Hoare logic and Model checking

Revision class

Hoare logic and separation logic

Christopher Pulte cp526
University of Cambridge

CST Part Il - 2023/24

Program variable assignment vs heap assignment The concept of ownership
(Program variable) assignment Ownership of a heap cell is the permission to safely
X := E updates program variable X. read /write/dispose of it. This ownership is not duplicable.

Heap assignment
[E1] := E» (note the brackets) evaluates E; and, if E; evaluates to E.g.: use-after-free: dispose(X); [X] :=5
a pointer to an allocated heap location ¢, writes to the heap at /.

E.g. heap assignment [X] := E (note the brackets) reads program Separation logic: If ownership was duplicable:
variable X and, if the current value of X is a pointer to an {X— v} {X— v}
allocated heap location £, writes to the heap at ¢, leaving X dispose(X); {X—=vxX—v}
unchanged. {emp} dispose(X);
proof fails {X v}
Whether to apply the rule for (program variable) assignment {X v} [X] =5
from lecture 1, or the separation logic rule for heap assignment [X] :==5 {X + 5}

depends on the command. {X — 5}

How is ownership related to framing? Pure assertions

If we have proved {P} C {Q} for some program C and we want to

use this triple in a proof involving assertion R, we can use the [-1(=) : Assertion — Stack — P(Heap)
frame rule to conclude {P xR} C {Q x R}: R is preserved by C. [L](s) 0
[T1(s) £ Heap
H{P} C {Q} mod(C)NFV(R) =0 [P A Q](s) d:Ef[[P]](s)ﬁﬂQ]](s)
PP RECAQHR) [P v Ql(s) £ [P)(s) U [QI(s)
Intuitively: P must have all the ownership required for the safe [P = Q]J(s) d:ef{h € Heap | h € [P](s) = h € [Q](s)}

execution of C — all the parts of the heap that C manipulates.
The separating conjunction ensures that R cannot have ownership

of those heap locations (or the precondition is false).
What is the meaning of pure assertions, such as T or t; = t,7 Do

Recall: P x R requires the disjointness of the heap cells for which they implicitly require the heap to be empty?

P and R assert ownership.

Semantics of pure assertions Semantics of pure assertions, wrt. heap (continued). Fixed

The 2019 exam paper 8, question 7 asks:

{N=nANZ>0}
X := null; while N > 0 do (X := alloc(N, X); N := N —1
[-1(=) : Assertion — Stack — P(Heap) {HSt(;:J[l,_N_ .'7en])}> o alloc())

Heap if [](s) = [20(s)

1) otherwise

[t: = ©](s) = {h [[t:](s) = [2](s)} = (I have not checked whether that year used different definitions
from ours, but) This seems to be missing emp in the

. . re-condition: {N=nAN>0Aem
More generally, the semantics of a pure assertion in a stack s: P { - P}

Why? {N =nA N > 0} makes no statement about the heap —

Informally: “check the pure assertion in s”; if it holds in s, return . o)
the precondition is satisfied by any heap (and suitable stack). But

the set of all heaps, if not return the empty set of heaps.)]
without the emp requirement, we would not be able to prove the

Formally: don’t worry about it, because we have not defined it. post-condition {list(X,[L,...,n])}, which asserts that the only

ownership is that of the list predicate instance.

Another error Conjunction and separating conjunction

. . What are the differences between them and when to use which?
Related: error in 2021 Paper 8 Question 8.

