
Regular Languages

63

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is of the form L(r)
for some regular expression r.

64

Kleene part (a): from regular expressions to automata

Given a regular expression r, over an alphabet Σ say, we wish to construct a DFA M with alphabet
of input symbols Σ and with the property that for each u ∈ Σ∗, u matches r iff u is accepted by
M, so that L(r) = L(M).

Note that by the Theorem on Slide 60 it is enough to construct an NFAε N with the property
L(N) = L(r). For then we can apply the subset construction to N to obtain a DFA M = PN
with L(M) = L(PN) = L(N) = L(r). Working with finite automata that are non-deterministic
and have ε-transitions simplifies the construction of a suitable finite automaton from r.

Let us fix on a particular alphabet Σ and from now on only consider finite automata whose set of
input symbols is Σ.

The construction of an NFAε for each regular expression r over Σ proceeds by induction on the
size (= number of vertices) of regular expression abstract syntax trees, as indicated on the next
slide. Thus starting with step (i) and applying the constructions in steps (ii)–(iv) over and over
again, we eventually build NFAεs with the required property for every regular expression r.

Put more formally, one can prove the statement

for all n ≥ 0, and for all regular expressions abstract syntax trees of size ≤ n, there
exists an NFAε M such that L(r) = L(M)

by mathematical induction on n, using step (i) for the base case and steps (ii)–(iv) for the
induction steps.

65

(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &
u2 ∈ L(M2)}

Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).

66

NFAs for regular expressions a, ϵ, ∅

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings

67

Union(M1, M2)

s1 M1

q0

ε

ε
s2 M2

accepting states = union of accepting states of M1 and M2

68

For example,

if Ma = a

and Mb = b

then Union(Ma, Mb) =

a
ε

ε

b

69

Induction step for r1|r2

Given NFAεs M1 = (Q1, Σ, ∆1, s1, T1) and M2 = (Q2, Σ, ∆2, s2, T2), the construction of
Union(M1, M2) is pictured on Slide 68. First, renaming states if necessary, we assume that
Q1 ∩ Q2 = ∅. Then the states of Union(M1, M2) are all the states in either Q1 or Q2, together
with a new state, called q0 say. The start state of Union(M1, M2) is this q0 and its set of
accepting states is the union F1 ∪ F2 of the sets of accepting states in M1 and M2. Finally, the
transitions of Union(M1, M2) are given by all those in either M1 or M2, together with two new
ε-transitions out of q0, one to the start states s1 of M1 and one to the start state s2 of M2.

Thus if u ∈ L(M1), i.e. if we have s1
u
⇒ q1 for some q1 ∈ F1, then we get q0

ε
−→ s1

u
⇒ q1 showing

that u ∈ L(Union(M1, M2)). Similarly for M2. So L(Union(M1, M2)) contains the union of
L(M1) and L(M2). Conversely if u is accepted by Union(M1, M2), there is a transition sequence

q0
u
⇒ q with q ∈ F1 or q ∈ F2. Clearly, in either case this transition sequence has to begin with

one or other of the ε-transitions from q0, and thereafter we get a transition sequence entirely in
one or other of M1 or M2 (because we assumed that Q1 and Q2 are disjoint) finishing in an
acceptable state for that one. So if u ∈ L(Union(M1, M2)), then either u ∈ L(M1) or
u ∈ L(M2). So we do indeed have

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}

70

Concat(M1, M2)

s1 M1
ε s2 M2

accepting states are those of M2

71

For example,

if M1 =
a

ε

ε

ε

ε b

ε

and M2 =
a

then Concat(M1, M2) =
a

ε

a ε ε

ε

ε b

ε

72

Induction step for r1r2

Given NFAεs M1 = (Q1, Σ, ∆1, s1, T1) and M2 = (Q2, Σ, ∆2, s2, T2), the construction of
Concat(M1, M2) is pictured on Slide 71. First, renaming states if necessary, we assume that
Q1 ∩ Q2 = ∅. Then the set of states of Concat(M1, M2) is Q1 ∪ Q2. The start state of
Concat(M1, M2) is the start state s1 of M1. The set of accepting states of Concat(M1, M2) is the
set F2 of accepting states of M2. Finally, the transitions of Concat(M1, M2) are given by all those
in either M1 or M2, together with new ε-transitions from each accepting state of M1 to the start
state s2 of M2 (only one such new transition is shown in the picture).

