravariant functor from C to D.

Note that if X 5> ¥ <5 Zin C, then X &- ¥ & Z in CoP

Ff Fg
so FX «— FY «— FZ inD and hence

F(gecf)=FfeopFyg

(contravariant functors reverse the order of composition)

A functor C — D is sometimes called a covariant functor from C to D.

104

Example of a contravariant functor

If C is a cartesian closed category and X € C, then the
function X : obj C — obj C extends to a functor

X : C°? — C|mapping morphisms f: Y — Y’ to

x/ 2 cur(appe(idyy X f)) XY 5 xY

My = ddyy

since it is the case that
x99 =xfox9

(see Exercise Sheet 3, question 5).

105

Note that since a functor F : C — D preserves domains,
codomains, composition and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.
; X FX
Ff
/ F /
h = FY Fh=F(gof)=F g°F f
N

Fg
Z FZ

106

Note that since a functor F : C — D preserves domains,
codomains, composition and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

x- oy rx oy
idy F idry
I N SR (VA
X -y FX - FY

so| F(f) =(Ff)!

106

Composing functors

Given functors F: C > Dand G: D — E, we get a
functor|G o F : C — E|with

X G(FX)
GoF lf - lG(Ff)
Y/ G(FY)

(this preserves composition and identity morphisms, because F and G do)

107

Identity functor

on a category C is

ide: C—> C
X
ide| |1 |=

Y

where

X

I

Y

108

Functor composition and identity functors satisfy

associativity Ho(GoF)=(HoG)oF
unity idDOFZFZFOidC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size...

109

Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X, X3, Xy, ... with

€ Xy €EXp € €Xy € X1 €Xp

So in particular there is no set X with X € X.

So we cannot form the “set of all sets” or the “category of all categories”.

110

Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets X, X3, Xy, ... with

€ Xy €EXp € €Xy € X1 €Xp

So in particular there is no set X with X € X.
So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets
%06%1 6%26"'

where “big” means each %, is a Grothendieck universe...

110

Grothendieck universes
A Grothendieck universe % is a set of sets satisfying

>» XeYeU>XeWU

>» X, YeU={X,Y}eU

>» XeU=>PX2{Y|YCX}el
» XcUANFe U=

{y|IxeX, yeFx} e
(hencealso X, Y e % = XXYeU A YX € %)

The above properties are satisfied by % = 0, but we will always assume

» Ne U

111

Size

We assume
there is an infinite sequence %, € %, € %, € - - - of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set, = category whose objects are all the sets in %,, and
with Set,(X,Y) = YX = all functions from X to Y.

Notation: |Set = Set,|— its objects are called small sets
(and other sets we call large).

112

Size
Set is the category of small sets.

Definition. A category C is locally small if for all
X, Y € C, the set of C-morphisms X — Y is small, that
is, C(X,Y) € Set.

C is a small category if it is both locally small and
obj C € Set.

E.g. Set, Preord and Mon are all locally small (but not small).

Given P € Preord, the category Cp it determines is small; similarly, the category
Cy determined by M € Mon is small.

113

The category of small categories, Cat

> objects are all small categories
» morphisms in Cat(C, D) are all functors C — D

> composition and identity morphisms as for functors

Cat is a locally small category

114

Lecture 11

115

The category of small categories

Recall definition of Cat:

> objects are all small categories
» morphisms in Cat(C, D) are all functors C — D
> composition and identity morphisms as for functors

116

Cat has a terminal object

The category

0 Edo

one object, one morphism

is terminal in Cat

117

Cat has binary products

Given small categories C,D € Cat, their product
CZLCxDSDis:

118

Cat has binary products

Given small categories C,D € Cat, their product
CZLCxDSDis:

v

objects of C X D are pairs (X,Y) where X e Cand Y € D

v

morphisms (X,Y) — (X, Y’) in C X D are pairs (f,g) where
feC(X,X)and g € D(Y,Y’)

v

composition and identity morphisms are given by those of C
(in the first component) and D (in the second component)

. ((x, y) Y9, (x Y’)) -xLx

v

. ((x, y) Y2, (x Y’)) -y Sy

118

Cat not only has finite products, it is also cartesian
closed.

Exponentials in Cat are called functor categories.

To define them we need to consider
natural transformations, which are the appropriate
notion of morphism between functors.

119

Natural transformations

Motivating example: fix a set S € Set and consider the
two functors F, G : Set — Set given by

id
F(XLY):SxXﬁX—f»SxY

id
G(XLY):Xxsixiins

120

Natural transformations

Motivating example: fix a set S € Set and consider the
two functors F, G : Set — Set given by

id
F(Xiy)=5xxiix-];5xy

id
G(Xiy):stixiins

For each X € Set there is an isomorphism (bijection) Ox : FX = GX
in Set given by (7, 1) : SX X — X X S.

These isomorphisms do not depend on the particular nature of each
set X (they are “polymorphic in X”). One way to make this precise
is...

120

...if we change from X to Y along a function f : X — Y,
then we get a commutative diagram in Set:

Sx XM xS
idxfl lfxid
SXY Y XS

(ma,m1)

The square commutes because for all s € S and x € X

(m2, m)((1d X f)(s,x)) = (2, m) (s, f X)
=(fxs)
= (f xid)(x,s)
= (f x1id)((m2, 71)(s,x))

121

...if we change from X to Y along a function f : X — Y,
then we get a commutative diagram in Set:

Ox

FX GX
i e
FY 5 GY

We say that the family (6x | X € Set) is natural in X.

121

Natural transformations

Definition. Given categories and functors F,G : C — D,

a natural transformation is a family of

D-morphisms 0x € D(F X, G X), one for each X € C,
such that for all C-morphisms f : X — Y, the diagram

FX—— % .cx
Fd Ff
FY——GY

commutes in D, that is, Oy o F f = G f o 0x.

122

Example

Recall forgetful (U) and free (F) functors:
U

Set Mon

F

There is a natural transformation 5 : idgey — U © F,
where for each > € Set

Ny : X —> U(FX) =List X
a €2 > [a] € List X (one-element list)

ns

(Easy to see that 3 U(FX) commutes.)

fl lU(Ff)

’ ’
Y U(FY)

123

Example
The covariant powerset functor & : Set — Set is

PXE={S|SCX}
f . P f
@(X—>Y):9’X——>9’Y
SH>PfSE={fx]|xeS}

124

Example
The covariant powerset functor & : Set — Set is
PXE={S|SCX}
f R Pf
PIX>Y]|=2PX — PY
SHPfSE{fx|xeS}

There is a natural transformation U : &# o & — & whose
component at X € Set sends & € (P X) to

Uy = {xeX|3Se S, xeStePrPX

(check that Ux is natural in X)

124

The classic example of an “un-natural transformation”
(the one that caused Eilenburg and MacLane to invent
the concept of naturality) is the linear isomorphism
between a finite dimensional real vectorspace V and its
dual V* (= vectorspace of linear functions V. — R).

