
Complexity Theory
Lecture 2: Abstracting algorithms via Turing machines

Tom Gur

http://www.cl.cam.ac.uk/teaching/2324/Complexity



Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather then a
specific algorithm, we need to prove a statement about all algorithms
for solving it.

In order to prove facts about all algorithms, we need a
mathematically precise definition of an algorithm.

We will use the Turing machine.

The simplicity of the Turing machine means it’s not useful for
actually expressing algorithms, but very well suited for proofs
about all algorithms.

2



Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather then a
specific algorithm, we need to prove a statement about all algorithms
for solving it.

In order to prove facts about all algorithms, we need a
mathematically precise definition of an algorithm.

We will use the Turing machine.

The simplicity of the Turing machine means it’s not useful for
actually expressing algorithms, but very well suited for proofs
about all algorithms.

2



Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather then a
specific algorithm, we need to prove a statement about all algorithms
for solving it.

In order to prove facts about all algorithms, we need a
mathematically precise definition of an algorithm.

We will use the Turing machine.
The simplicity of the Turing machine means it’s not useful for
actually expressing algorithms, but very well suited for proofs
about all algorithms.

2



Turing Machines

3



Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;

• Σ — a finite set of symbols, including ⊔ and ▷.

• s ∈ Q — an initial state;

• δ : (Q × Σ) → (Q ∪ {acc, rej})× Σ× {L,R, S}
A transition function that specifies, for each state and symbol a
next state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move (L –
left, R – right, or S - stationary)

4



Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;

• Σ — a finite set of symbols, including ⊔ and ▷.

• s ∈ Q — an initial state;

• δ : (Q × Σ) → (Q ∪ {acc, rej})× Σ× {L,R, S}
A transition function that specifies, for each state and symbol a
next state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move (L –
left, R – right, or S - stationary)

4



Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;

• Σ — a finite set of symbols, including ⊔ and ▷.

• s ∈ Q — an initial state;

• δ : (Q × Σ) → (Q ∪ {acc, rej})× Σ× {L,R, S}
A transition function that specifies, for each state and symbol a
next state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move (L –
left, R – right, or S - stationary)

4



Turing Machines

For our purposes, a Turing Machine consists of:

• Q — a finite set of states;

• Σ — a finite set of symbols, including ⊔ and ▷.

• s ∈ Q — an initial state;

• δ : (Q × Σ) → (Q ∪ {acc, rej})× Σ× {L,R, S}
A transition function that specifies, for each state and symbol a
next state (or accept acc or reject rej), a symbol to overwrite the
current symbol, and a direction for the tape head to move (L –
left, R – right, or S - stationary)

4



Configurations

A complete description of the configuration of a machine can be given
if we know what state it is in, what are the contents of its tape, and
what is the position of its head. This can be summed up in a simple
triple:

Definition
A configuration is a triple (q,w, u), where q ∈ Q and w, u ∈ Σ⋆

The intuition is that (q,w, u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w.

The configuration of a machine completely determines the future
behaviour of the machine.

5



Configurations

A complete description of the configuration of a machine can be given
if we know what state it is in, what are the contents of its tape, and
what is the position of its head. This can be summed up in a simple
triple:

Definition
A configuration is a triple (q,w, u), where q ∈ Q and w, u ∈ Σ⋆

The intuition is that (q,w, u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w.

The configuration of a machine completely determines the future
behaviour of the machine.

5



Configurations

A complete description of the configuration of a machine can be given
if we know what state it is in, what are the contents of its tape, and
what is the position of its head. This can be summed up in a simple
triple:

Definition
A configuration is a triple (q,w, u), where q ∈ Q and w, u ∈ Σ⋆

The intuition is that (q,w, u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w.

The configuration of a machine completely determines the future
behaviour of the machine.

5



Configurations

A complete description of the configuration of a machine can be given
if we know what state it is in, what are the contents of its tape, and
what is the position of its head. This can be summed up in a simple
triple:

Definition
A configuration is a triple (q,w, u), where q ∈ Q and w, u ∈ Σ⋆

The intuition is that (q,w, u) represents a machine in state q with the
string wu on its tape, and the head pointing at the last symbol in w.

The configuration of a machine completely determines the future
behaviour of the machine.

5



Computations

Given a machine M = (Q,Σ, s, δ) we say that a configuration (q,w, u)
yields in one step (q′,w′, u′), written

(q,w, u) →M (q′,w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v and u′ = bu
or D = S and w′ = vb and u′ = u
or D = R and w′ = vbc and u′ = x, where u = cx. If u is empty,
then w′ = vb⊔ and u′ is empty.

6



Computations

Given a machine M = (Q,Σ, s, δ) we say that a configuration (q,w, u)
yields in one step (q′,w′, u′), written

(q,w, u) →M (q′,w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v and u′ = bu
or D = S and w′ = vb and u′ = u
or D = R and w′ = vbc and u′ = x, where u = cx. If u is empty,
then w′ = vb⊔ and u′ is empty.