Thus if u1 ∈ L(M1) and u2 ∈ L(M2), there are transition sequences s1
u1⇒ q1 in M1 with q1 ∈ F1,

and s2
u2⇒ q2 in M2 with q2 ∈ F2. These combine to yield

s1
u1⇒ q1

ε
−→ s2

u2⇒ q2

in Concat(M1, M2) witnessing the fact that u1u2 is accepted by Concat(M1, M2). Conversely, it is
not hard to see that every v ∈ L(Concat(M1, M2)) is of this form: for any transition sequence
witnessing the fact that v is accepted starts out in the states of M1 but finishes in the disjoint set
of states of M2. At some point in the sequence one of the new ε-transitions occurs to get from
M1 to M2 and thus we can split v as v = u1u2 with u1 accepted by M1 and u2 accepted by M2.
So we do indeed have

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) & u2 ∈ L(M2)}

73

Star(M)

q0
ε s M

ε

the only accepting state of Star(M) is q0

(N.B. doing without q0 by just looping back to s
and making that accepting won’t work – Exercise 4.1.)

74

For example,

if M =

a
ε

ε

b

then Star(M) =
a

ε

ε

ε

ε b

ε

75

Induction step for r∗

Given an NFAε M = (Q, Σ, ∆, s, T), the construction of Star(M) is pictured on Slide 74. The
states of Star(M) are all those of M together with a new state, called q0 say. The start state of
Star(M) is q0 and this is also the only accepting state of Star(M). Finally, the transitions of
Star(M) are all those of M together with new ε-transitions from q0 to the start state of M and
from each accepting state of M to q0 (only one of this latter kind of transition is shown in the
picture).

Clearly, Star(M) accepts ε (since its start state is accepting) and any concatenation of one or
more strings accepted by M. Conversely, if v is accepted by Star(M), the occurrences of q0 in a
transition sequence witnessing this fact allow us to split v into the concatenation of zero or more
strings, each of which is accepted by M. So we do indeed have

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}

!

This completes the proof of part (a) of Kleene’s Theorem (Slide 64). Slide 77 shows how the
step-by-step construction applies in the case of the regular expression (a|b)∗a to produce an NFAε

M satisfying L(M) = L((a|b)∗a). Of course an automaton with fewer states and ε-transitions
doing the same job can be crafted by hand. The point of the construction is that it provides an
automatic way of producing automata for any given regular expression.

76

Example

Regular expression (a|b)∗a

whose abstract syntax tree is

Concat

Star

Union

Syma Symb

Syma

is mapped to the NFAε Concat(Star(Union(Ma, Mb)), Ma) =

a

ε

a ε ε

ε

ε b

ε

(cf. Slides 69, 72 and 75).

77

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

78

Decidability of matching

We now have a positive answer to question (a) on Slide 38.
Given string u and regular expression r:

" construct an NFAε M satisfying L(M) = L(r);

" in PM (the DFA obtained by the subset construction, Slide 60)
carry out the sequence of transitions corresponding to u from the
start state to some state q (because PM is deterministic, there is
a unique such transition sequence);

" check whether q is accepting or not: if it is, then
u ∈ L(PM) = L(M) = L(r), so u matches r; otherwise
u /∈ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2n

states if M has n. This makes the method described above potentially inefficient – more efficient
algorithms exist that don’t construct the whole of PM.)

79

Kleene’s Theorem
Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is of the form L(r)
for some regular expression r.

80

Example of a regular language

Recall the example DFA we used earlier:

M # q0
a

b

q1

b

a q2

b

a q3

a

b

In this case it’s not hard to see that L(M) = L(r) for

r = (a|b)∗aaa(a|b)∗

81

Example

M # 1

a0

ba

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

WRONG!
since baabaa ∈ L(M)
but baabaa ̸∈ L(a∗|a∗b(ab)∗aaa∗)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).