Both V and V* have the same finite dimension, so are
isomorphic by choosing bases; but there is no choice of
basis for each V that makes the family of isomorphisms
natural in V.

For a similar, more elementary non-example, see
Ex. Sh. 5, question 4.

125

Composing natural transformations

Given functors F,G, H : C — D and natural
transformations 0 : F — G and ¢ : G — H,

we get

@o0

: F — H with

0
(poB)x = [FX 5 6x 2 Hx
¢

126

Composing natural transformations

Given functors F,G, H : C — D and natural
transformations 0 : F — G and ¢ : G — H,

we get (@ o 0|: F — H with

0
(poB)x = [FX 5 6x 2 Hx
¢

Check naturality:

Hfo(pob)x = Hfopxo0x
=@y °oGfobx naturality of ¢
=@yolyoFf naturality of 6

=(peO)yoFf

126

|dentity natural transformation

Given a functor F : C — D, we get a natural

transformation

idF :F— F

with

idrx

(idp)x = FX —/5 FX

127

|dentity natural transformation

Given a functor F : C — D, we get a natural

transformation

Check naturality:

idF:F—>F

with

idrx

(idp)x = FX —/5 FX

Ffo(idp)x = Ffeidpx =Ff=idpyoFf = (idp)y o F f

127

Functor categories

It is easy to see that composition and identities for natural transformations
satisfy

(Yop)ob=y°(p0)

idge 0 =0-idp

so that we get a category:

Definition. Given categories C and D, the functor

category |D€| has

> objects are all functors C — D

> given F,G : C — D, morphism from F to G in D¢
are the natural transformations F — G

> composition and identity morphisms as above

128

If % is a Grothendieck universe, then for each X € % and F € %X
we have that their dependent product and dependent function sets

xex Fx={(x,y) [x € X Ay € Fx}

[lyex Fx 2 {f C Z Fx | f is single-valued and total}
xeX

are also in %; and as a special case (of [[, when F is a constant
function with value Y) we also have that X, Y € % implies YX € %.

129

If % is a Grothendieck universe, then for each X € % and F € %X
we have that their dependent product and dependent function sets

xex Fx={(x,y) [x € X Ay € Fx}

[lyex Fx 2 {f C Z Fx | f is single-valued and total}
xeX

are also in %; and as a special case (of [[, when F is a constant
function with value Y) we also have that X, Y € % implies YX € %.
Hence

If C and D are small categories, then so is DC.

because

ObJ (DC) c ZFE(obj D)obiC HX,YEObj fo D(FX, F Y)C(X,Y)
DC(F> G) C HXeobj cD(FX,GX)

129

If % is a Grothendieck universe, then for each X € % and F € %X
we have that their dependent product and dependent function sets

xex Fx={(x,y) [x € X Ay € Fx}

[lyex Fx 2 {f C Z Fx | f is single-valued and total}
xeX

are also in %; and as a special case (of [[, when F is a constant
function with value Y) we also have that X, Y € % implies YX € %.
Hence

If C and D are small categories, then so is DC.

because
ObJ (DC) c ZFE(obj D)obiC HX,YEObj fo D(FX, F Y)C(X,Y)
DC(F> G) C HXeobj cD(FX,GX)

Aim to show that functor category DC is the exponential of C and D in Cat...
129

Cat is cartesian closed
Theorem. There is an application functor
app:D¢xC —D
that makes D the exponential for C and D in Cat.

Given (F,X) € D€ x C, we define

app(F,X) 2 FX

and given (6, f) : (F,X) — (G,Y) in D¢ x C, we define

Ff Oy
app((FX) (GY)|2FX —FY —>GY
Ox Gf

=FX—>GX —>GY

app(idr,idx) =idrx
Check:
app(¢°0,9°f) =app(¢,g)°app(0,f)

130

Cat is cartesian closed
Theorem. There is an application functor
app:D¢xC —D
that makes D the exponential for C and D in Cat.

Definition of currying: given functor F : E x C — D, we get a functor
cur F : E — D€ as follows. For each Z € E, cur F Z € D€ is the functor

X F(Z,X)
curFZ lf = J/F(idz,f)
X’ F(Z,X")

Foreachg:Z — Z'inE,cur Fg: cur FZ — cur F Z’ is the natural
transformation whose component at each X € Cis

(cur Fg)x = F(g,idx) : F(Z,X) — F(Z',X)

(Check that this is natural in X; and that cur F preserves composition and
identities in E.)

Cat is cartesian closed

Theorem. There is an application functor
app:D¢xC —D
that makes D the exponential for C and D in Cat.

Have to check that cur F is the unique functor G : E — D that makes

ExC—F . D
GXidc\L app
D¢ xC

commute in Cat (exercise).

130

Lecture 12

131

The concepts of “category”, “functor” and “natural
transformation” were invented by Eilenberg and
MacLane in order to formalise “adjoint situations”.

They appear everywhere in mathematics, logic and
(hence) computer science.

Examples of adjoint situations that we have already
seen...

132

Free monoids

> - U(M, ° 6) morphisms in Set

F> — (M, A 6) morphisms in Mon

bijection
Set(2,U(M, -, e)) = Mon(FX, (M, -e))
fe=r
gens g

(wherepy : 2 > FX =List X isa— [a])

The bijection is “natural in 3 and (M, -, e)” (to be explained)

133

Binary product in a category C

(Z, Z) — (X, Y) morphisms in C x C

Z — X X Y morphismsinC

bijection
(CxC)(Z,2),(X,Y)) = C(Z,X X Y)
(f.9) = (f.9

(myoh,myoh) < h
This bijection is “natural in X, Y, Z” (to be explained)

134

Exponentials in a category C with binary products

Z X X — Y morphismsinC

Z — YX morphisms in C

bijection
C(ZxX,Y)=C(Z,YY)
frcurf
appe(g X idx) < g

The bijection is “natural in X, Y, Z” (to be explained)

135

Adjunction
Definition. An adjunction between two categories C
and D is specified by:

F

» functors C D

G
» foreach X € Cand Y € D a bijection
Oxy:D(FX,Y) =2 C(X,GY)
which is natural in X and Y.

u: X" - XinC .
for all . andallg: FX - YinD
:Y—>Y'inD

0
x4 x 29, ”(g) GY Z5GY =0y y (FX’F—’%FXi Y5 Y’)

136

Adjunction
Definition. An adjunction between two categories C
and D is specified by:

F

» functors C D

G
» foreach X € Cand Y € D a bijection
Oxy:D(FX,Y) =2 C(X,GY)
which is natural in X and Y.

what has this to do with the concept of natural
transformation between functors?