6



Computations

Given a machine M = (Q,Σ, s, δ) we say that a configuration (q,w, u)
yields in one step (q′,w′, u′), written

(q,w, u) →M (q′,w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v and u′ = bu
or D = S and w′ = vb and u′ = u
or D = R and w′ = vbc and u′ = x, where u = cx. If u is empty,
then w′ = vb⊔ and u′ is empty.

6



Computations

Given a machine M = (Q,Σ, s, δ) we say that a configuration (q,w, u)
yields in one step (q′,w′, u′), written

(q,w, u) →M (q′,w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v and u′ = bu
or D = S and w′ = vb and u′ = u
or D = R and w′ = vbc and u′ = x, where u = cx. If u is empty,
then w′ = vb⊔ and u′ is empty.

6



Computations

The relation →⋆
M is the reflexive and transitive closure of →M.

A sequence of configurations c1, . . . , cn, where for each i, ci →M ci+1,
is called a computation of M.

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of
strings

{x | (s, ▷, x) →⋆
M (acc,w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ▷, x) →⋆

M (acc,w, u) or (s, ▷, x) →⋆
M (rej,w, u)

7



Computations

The relation →⋆
M is the reflexive and transitive closure of →M.

A sequence of configurations c1, . . . , cn, where for each i, ci →M ci+1,
is called a computation of M.

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of
strings

{x | (s, ▷, x) →⋆
M (acc,w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ▷, x) →⋆

M (acc,w, u) or (s, ▷, x) →⋆
M (rej,w, u)

7



Computations

The relation →⋆
M is the reflexive and transitive closure of →M.

A sequence of configurations c1, . . . , cn, where for each i, ci →M ci+1,
is called a computation of M.

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of
strings

{x | (s, ▷, x) →⋆
M (acc,w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ▷, x) →⋆

M (acc,w, u) or (s, ▷, x) →⋆
M (rej,w, u)

7



Computations

The relation →⋆
M is the reflexive and transitive closure of →M.

A sequence of configurations c1, . . . , cn, where for each i, ci →M ci+1,
is called a computation of M.

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of
strings

{x | (s, ▷, x) →⋆
M (acc,w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either
(s, ▷, x) →⋆

M (acc,w, u) or (s, ▷, x) →⋆
M (rej,w, u)

7



Example

Consider the machine with δ given by:

▷ 0 1 ⊔

s s, ▷,R rej, 0, S rej, 1, S q,⊔,R
q rej, ▷,R q, 1,R q, 1,R q′, 0,R
q′ rej, ▷,R rej, 0, S q′, 1,L acc,⊔, S

This machine, when started in configuration (s, ▷,⊔1n0) eventually
halts in configuration (acc, ▷ ⊔ 1n+10⊔, ε).

8



Example

Consider the machine with δ given by:

▷ 0 1 ⊔

s s, ▷,R rej, 0, S rej, 1, S q,⊔,R
q rej, ▷,R q, 1,R q, 1,R q′, 0,R
q′ rej, ▷,R rej, 0, S q′, 1,L acc,⊔, S

This machine, when started in configuration (s, ▷,⊔1n0) eventually
halts in configuration (acc, ▷ ⊔ 1n+10⊔, ε).

8



Why Turing Machines?

The Church-Turing thesis states that a Boolean function can be
computed if and only if it is computable by a Turing machine.

The Extended Church-Turing thesis adds that this also captures
efficient computation.

Hence, the model does not matter. We can use whichever is most
convenient.

To date, the only widely accepted contender to the Extended
Church-Turing thesis is Quantum Computing.

9



Why Turing Machines?

The Church-Turing thesis states that a Boolean function can be
computed if and only if it is computable by a Turing machine.

The Extended Church-Turing thesis adds that this also captures
efficient computation.

Hence, the model does not matter. We can use whichever is most
convenient.

To date, the only widely accepted contender to the Extended
Church-Turing thesis is Quantum Computing.

9



Why Turing Machines?

The Church-Turing thesis states that a Boolean function can be
computed if and only if it is computable by a Turing machine.

The Extended Church-Turing thesis adds that this also captures
efficient computation.

Hence, the model does not matter. We can use whichever is most
convenient.

To date, the only widely accepted contender to the Extended
Church-Turing thesis is Quantum Computing.

9



Why Turing Machines?

The Church-Turing thesis states that a Boolean function can be
computed if and only if it is computable by a Turing machine.

The Extended Church-Turing thesis adds that this also captures
efficient computation.

Hence, the model does not matter. We can use whichever is most
convenient.

To date, the only widely accepted contender to the Extended
Church-Turing thesis is Quantum Computing.