82

Kleene part (b): from automata to regular expressions

Given any DFA M = (Q, Σ, δ, s, F), we have to find a regular expression r (over the alphabet Σ of
input symbols of M) satisfying L(r) = L(M). In fact we do something more general than this, as
described in the Lemma on Slide 84. Note that if we can find the regular expressions rS

q,q′

mentioned in the lemma (for any choice of S ⊆ Q and q, q′ ∈ Q), then the problem is solved. For

taking S to be the whole of Q and q to be the start state s, then by definition of rQ
s,q′ , a string u

matches this regular expression iff there is a transition sequence s
u
−→∗ q′ in M. As q′ ranges over

the finitely many accepting states, q1, . . . , qk say, then we match exactly all the strings accepted by

M. In other words the regular expression rQ
s,q1 | · · · |r

Q
s,qk

has the property we want for part (b) of
Kleene’s Theorem. (In case k = 0, i.e. there are no accepting states in M, then L(M) is empty
and so we can use the regular expression ∅.)

83

Lemma. Given an NFA M = (Q, Σ, ∆, s, F), for each
subset S ⊆ Q and each pair of states q, q′ ∈ Q, there is a
regular expression rS

q,q′ satisfying

L(rS
q,q′) = {u ∈ Σ

∗ | q
u
−→∗ q′ in M with all inter-

mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
q1, . . . , qk say, then L(M) = L(r) with r # r1| · · · |rk where

ri = rQ
s,qi (i = 1, . . . , k)

(in case k = 0, we take r to be the regular expression ∅).

84

Proof of the Lemma on Slide 84

The regular expression rS
q,q′ can be constructed by induction on the number of elements in the

subset S.

Base case, S is empty. In this case, for each pair of states q, q′, we are looking for a regular
expression to describe the set of strings

{u | q
u
−→∗ q′ with no intermediate states in the sequence of transitions}.

So each element of this set is either a single input symbol a (if q
a
−→ q′ holds in M) or possibly ε,

in case q = q′. If there are no input symbols that take us from q to q′ in M, we can simply take

r∅

q,q′ #

{

∅ if q ̸= q′

ε if q = q′

On the other hand, if there are some such input symbols, a1, . . . , ak say, we can take

r∅

q,q′ #

{

a1| · · · |ak if q ̸= q′

a1| · · · |ak|ε if q = q′

85

[Notation: given sets X and Y , we write X \ Y for the set {x ∈ X | x ̸∈ Y} of elements of X that
are not in Y and call it the relative complement of X by Y .]

Induction step. Suppose we have defined the required regular expressions for all subsets of states
with n elements. If S is a subset with n + 1 elements, choose some element q0 ∈ S and consider
the n-element set S \ {q0} = {q ∈ S | q ̸= q0}. Then for any pair of states q, q′ ∈ StatesM , by
inductive hypothesis we have already constructed the regular expressions

r1 # r
S\{q0}
q,q′ r2 # r

S\{q0}
q,q0 r3 # r

S\{q0}
q0,q0 , r4 # r

S\{q0}
q0,q′

Consider the regular expression
r # r1|r2(r3)

∗r4

Clearly every string matching r is in the set

{u | q
u
−→∗ q′ with all intermediate states in the sequence of transitions in S}.

Conversely, if u is in this set, consider the number of times the sequence of transitions q
u
−→∗ q′

passes through state q0. If this number is zero then u ∈ L(r1) (by definition of r1). Otherwise this
number is k ≥ 1 and the sequence splits into k + 1 pieces: the first piece is in L(r2) (as the
sequence goes from q to the first occurrence of q0), the next k − 1 pieces are in L(r3) (as the
sequence goes from one occurrence of q0 to the next), and the last piece is in L(r4) (as the
sequence goes from the last occurrence of q0 to q′). So in this case u is in L(r2(r3)∗r4). So in
either case u is in L(r). So to complete the induction step we can define rS

q,q′ to be this regular

expression r = r1|r2(r3)∗r4. !

86

An example

We give an example to illustrate the construction of regular expressions from automata that is
inherent in the above proof of part (b) of Kleene’s Theorem. The example also demonstrates that
we do not have to pursue the inductive construction of the regular expression to the bitter end
(the base case S = ∅): often it is possible to find some of the regular expressions rS

q,q′ one needs

by ad hoc arguments – but if in doubt, use the algorithm.

Note also that at the inductive steps in the construction of a regular expression for M, we are free
to choose which state q0 to remove from the current state set S. A good rule of thumb is: choose
a state that disconnects the automaton as much as possible.