136

Hom functors

If C is a locally small category, then we get a functor

Homc : C°P X C — Set

with Home(X,Y) = C(X,Y) and

(f.9) Home(f,9)
_

Homc [(X,Y) —— (X, Y) | = C(X.Y) C(X"Y')

Homc(f,g)h =gohe f

137

Hom functors

If C is a locally small category, then we get a functor

Homc : C°P X C — Set

with Home (X, Y) = C(X,Y) and

(f.9)

H ,
Home | (X, Y) (X, Y') el o)

2 C(X,Y) —L7, c(x', Y)

ome(f,g)h=gohef

If(f,9): (X,Y) > (X,Y)inCPxCandh:X — YinC,
thenin Cwe have f: X’ - X, g:Y > Y andsogoho f: X =Y’

137

Natural isomorphisms

Given functors F,G : C — D, a natural isomorphism
0 : F = G is simply an isomorphism between F and G in
the functor category DC.

138

Natural isomorphisms

Given functors F,G : C — D, a natural isomorphism
0 : F = G is simply an isomorphism between F and G in
the functor category DC.

Lemma. If 0 : F — G is a natural transformation and for each X € C,

O0x : FX — G X is an isomorphism in D, then the family of morphisms

(05" : GX — FX | X € C) gives a natural transformation 0~': G — F whichis
inverse to 6 in D¢ and hence 6 is a natural isomorphism. O

138

An adjunction between locally small categories C and D
is simply a triple (F, G,) where

F

> C D

G
> 0 is a natural isomorphism between the functors

D°P x D

Fop/xidD/ W
CPxD and Set

CPx C

139

Terminology:

F

Given C D

G

is there is some natural isomorphism
0 : Homp o (F°P X idp) = Homc ° (idcer X G)

one says

F is a left adjoint for G
G is a right adjoint for F

and writes
FA4G

140

Notation associated with an adjunction(F, G, 0)

) g:FX—>Y
Given
f:X—->GY

. lg =0xy(g): X—>GY
we write < =
f = 9)‘(’1Y(f) :FX —>Y
Thusgz g, f = f and naturality of Oxy in X and Y
means that
vogoeFu=Govogou

141

Notation associated with an adjunction(F, G, 0)

The existence of 0 is sometimes indicated by writing
FX5Y
x5 Gy

Using this notation, one can split the naturality
condition for 6 into two:

Fx 2 xSy FXLyvSy

x5 x5oy x5eoy Loy

142

Lecture 13

143

Recall:
F

Given categories and functors C D,

G
an adjunction is specified by functions

FX i> Y . FX i) Y
HX,Yl— XYy—

XSGy xLaoy
(for each X € C and Y € D) satisfying f = f,g = g and

Fx 2 xSy FXSyvSy

x45x5 Gy xLhory oy

144

Theorem. A category C has binary products iff the
diagonal functor A = (id¢, id¢) : C — C X C has a right
adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all X € C, the
functor (_) X X : C — C has a right adjoint.

Common situation: we are given a functor F : C — D and want to know whether
it has a right adjoint G : D — C (and dually for left adjoints).

Q: what is the least info we need to specify the existence of a right
adjoint?

145

Theorem. A category C has binary products iff the
diagonal functor A = (id¢, id¢) : C — C X C has a right
adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all X € C, the
functor (_) X X : C — C has a right adjoint.

Common situation: we are given a functor F : C — D and want to know whether
it has a right adjoint G : D — C (and dually for left adjoints).

Q: what is the least info we need to specify the existence of a right
adjoint?

Both the above theorems are instances of the following theorem, which is a very
useful characterisation of when a functor has a right adjoint (or dually, a left
adjoint).

145

Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C and a
D-morphism ¢y : F(GY) — Y with the following
“universal property”:

forall X e Candg € D(FX.,Y)

(UP) |there is a unique g € C(X,GY)
satisfying ey o F(g) = ¢

146

Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C and a
D-morphism ¢y : F(GY) — Y with the following
“universal property”:

forall X e Candg € D(FX.,Y)

(UP) |there is a unique g € C(X,GY)
satisfying ey o F(g) = ¢

Y

v A

FX

Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C and a
D-morphism ¢y : F(GY) — Y with the following
“universal property”:

(UP)

forall X e Candg € D(FX.,Y)
there is a unique g € C(X,GY)
satisfying ey o F(g) = ¢

Y GY

A
v / 3 gl with

FX

146

Characterisation of right adjoints

Theorem. A functor F : C — D has a right adjoint iff
for all D-objects Y € D, there is a C-object GY € C and a
D-morphism ¢y : F(GY) — Y with the following
“universal property”:

forall X e Candg € D(FX.,Y)

(UP) |there is a unique g € C(X,GY)
satisfying ey o F(g) = ¢

Y GY FGY) 2L~y
A
v 3! gl with 7
/ 7 Fg: I
FX X FX

146

Proof of the Theorem—“only if” part:

Given an adjunction (F, G, 0), for each Y € D we produce ¢y : F(GY) —» Y inD
satisfying (UP).

147

Proof of the Theorem—“only if” part:

Given an adjunction (F, G, 0), for each Y € D we produce ¢y : F(GY) —» Y inD
satisfying (UP).

We are given Oxy : D(FX,Y) = C(X,GY), natural in X and Y. Define

ey =05y y(idgy) : F(GY) = Y

In other words ¢y = idgy.

147

Proof of the Theorem—“only if” part:

Given an adjunction (F, G, 0), for each Y € D we produce ¢y : F(GY) —» Y inD
satisfying (UP).

We are given Oxy : D(FX,Y) = C(X,GY), natural in X and Y. Define

ey =05y y(idgy) : F(GY) = Y

In other words ¢y = idgy.

:FX Y inD
Given any g - Tn , by naturality of 6 we have
f:X—>GY inC
g i
FXSY eyoff: Fx 2L poy) 29y
x5Gy fixLoy Xy gy

Henceg=¢yoFgandg=¢yoFf = g=f.
Thus we do indeed have (UP).