9



Example: Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to
multi-tape machines. For instance a machine with k tapes is specified
by:

• Q, Σ, s; and

• δ : (Q × Σk) → (Q ∪ {acc, rej})× (Σ× {L,R, S})k

Similarly, a configuration is of the form:

(q,w1, u1, . . . ,wk, uk)

10



Example: Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to
multi-tape machines. For instance a machine with k tapes is specified
by:

• Q, Σ, s; and

• δ : (Q × Σk) → (Q ∪ {acc, rej})× (Σ× {L,R, S})k

Similarly, a configuration is of the form:

(q,w1, u1, . . . ,wk, uk)

10



Example: Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to
multi-tape machines. For instance a machine with k tapes is specified
by:

• Q, Σ, s; and

• δ : (Q × Σk) → (Q ∪ {acc, rej})× (Σ× {L,R, S})k

Similarly, a configuration is of the form:

(q,w1, u1, . . . ,wk, uk)

10



Example: Multi-Tape Machines

The formalisation of Turing machines extends in a natural way to
multi-tape machines. For instance a machine with k tapes is specified
by:

• Q, Σ, s; and

• δ : (Q × Σk) → (Q ∪ {acc, rej})× (Σ× {L,R, S})k

Similarly, a configuration is of the form:

(q,w1, u1, . . . ,wk, uk)

10



Decidability

A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some M.

A language L is decidable if it is L(M) for some machine M which
halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M, such
that for all x, (s, ▷, x) →⋆

M (acc, ▷f(x), ε)

11



Decidability

A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some M.

A language L is decidable if it is L(M) for some machine M which
halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M, such
that for all x, (s, ▷, x) →⋆

M (acc, ▷f(x), ε)

11



Decidability

A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some M.

A language L is decidable if it is L(M) for some machine M which
halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M, such
that for all x, (s, ▷, x) →⋆

M (acc, ▷f(x), ε)

11



Decidability

A language L ⊆ Σ⋆ is recursively enumerable if it is L(M) for some M.

A language L is decidable if it is L(M) for some machine M which
halts on every input.

A language L is semi-decidable if it is recursively enumerable.

A function f : Σ⋆ → Σ⋆ is computable, if there is a machine M, such
that for all x, (s, ▷, x) →⋆

M (acc, ▷f(x), ε)

11



Running Time

With any Turing machine M, we associate a function r : IN → IN
called the running time of M.

r(n) is defined to be the largest value R such that there is a string x of
length n so that the computation of M starting with configuration
(s, ▷, x) is of length R (i.e. has R successive configurations in it) and
ends with an accepting configuration.

In short, r(n) is the length of the longest accepting computation of M
on an input of length n.

We let r(n) = 0 if M does not accept any inputs of length n.

12



Running Time

With any Turing machine M, we associate a function r : IN → IN
called the running time of M.

r(n) is defined to be the largest value R such that there is a string x of
length n so that the computation of M starting with configuration
(s, ▷, x) is of length R (i.e. has R successive configurations in it) and
ends with an accepting configuration.

In short, r(n) is the length of the longest accepting computation of M
on an input of length n.

We let r(n) = 0 if M does not accept any inputs of length n.

12



Running Time

With any Turing machine M, we associate a function r : IN → IN
called the running time of M.

r(n) is defined to be the largest value R such that there is a string x of
length n so that the computation of M starting with configuration
(s, ▷, x) is of length R (i.e. has R successive configurations in it) and
ends with an accepting configuration.

In short, r(n) is the length of the longest accepting computation of M
on an input of length n.

We let r(n) = 0 if M does not accept any inputs of length n.

12



Running Time

With any Turing machine M, we associate a function r : IN → IN
called the running time of M.

r(n) is defined to be the largest value R such that there is a string x of
length n so that the computation of M starting with configuration
(s, ▷, x) is of length R (i.e. has R successive configurations in it) and
ends with an accepting configuration.

In short, r(n) is the length of the longest accepting computation of M
on an input of length n.

We let r(n) = 0 if M does not accept any inputs of length n.

12



Complexity

For any function f : IN → IN, we say that a language L is in TIME(f) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f).

Similarly, we define SPACE(f) to be the languages accepted by a
machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells
on the work tape towards the complexity.

13



Complexity

For any function f : IN → IN, we say that a language L is in TIME(f) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f).

Similarly, we define SPACE(f) to be the languages accepted by a
machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells
on the work tape towards the complexity.

13



Complexity

For any function f : IN → IN, we say that a language L is in TIME(f) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f).

Similarly, we define SPACE(f) to be the languages accepted by a
machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells
on the work tape towards the complexity.

13



Complexity

For any function f : IN → IN, we say that a language L is in TIME(f) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f).

Similarly, we define SPACE(f) to be the languages accepted by a
machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells
on the work tape towards the complexity.

13



Complexity

For any function f : IN → IN, we say that a language L is in TIME(f) if
there is a machine M = (Q,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f).

Similarly, we define SPACE(f) to be the languages accepted by a
machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M, which has a
read-only input tape, and a separate work tape. We only count cells
on the work tape towards the complexity.

13



Questions?

13