87

M # 1

a0

ba

2

b

a

By direct inspection we have:

r
{0}
i,j 0 1 2

0
1 ∅ ε a
2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b
1
2

(we don’t need the unfilled entries in the tables)

88

Consider the NFA shown on Slide 88. Since the start state is 0 and this is also the only accepting

state, the language of accepted strings is that determined by the regular expression r
{0,1,2}
0,0 .

Choosing to remove state 1 from the state set, we have

L(r
{0,1,2}
0,0) = L(r

{0,2}
0,0 |r

{0,2}
0,1 (r

{0,2}
1,1)∗r

{0,2}
1,0) (3)

Direct inspection shows that L(r
{0,2}
0,0) = L(a∗) and L(r

{0,2}
0,1) = L(a∗b). To calculate L(r

{0,2}
1,1),

and L(r
{0,2}
1,0), we choose to remove state 2:

L(r
{0,2}
1,1) = L(r

{0}
1,1 |r

{0}
1,2 (r

{0}
2,2)∗r

{0}
2,1)

L(r
{0,2}
1,0) = L(r

{0}
1,0 |r{0}

1,2 (r
{0}
2,2)∗r

{0}
2,0)

These regular expressions can all be determined by inspection, as shown on Slide 88. Thus

L(r
{0,2}
1,1) = L(ϵ|a(ϵ)∗(a∗b)) and it’s not hard to see that this is equal to L(ϵ|aa∗b). Similarly

L(r
{0,2}
1,0) = L(∅|a(ϵ)∗(aa∗)) which is equal to L(aaa∗). Substituting all these values into (3),

we get

L(r
{0,1,2}
0,0) = L(a∗|a∗b(ϵ|aa∗b)∗aaa∗)

So a∗|a∗b(ϵ|aa∗b)∗aaa∗ is a regular expression whose matching strings comprise the language
accepted by the NFA on Slide 88. (Clearly, one could simplify this to a smaller, but equivalent
regular expression, but we do not bother to do so.)

89

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

90

Regular languages are closed under complementation

Lemma. If L is a regular language over alphabet Σ, then its complement {u ∈ Σ∗ | u /∈ L} is also
regular.

Proof. Since L is regular, by definition there is a DFA M such that L = L(M). Let Not(M) be
the DFA constructed from M as indicated on Slide 92. Then {u ∈ Σ∗ | u /∈ L} is the set of
strings accepted by Not(M) and hence is regular. !

[N.B. If one applies the construction on Slide 92 (interchanging the role of accepting &
non-accepting states) to a non-deterministic finite automaton N, then in general L(Not(N)) is
not equal to {u ∈ Σ∗ | u ̸∈ L(N)} – see Exercise 4.5.]

We saw on slide 79 that part (a) of Kleene’s Theorem allows us to answer question (a) on
Slide 38. Now that we have proved the other half of the theorem, we can say more about
question (b) on that slide. In particular, it is a consequence of Kleene’s Theorem plus the above
lemma that for each regular expression r over an alphabet Σ, there is a regular expression ∼r that
determines via matching the complement of the language determined by r:

L(∼r) = {u ∈ Σ
∗ | u /∈ L(r)}

To see this, given a regular expression r, by part (a) of Kleene’s Theorem there is a DFA M such
that L(r) = L(M). Then by part (b) of the theorem applied to the DFA Not(M), we can find a
regular expression ∼r so that L(∼r) = L(Not(M)). Since
L(Not(M)) = {u ∈ Σ∗ | u /∈ L(M)}= {u ∈ Σ∗ | u /∈ L(r)}, this ∼r is the regular expression
we need for the complement of r.

91

Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

" set of states = Q
" input alphabet = Σ

" next-state function = δ

" start state = s
" accepting states = {q ∈ Q | q ̸∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u ̸∈ L(M)}

92

Regular languages are
closed under intersection

Theorem. If L1 and L2 are regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ∗ \ ((Σ∗ \ L1)∪ (Σ∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2, then
L1 ∩ L2 = L(Not(PM)) where M is the NFAε

Union(Not(M1), Not(M2)). !

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]

93

Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). !

94

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

95

Equivalent regular expressions
Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?

96

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any given DFA M, whether or not it accepts some string.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.

97