147

Proof of the Theorem—*if” part:

We are given F : C — D and for each Y € D a C-object GY and C-morphism
ey : F(GY) — Y satisfying (UP). We have to

1. extendY +— GY toafunctorG:D — C

2. construct a natural isomorphism 0 : Homp o (F°P X idp) = Homc © (idce X G)

148

Proof of the Theorem—*if” part:

We are given F : C — D and for each Y € D a C-object GY and C-morphism
ey : F(GY) — Y satisfying (UP). We have to

1. extendY +— GY toafunctorG:D — C

For each D-morphismg: Y — Y we get F(GY’) 2y 2 ¥ and can apply (UP)
to get
Ggxgoey :GY - GY

The uniqueness part of (UP) implies
Gid=id and G(¢§'°9)=Gg¢g °Gyg

so that we get a functorG: D — C. O

148

Proof of the Theorem—*if” part:

We are given F : C — D and for each Y € D a C-object GY and C-morphism
ey : F(GY) — Y satisfying (UP). We have to

2. construct a natural isomorphism 0 : Homp o (F°P X idp) = Homc © (idce X G)
Since forall g : FX — Y there is a unique f : X - GY withg=¢yoF f,
froftecFf
determines a bijection C(X,GY) = C(F X, Y); and it is natural in X & Y because

Goofouzey oF(Guo fou)

=(eyroF(Gu))oFfoFu since F is a functor
=(voey)oFfoFu by definition of Go
ZUO?OFL{ by definition of?

So we can take 6 to be the inverse of this natural isomorphism. O

148

Dual of the Theorem:

G : C « D has a left adjoint iff for all X € C there are
FX € D and nx € C(X,G(F X)) with the universal

property:

forallY e Dand f € C(X,GY)
there is a unique f € D(FX,Y)
satisfying G fonx = f

Dual of the Theorem:

G : C « D has a left adjoint iff for all X € C there are
FX € D and nx € C(X,G(F X)) with the universal

property:

forallY e Dand f € C(X,GY)
there is a unique f € D(FX,Y)

satisfying G feonx = f

E.g. we can conclude that the forgetful functor U : Mon — Set has a left adjoint
F : Set — Mon, because of the universal property of

F> % (List 3, @,nil) and 7ny:% — ListX

noted in Lecture 3.

149

Why are adjoint functors
important/useful?

Their universal property (UP) usually embodies some
useful mathematical construction

(e.g. “freely generated structures are left adjoints for forgetting-stucture”)

and pins it down uniquely up to isomorphism.

150

Lecture 14

151

Dependent Types
A brief look at some category theory for modelling type
theories with dependent types.
Will restrict attention to the case of Set, rather than in

full generality.

Further reading:
M. Hofmann, Syntax and Semantics of Dependent Types. In: A.M. Pitts and
P. Dybjer (eds), Semantics and Logics of Computation (CUP, 1997).

152

Simple types
oyxy T, xp i Tk t(xq, .o ,xp) 2 T
Dependent types
oy x1 Ty, xy Ty Ft(xq, ., xn) T(xq, ..., %)

and more generally

o, X1t Tl, X2 : Tz(xl), X3 : T3(.X'1,X2), ... F

t(xl, X2, X3, ..) : T(Xl, X2,X3, ..

)

153

If type expressions denote sets, then
a type Ti(x) dependent upon x : T
should denote

an indexed family of sets (Ei | i € I)
(where I is the set denoted by type T)

i.e. E: I — Set is a set-valued function on a set I.

154

For each I € Set, let |Set’ | be the category with

> obj(Set!) 2 (objSet)!, so objects are I-indexed
families of sets, X = (X; | i €)

> morphisms f : X — Y in Set! are I-indexed families
of functions f = (f; € Set(X;,Y;) | i € I)

» composition: (go f) = (g;o fi | i € I)

(i.e. use composition of functions in Set at each index i € I)
. . . A . .
> identity: idy = (idx, | i €])

(i.e. use identity functions in Set at each index i € I)

155

Foreach p: 1 — Jin Set, let|p* : Set/ — Set! | be the
functor defined by:

Y; Ypi
p| |Gl jeT|E| [filiel
Y; Y

i.e. p* takes J-indexed families of sets/functions to I-indexed ones by
precomposing with p

156

Dependent products

of families of sets

For I,] € Set, consider the functor 7] : Set! — Set!™/
induced by precomposition with the first projection
function sy : I X J — 1.

Theorem. r; has a left adjoint = : Set’™/ — Set'.

Proof. We apply the Theorem from Lecture 13: for each E € Set'/ we define
S E € Set’ and ng : E — 7} (SE) in Set”™ with the required universal property...

157

Theorem. 7} has a left adjoint > : Set”™/ — Set'.

For each E € Set™/, define X E € Set! to be the function mapping each i € I to the
set

((EE)i 2 Sy Eap = {00 [J €] A ecEpp)l

158

Theorem. 7} has a left adjoint > : Set”™/ — Set'.

For each E € Set™/, define X E € Set! to be the function mapping each i € I to the
set

((EE)i 2 Sy Eap = {00 [J €] A ecEpp)l

and define np : E — 7} (2 E) in Set”™/ to be the function mapping each

(i, j) € I x J to the function (g)(; ;) : E¢i,j) — (X E); given by .

Universal property-

158

Theorem. 7} has a left adjoint > : Set”™/ — Set'.

For each E € Set™/, define X E € Set! to be the function mapping each i € I to the
set

((EE)i 2 Sy Eap = {00 [J €] A ecEpp)l

and define np : E — 7} (2 E) in Set”™/ to be the function mapping each
(i, j) € I x J to the function (g)(; ;) : E¢i,j) — (X E); given by .

Universal property—-existence part: given any X € Set and f : E — m(X) in

Set™/ | we have E— " o 7 (ZE) SE
| \
\ |t (F) I'7

Y]
7 (X) X

where foralli €I, j € Jande € E(; fi(j, e) = fiij)(e)

158

Theorem. 7} has a left adjoint > : Set”™/ — Set'.

For each E € Set™/, define X E € Set! to be the function mapping each i € I to the

set

((EE)i 2 Sy Eap = {00 [J €] A ecEpp)l

and define np : E — 7} (2 E) in Set”™/ to be the function mapping each
(i, j) € I x J to the function (g)(; ;) : E¢i,j) — (X E); given by .

