Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
-
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may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n o2 o(1.2) o22) o(13) o(23) (14 o24) (1,5 .(2,5)]
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for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Set membership

We write € for the membership predicate; so that
x € A stands for x is an element of A .
We further write

x & Afor—=(x € A) .

Example: 0 € {0,1}and 1 ¢ {0} are true statements.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A\B. A=B & (Vx.x€ A &< x€B)

Example:

0; 7 10,17 = {1,0; # {2} = 12,2}
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Proposition 100 Forb,c € R, let

A = {xeC|x*—2bc+c=0}
B = {b+vbl—c,b—vb2—c}

C =1} araTA

Then, B;C(:)(bﬂjbl-cl:b >

1. A:B, and A _ bl-C - b

— 2

— 315 —









Subsets and supersets
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Lemma 103

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.
Forall setsA,B,C, ACB ABCC) — A CC.

3. Antisymmetry.
For allsets A,B, ACB ANBCA) — A =B.
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

{x e A|P(x)}
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Russell’s paradox
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Empty set
Set theory has an
empty set ,
typically denoted
0 or{},
with no elements. QLE: @ C A
g

3qu 1P reh
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S|.

Example:
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Finite sets

The finite sets are those with cardinality a natural number.

Example: Forn € N,
n] = {xeN|x<n}

IS finite of cardinality n.
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Powerset axiom

P@)=5 9%

For any set, there is a set consisting of all its subsets.

w8 pe F() # Q=0
UE& Plw) T i P(9)=1
VX, X e P(U) xcu"ﬁ:m/ﬂ) 2
?@133 9{?3){1373 " 1 (P(EZj): Lf

#P((%1)=2
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NB: The powerset construction can be iterated. In particular,
FeP(PU) & FCPU) ;

that is, & is a set of subsets of U, sometimes referred to as a family.

Example: The family & C P([5]) consisting of the non-empty sub-
sets of 5] ={0,1,2,3,4} whose elements are even is

C = {{O}>{2}>{4}>{O>2}>{O>4}>{2>4}>{O>2>4}} .
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Proposition 104 For all finite sets U,
H#P(U) =274 .

PROOF IDEA:
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