Universal property-uniqueness part: given g : > E — X in Set! making

E e “(ZE) commute in Set"™/,

R RN
|
| 71 (9)
\ ! 1

1 (X)
then foralli € I, and (j,e) € (X E); we have

fiG.0) = fupe) = (migone)uj e = (119) i) (M) ©) = giljse)

sog=f.0

158

Dependent functions

of families of sets

We have seen that the left adjoint to 7} : Set! — Set™™/ is given by dependent
products of sets.

Dually, dependent function sets give:

Theorem. 7} has a right adjoint IT : Set”™ — Set’.

Proof. We apply the Theorem from Lecture 13: for each E € Set’™/ we define
ITE € Set’ and e : 7} (ITE) — E in Set’/ with the required universal property...

159

Theorem. 7} has a right adjoint IT : Set”™ — Set’.

For each E € Set”™/, define ITE € Set’ to be the function mapping each i € I to
the set

‘ (ITE); = [1jey Eqij) = {f € (2 E):i | fis single-value and total} ‘

where f C (2 E); is
single-valued if Vj € J,Ve,e’ € E(;;), (j,e) € fA(j,e')ef=e=¢
total if Vj € J,3e € E(;j) (j,e) € f

Thus each f € (ILE); is a dependently typed function mapping elements j € J to
elements of E(; ;) (result set depends on the argument j).

160

Theorem. 7} has a right adjoint IT : Set”™ — Set’.

For each E € Set”™/, define ITE € Set’ to be the function mapping each i € I to
the set

‘ (WE); = [1jey Eijy = {f € (ZE)i | f is single-value and total} ‘

and define ¢ : 7} (ITE) — E in Set”™/ to be the function mapping each

(i, j) € I x J to the function (eg)(; j) : (ITE); — E(; ;) given by = unique

e € E(; j) such that (j,e) € f.

Universal property-

160

Theorem. 7} has a right adjoint IT : Set”™ — Set’.

For each E € Set”™/, define ITE € Set’ to be the function mapping each i € I to
the set

‘ (ITE); = [1jey Eqij) = {f € (2 E):i | fis single-value and total} ‘

and define ¢ : 7} (ITE) — E in Set”™/ to be the function mapping each

(i, j) € I x J to the function (eg)(; j) : (ITE); — E(; ;) given by = unique

e € E(; j) such that (j,e) € f.

Universal property—existence part: given any X € Set! and f : m(X) > Ein

Set™/ | we have IE 7y (ILE) — % .
A A
7 1)
| Y f
X m(X)

where forall i € I and x € X; fix ={U.fupx) 1 je]}

160

Theorem. 7} has a right adjoint IT : Set”™ — Set’.

For each E € Set”™/, define ITE € Set’ to be the function mapping each i € I to
the set

(ITE); = [ljey Eqijy = {f S (XE); | f is single-value and total}

and define ¢f : 7 (ITE) — E in Set’/ to be the function mapping each

(i, j) € I x] to the function (eg)(; j) : (ILE); — E(; j) given by = unique

e € E(; j) such that (j,e) € f.

Universal property—uniqueness part: given g : X — I1E in Set! making

7y (ILE) — %~ F commute in Set™™/,

”T(g)T 7
77 (X)
thenforalli €I, j €] and x € X; we have

fixj % fupx=(egonig)jx= ()i (gix) =gixj

sog=f.0O

160

Isomorphism of categories

Two categories C and D are isomorphic if they are
isomorphic objects in the category of all categories of
some given size, that is, if there are functors

F
C

D with idc =Geo Fand Fo G = idp.

G

In which case, as usual, we write|C = D|.

161

Equivalence of categories

Two categories C and D are equivalent if there are
F

functors C D and natural isomorphisms

G
n:idc 2= GoFande: FoG = idp.

In which case, one writes |C ~ D |

162

Equivalence of categories

Two categories C and D are equivalent if there are
F

functors C D and natural isomorphisms

G
n:idc 2= GoFande: FoG = idp.

In which case, one writes |C ~ D |

Some deep results in mathematics take the form of equivalences of categories.
E.g.

lity: totally di ted
Stone duality (Boolean algebras otally disconnecte

category of)op category of compact
Hausdorff spaces

op
Gelfand duality:(category of) - (Category ofcompact)

abelian C* algebras Hausdorff spaces

162

Example: Set! =~ Set/I

Set/I is a slice category:

> objects are pairs (E, p) where E € obj Set and
p € Set(E,)

» morphisms g : (E,p) — (E,p’) are f € Set(E, E’)
satisfying p’ o f = p in Set

> composition and identities — as for Set

163

Example: Set! =~ Set/I

There are functors F : Set! — Set/I and
G : Set/I — Set!, given on objects and morphisms by:

FX =2 ({(i,x) |ieI Ax € X;}, fst)
Ff(ix) = (i fix)
G(Ep)=({ecE|pe=i}|iel)
(Gflie=fe

163

Example: Set! =~ Set/I

There are functors F : Set! — Set/I and
G : Set/I — Set!, given on objects and morphisms by:

FX =2 ({(i,x) |ieI Ax € X;}, fst)
Ff(ix) = (i fix)
G(Ep)={ecE|pe=i}|iel)
(Gflie=fe

There are natural isomorphisms
n:idgy = GoFande:FoG = idgeys

defined by...[exercise]

163

FACT Given p : I — J in Set, the composition

Set/J ~ Set/ 2, Set! ~ Set/I

is the functor “pullback along p”.

One can generalize from Set to any category C with
pullbacks and model X/II types by left/right adjoints to
pullback functors — see locally cartesian closed
categories in the literature.

164

Lecture 15

165

Presheaf categories

Let C be a small category. The functor category |Set®”
is called the category of presheaves on C.

> objects are contravariant functors from C to Set

» morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.

166

Given a category C with a terminal object 1

A global element of an object X € obj C is by definition
a morphism 1 — X in C

E.g.in Set ...
E.g. in Mon ...

167

Given a category C with a terminal object 1

A global element of an object X € obj C is by definition
a morphism 1 — X in C

We say C is well-pointed if forall f,g: X — Y in C we
have:

(VliX,fongox) = f=g

(Set is, Mon isn’t.)

167

Idea:

replace global elements of X, 1 55X

by arbitrary morphisms Y % X (for any Y € obj C)

168

Idea:

replace global elements of X, 1 5 X

by arbitrary morphisms Y % X (for any Y € obj C)

Some people use the notation

x €y X

and say

“x is a generalised element of X at stage Y”

Have to take into account “change of stage”:

xeYX/\ZLY:xoerX

(cf. Kripke’s “possible world” semantics of intuitionistic and modal logics)

168

Yoneda functor

y:C — Set®”

(where C is a small category)

is the Curried version of the hom functor

H
C x C = CP x C —=5, Set

169

Yoneda functor

y:C — Set®”

(where C is a small category)

is the Curried version of the hom functor
H
C x C°P = C° x C —25, Set

> For each C-object X, the object yX € Set®” is the functor
C(-,X) : C°® — Set given by

C(Z, X) gof

!

7z
|7
Y C(Y,X) g

111

169

Yoneda functor

y:C — Set®”

(where C is a small category)

is the Curried version of the hom functor
H
C x C°P = C° x C —25, Set

> For each C-object X, the object yX € Set®” is the functor
C(-,X) : C°® — Set given by

Z — C(Z,X) gof
oS Ay
Y — C(Y,X) g

this function is often written as f*

169

Yoneda functor

y:C — Set®”

(where C is a small category)

is the Curried version of the hom functor
H
C x CP = CP x C —25, Set

> For each C-morphism Y EN X, the morphism yY v, yX in
Set®” is the natural transformation whose component at any
given Z € C°? is the function

Y(Z) (Yf)z

C(Z.Y) C(Z.X)

X(Z)

g———f°g

169

Yoneda functor

y:C — Set®”

(where C is a small category)

is the Curried version of the hom functor
H
C x CP = CP x C —25, Set

> For each C-morphism Y EN X, the morphism yY v, yX in
Set®” is the natural transformation whose component at any
given Z € C°? is the function

(Yf)z

Y(Z) X(Z)

this function is often C(Z Y) C(Z X)
written as fi e

g———f°g

169

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®”, there is a bijection of sets

NXF : SetCop(yX, F) = F(X)

which is natural in both X and F.

170

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®”, there is a bijection of sets

nxr : Set®” (yX, F) = F(X)

which is natural in both X /and F.

the value of
F:C°° — Set
at X

the set of natural transformations from
the functor yX : C°® — Set
to the functor F : C°P — Set

170

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®”, there is a bijection of sets

NXF : SetCOP(YX, F) = F(X)

which is natural in both X and F.
Definition of the function nxr : Set®” (yX, F) — F(X):

for each @ : yX — F in Set®” we have the function

C(X,X) =yX(X) 9—X> F(X) and define

nx,r(0) = Ox(idx)

170

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®”, there is a bijection of sets

NXF : SetCOP(YX, F) = F(X)

which is natural in both X and F.
Definition of the function n)_(}F : F(X) — Set®” (yX, F):
foreachx € F(X),Y e Cand f € yX(Y) = C(Y, X),

we get a F(X) M F(Y) in Set and hence F(f)(x) € F(Y);

170

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®”, there is a bijection of sets

NXF : SetCOP(YX, F) = F(X)

which is natural in both X and F.
Definition of the function n)_(}F : F(X) — Set®” (yX, F):
foreachx € F(X),Y e Cand f € yX(Y) = C(Y, X),

we get a F(X) M F(Y) in Set and hence F(f)(x) € F(Y);

Define (q;}F(x))Y . yX(Y) — F(Y) by

check this gives a

-1 A .
Ny w(x)] (f) = F(f)(x) natural transformation
(F)Y n)_(}F(x) :yX > F

170

Proof of \nxr o ’7)_(,1F = 1dp(x)

For any x € F(X) we have

mcr (1) = (me()) | (i)
F(idy) (x)
idrx) (%)

=X

[I>

by definition of nx r

by definition of n)_(’lF

since F is a functor

171

Proof of | o nx p = idgcor (yX,F)

0 0
For any yX — F in Set®” and Y L X in C, we have

(1 (e (®))), £ = (s (Bxidn))), f
= F(f)(0x(idx))
=6y (f* (idx))
£ Oy(idx o f)
=0y (f)
naturality of 6
yX(¥) = F(Y)

Tf* TF(f)
yX(X) o F(X)

(. J

by definition of nx r
by definition of q)_(,lF

by naturality of 0
by definition of f*

172

Proof of

0 0
For any yX — F in Set®” and Y L X in C, we have

-1 -
My ° IXF = 1dgecop (YX.F)

(rs (nxr () f 2 (1 (Ox(3cx))) | f

= F(f)(0x(idx))
=0y (f*(idx))

= Oy(idx > f)

= 0y(f)

50 0. Y. (1 (nx.r(9)) =0y

Y

0 V6, 1 (nxr(6)) = 0

-1 Y
SO Ny ° IX,F = id.

by definition of nx r
by definition of q)_(,lF

by naturality of 0
by definition of f*

172

The Yoneda Lemma

For each small category C, each object X € C and each
presheaf F € Set®”, there is a bijection of sets

NXF : SetCop(yX, F) = F(X)

which is natural in both X and F.

173

Proof that 5x r is natural in F:

Given F 2, G in Set”, have to show that

Nx.F

Set®” (yX,F) —————— F(X)

Set®” (yX,G) —————— G(X)

nx.G

0
commutes in Set. For all yX — F we have

ox (Ox(idx))
(¢ 0)x(idx)
= nxc(pe0)
nx,6(¢:(0))

1>

ox (nx.r(0))

1>

174

Proof that 5x r is natural in X:

GivenY L X in C, have to show that

nx.F

Set®” (yX,F) —————= F(X)

(Yf)*l J/F(f)

Set®” (yY, F) — F()

0
commutes in Set. For all yX — F we have

F(f)((nx,r(0)) = F(f)(0x(idx))
= Oy(f"(idx)) by naturality of 6
=0y (f)
= Oy (fi(idy))

(0°yf)y(idy)

ny,r(0°yf)

ny.r((yf)*(6))

1L (L I

175

Corollary of the Yoneda Lemma:
the functor y : C — Set®” is full and faithful.

In general, a functor F: C — D is
» faithful if for all X, Y € C the function
C(X,Y) — D(F(X),F(Y))
foe F(f)
is injective:

V. f e CX.Y), F(f)=F(f)=f=f

» full if the above functions are all surjective:
Vg € D(F(X),F(Y)),3f € C(X,Y), F(f) =g

176

Corollary of the Yoneda Lemma:

the functor y : C — Set®” is full and faithful.

Proof. From the proof of the Yoneda Lemma, for each F € Set®” we have a
bijection
(nx.p)™! o
F(X) 22 St (yX, F)

By definition of (nxr) !, when F = yY the above function is equal to

yY(X) =C(X,Y) — Set®” (yX,yY)
f = f=vyf

So, being a bijection, f — yf is both injective and surjective; so y is both faithful
and full. 0

176

Recall (for a small category C):
Yoneda functor y : C — Set®”

Yoneda Lemma: there is a bijection
Set®” (yX, F) = F(X) which is natural both in F € Set®”
and X € C.

An application of the Yoneda Lemma:

Theorem. For each small category C, the category
Set®™ of presheaves is cartesian closed.

177

Theorem. For each small category C, the category
Set®” of presheaves is cartesian closed.

178

Theorem. For each small category C, the category
Set®” of presheaves is cartesian closed.

Proof sketch.

Terminal object in Set®” is the functor 1 : C°P — Set given by

1(X) £ {0} terminal object in Set
1(f) = idygy

178

Theorem. For each small category C, the category
Set®” of presheaves is cartesian closed.

Proof sketch.
Product of F, G € Set®” is the functor F X G : C°P — Set given by

(FXG)(X) £ F(X) XxG(X) cartesian product of sets
(FXG)(f) = F(f) X G(f)

with projection morphisms F EFxcS G given by the natural
transformations whose components at X € C are the projection

functions F(X) i F(X) x G(X) 2, G(X).

178

Theorem. For each small category C, the category
Set®” of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential G € Set®” at
X € C has to be using the Yoneda Lemma:

GF(X) = $et® (yX, GF) = $et®” (yX x F,G)

universal property of
the exponential

| Yoneda Lemma |

178

Theorem. For each small category C, the category
Set®” of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential G € Set®” at
X € C has to be using the Yoneda Lemma:

GF(X) = $et® (yX, GF) = $et®” (yX x F,G)

We take the set Set®” (yX x F, G) to be the definition of the value of
GFatX...

178

Exponential objects in Set®™:

GF(X) £ Set®" (yX x F,G)

Given Y i) X in C, we have yY i yX in Set®” and hence

GF(X) 2 Set®" (yX XF,G) — Set®"(yY x F,G) = GF(Y)
6 +— Oo(yfxidr)

We define

GI(f) = (yf x idp)*

Have to check that these definitions make G' ino a functor
C°P — Set.

179

Application morphisms in Set®”
Given F, G € Set®”, the application morphism
app: G xF =G

is the natural transformation whose component at X € C is the
function

(GF x F)(X) 2 GF(X) x F(X) = Set® (yX x F,G) x F(X) —% G(X)

defined by

appy (0, x) = Ox(idy, x)

Have to check that this is natural in X.

180

Currying operation in Set®":
(HxFi G) - (HﬂGF)

0 o
Given H X F = G in Set®”, the component of cur § at X € C

0 o
H(X) 0% GF(x) £ $etC (yX x F, G)
is the function mapping each z € H(X) to the natural
transformation yX X F — G whose component at Y € C is the
function
(yX X F)(Y) £ C(Y,X) X F(Y) = G(Y)

defined by

((cur 0)x (2))y(f.y) = Oy (H(f)(2),y)

181

Currying operation in Set®":

(HxFiG)H (HﬂGF)

((cur 0)x(2))y(f.y) = Oy(H(f)(2).y)

Have to check that this is natural in Y,
then that (cur 0)x is natural in X,

then that cur @ is the unique morphism H 2, G in SetC” satisfying
app o(¢ X idp) = 0.

181

Theorem. For each small category C, the category
Set®” of presheaves is cartesian closed.

So we can interpret simply typed lambda calculus in any
presheaf category.

More than that, presheaf categories (usefully) model
dependently-typed languages.

182

Lecture 16

183

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.

184

https://www.sciencedirect.com/science/article/pii/0890540191900524
https://dl.acm.org/doi/abs/10.1145/91556.91592

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.

Here, a quick overview of:

> Moggi’s computational A-calculus and its
categorical semantics using (strong) monads

» monads and adjunctions

184

https://www.sciencedirect.com/science/article/pii/0890540191900524
https://dl.acm.org/doi/abs/10.1145/91556.91592

Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations...
Types: A, B, ... :=STLC types, plus

T(A) type of “computations” of values of type A
Terms: s, t,... == STLC terms, plus

returnt trivial computation
do{x « s;t} sequenced computation (binds free x in t)

As for STLC, we identify CLC syntax trees up to a-equivalence, where = is extended by the rules
s=as (yx) - t=q (yx') -t
t=qt y does not occur in {s,s”,x,x’, t, ¢}

an
returnt =y return ¢’ do{x « s;t} =¢ do{x’ «s';t'}

185

Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations...

Types: A, B, ... :=STLC types, plus

T(A) type of “computations” of values of type A
Terms: s, t,... == STLC terms, plus

returnt trivial computation

do{x « s;t} sequenced computation (binds free x in t)
Typing rules:
Frt:A I's:T(A) ILx:Art:T(B)

[+ returnt: T(A) (VAL) I'+do{x « s;t}: T(B) (5)

Equations...

185

CLC equations

Extend STLC fn-equality (I' + s =g, t : A) to arelationT' - s =t : A by adding the

following rules:

F'rs:A ILx:Art:T(B)
[+do{x « returns;t} = t[s/x] : T(B)

F'rt:T(A)
[+t =do{x « t;returnx} : T(A)

I'+s:T(A) I[x:Art:T(B) [Ly:Bru:T(C)
I'+do{y « do{x « s;t};u} = do{x « s;do{y « t;u}}

186

CLC equations

Extend STLC fn-equality (I' + s =g, t : A) to arelationT' - s =t : A by adding the

following rules:

F'rs:A ILx:Art:T(B)
[+do{x « returns;t} = t[s/x] : T(B)

F'rt:T(A)
[+t =do{x « t;returnx} : T(A)

I'+s:T(A) I[x:Art:T(B) [Ly:Bru:T(C)
I'+do{y « do{x « s;t};u} = do{x « s;do{y « t;u}}

(To describe a particular notion of computation (I/0, mutable state, exceptions, concurrent processes, ...) one can consider extensions of
vanilla CLC, e.g. with extra ground types, constants and equations.)

186

Parameterised Kleisli triple

is the following extra structure on a category C with
binary products:

> a function mapping each X € obj C to an object
T(X) € objC

> for each X € obj C, a C-morphism X LR T(X)
» for each C-morphism X X Y i> T(Z) a C-morphism
X xT(Y) L 1(2)

satisfying...

187

Parameterised Kleisli triple[cont.]
> if X L X’ and X’ x Y T(2), then

(go (f xidy))" =g" o (f X idr(y))

> if X x Y 5 T(Z), then
fre(idx xny) = f

> if X x YD T(Z) and X x Z 5 T(W), then
(g o m,) =g o{m, ")

188

Examples in Set

State: fix a set S (of “states”) and define
T(X) £ (X xS)°

nxxs = (x,s)

f (x,t)s = f(x,y) s where ts = (y,s’)

189

Examples in Set

State: fix a set S (of “states”) and define

A S computations are functions § — X X S
T(X) - (X X S) e taking states to values in X paired with

a next state

nxxs = (x,s)
f (x,t)s = f(x,y) s where ts = (y,s")

f*(x,) first “runs” t € T(Y) in state s to get (y,s’),
then runs f(x,y) € T(Z) in the new state s’

189

Examples in Set

Error:
T(X)=2X+1={(0,x) | x e X} U{(1,0)}
nx x = (0,x)

) . Jfxy) ift=(0,y)
f(x’t)_{m,o) if t = (1,0)

Examples in Set

Error:
T(X)2X+1={(0,x) | xe X} U {(10)}<—\

computations are either
copies (0, x) of values in
x € X or an error (1,0)

nx x = (0,x)

) . Jfxy) ift=(0,y)
f(x’t)_{u,o) if t = (1,0)

then f*(x,) propagates it,

if t € T(Y) is the error,
otherwise it acts like f

190

Examples in Set

Continuations: fix a set R (of “results”) and define
T(X) £ R®Y)

nxx = Ac€ R . cx

f(x,r) 2 AceR%.r(Ay €Y. f(x,y)c)

191

Examples in Set

Continuations: fix a set R (of “results”) and define

. . X
N RX computations are functionsr : R* — R
T(X) - R()\ mapping continuations ¢ € RX of the

computation to results rc € R

nxx = Ac € R . cx
f(x,r) 2 AceR%.r(Ay €Y. f(x,y)c)

f* maps a computationr € R®") to the
function taking a continuation ¢ € RZ to
the result of applying r to the
continuation Ay € Y. f(x,y) c in RY

191

Semantics of CLC

Given a ccc C equipped with a parameterised Kleisli
triple (T, n, (.)*), we can extend the semantics of STLC
to one for CLC.

Computation types: [T(A)] = T([A])

Trivial computations:

[[FI—t:A]

[T F returnt : T(A)] = [I] [A] [A]

T([A])

Sequencing: [T + do{x < s;t} : T(B)] = f* ° (idr], 9)
[Tx:Art:T(B)]

f =[x [A] ———— T([BD

[[ks:T(A)]
g =[1———T([A]D
(and where A is uniquely determined from the proof of I' + do{x « s;t} : T(B))

where

192

Given a ccc C equipped with a parameterised Kleisli
triple (T, n, (.)*), we can extend the semantics of STLC
to one for CLC.

As for STLC versus cccs,

> the semantics of CLC in cc+Kleisli categories is
equationally sound and complete

> one can use CLC as an internal language for
describing constructs in cc+Kleisli categories

> there is a correspondence between equational
theories in CLC and cc+Kleisli categories

192

Monads

A monad on a category C is given by a functor T : C — C and
natural transformations n : id - T and pp: T o T — T satisfying

T

ToT UTT TOTOTL-TOT
dr

N

T TOTT'T

193

Monads

A monad on a category C is given by a functor T : C — C and
natural transformations n : id - T and pp: T o T — T satisfying

T
T ToT<"T ToToTX oToT
idr l” idr T”l J,”
T TOT?T

If C has binary products, then the monad is strong if there is a

family of C-morphisms (X x T(Y) 2, T(XXY)|X,Y € objC)
satisfying a number (7, in fact) of commutative diagrams (details
omitted, see Moggi).

193

https://www.sciencedirect.com/science/article/pii/0890540191900524

Monads

A monad on a category C is given by a functor T : C — C and
natural transformations n : id - T and pp: T o T — T satisfying

T
e ToT<" T ToToTXoToT

idr l” idr Tu l J,”
T

TOT?T

T

If C has binary products, then the monad is strong if there is a

family of C-morphisms (X x T(Y) 2, T(XXY)|X,Y € objC)
satisfying a number (7, in fact) of commutative diagrams (details
omitted, see Moggi).

FACT: for a given category with binary products, “parameterised
Kleisli triple” and “strong monad” are equivalent notions — each
gives rise to the other in a bijective fashion.

193

https://www.sciencedirect.com/science/article/pii/0890540191900524

Monads and adjunctions

F
> Given an adjunction C__—D F4G
G
we get a monad (G e F,n, 1) on C

=1id
where {UX Fx

px = G(idg(rx))

SN
E.g. for Set Mon where U is the forgetful functor, T=U o F is

'&IJ/
the list monad on Set (T(X) = List X, 1 given by singleton lists, y by
flattening lists of lists). It’s a strong monad (all monads of Set have a
strength), but in general the monad associated with an adjunction may
not be strong.

194

Monads and adjunctions

F
> Given an adjunction C__ D F4G
G
we get a monad (G e F,n, 1) on C

» Given a monad (T, 7, ;) on C we get an adjunction
F
c_ cf F4G

G

194

Monads and adiunctions

» Given an adjunct

we get a monad (

» Given a monad ("

/CT is the category of Eilenberg-Moore algebra?
for the monad T, which has objects (A, &) with
a:T(A) — A satisfying

Ao TA T(TA A -TA

N

A TA—/——A
and morphisms f(A,a) — (B,) with f : A — B
satisfying

TA H— TB

1

A——>

f

194

Monads and adjunctions

F

> Given an adjunction C__—D F4G

G
we get a monad (G e F,n, 1) on C

Given a monad (T, 7, 1) on C we get an adjunction

F
c_ cf F4G
G
F
Starting from C__~D F 4 G and forming the monad
G

T = G o F, there’s an obvious functor K : D — CT.

Monadicity Theorems impose conditions on G : D — C which ensure that
K is an equivalence of categories. E.g. Mon is equivalent to the category of
Eilenberg-Moore algebras for the list monad on Set (and similarly for any
algebraic theory).

194

Some current themes involving
category theory in computer science

> semantics of effects & co-effects in programming
languages
(monads and comonads)

» homotopy type theory
(higher-dimensional category theory)

> structural aspects of networks, quantum
computation/protocols, ...

(string diagrams for monoidal categories)

Next term: Advanced Topics in Category Theory (ACS
module L118).

195