And how do they interact with pure assertions?
The pre-condition should have

AL hy € [P](s) A
. P« Ql(s) £ { h € Heap|3hy, hy. h
instead of [P+ QI(s) p|=2h1, M2 h2 Gh[[Q]](hs) A
x1< S =
def
[P A QI(s) = [PI(s) N [QI(s)
7 8
Conjunction and separating conjunction (continued) Conjunction and separating conjunction (continued)
hi € [P](s) A hi € [P](s) A
[P * Q1(s) = < h € Heap|3hi, hy. hy € [Q](s) A [P * Q1(s) = { h € Heap|3hy, hy. hy € [Q](s) A
h=h & h, h=hy & h,
def def
[P 1 Q1) Z 1PI(s) N [QN(5) 1P 1 Q1(s) £ PI(s) N QN(s)
PLFY VI *Po Vo VS, P1 = Vi APy Vo (p—=1)xY=0vs. (p—1)AY =0
= p1+> vi* p2 > Vo holds for a heap h that is the disjoint union of = (p— 1)% Y =0 holds for a stack s and a heap h where h is the
heaplets h; and hy, where hy contains just cell p;, with value v, disjoint union of heaplets h; and h,, such that h; contains ownership
and hy just cell po, with value v». So: ownership of two disjoint of one cell, p with value 1, and hy is an arbitrary heap if s satisfies
heap cells p; and p> with p; # ps. Y = 0. So, s must map Y to 0 and h is the disjoint union of the
= p1> Vi AP — v holds for a heap h that satisfies two assertions heaplet of just p with value 1 and an arbitrary disjoint heap h,.
simultaneously (is in the intersection of their interpretations): = (p1)A Y =0 holds for a stack s and a heap h satisfying two
(1) p1 = vi: hiis a heap of just one heap cell, p; with value vy assertion simultaneously: p +— 1 and Y = 0. This means s must
(2) p2 =+ va: h'is a heap of just one heap cell, p, with value v, map Y to 0 and h must be the heap consisting of just that one cell.

So: ownership of just one heap cell, p; = p, with value v; = v».

It is good to be careful about the unexpected interaction of the
usual logical connectives with the new separation logic connectives!

Example: 2019-p08-q07, e

{list(X, «) = list(Y, 8)}

if X = null then
Z:=Y
else (

Z:=X,U:=2Z,V:=[Z+1];

while V # null do (U :=V ; V= [V + 1]);

U+1]:=Y

)
{list(Z, o« + B)}

11

13

Example: 2019-p08-q07, e

Give a loop invariant for the following list concatenation triple:

{list(X,) * list(Y, 8)}

if X = null then
Z:=Y
else (

Z:=X,U:=2Z,V:=[Z+1];
while V # null do (U ==V ; V:=[V + 1]);
U+1]:=Y

)

{list(Z, + B)}

Example: 2019-p08-q07, e

{(list (X,) x list(Y, B)) A X # null}
Z:=X;U: =27,V :=[Z+1];

while V # null do (U :=V; V= [V + 1]);
U+1]:=Y

{list(Z, o« + B)}

12

14

{(list(X,) * list(Y, B8)) A X # null}
{3t,p,d. a=[t] H I A (X = t,p=list(p,d) = list(Y,)}

Z:=X;

{3t,p, 6. a=[t] H I A (Z — t,pxlist(p,d) = list(Y,B))}

U:.=7

{3t,p,0. a=[t] H dAU=ZA(Z— t,p=xlist(p,d) = list(Y,B))}
V:=[Z+1]

Model Checking

{3t,6. a=[t] HIAU=ZAN(Z—t,Vxlist(V,0) « list(Y,B))}

I {3y, t,0. o = v+ [t] + 6 A (plist(Z,, U) = plist(U, [t], V) * list(V,) * list(Y, B3))}
while V # null do (U :=V; V= [V + 1]);

{3y, t,6. a =~ + [t] H d A (plist(Z,~, U) = plist(U, [t], V) = list(V, 8) = list(Y, 3))

A=(V #null)}
[U+1]:=Y
{37, t,0. a =~ + [t] + d A (plist(Z,~, U) * plist(U, [t], Y) = list(V, 0) « list(Y, 3))
A =(V # null)}
(list(Z, @ ++ B)} o
Temporal operators, e.g. in CTL LTL examples
ME ¢
a yes
= AXY and EX1): N Xa no
= Does the state satisfying ¢/ have to be different from the {b} +—— {b,d} Fb yes
starting state? Y/ Fc no
= Does ¢ have to continue holding? L {a) [/ [(aV B)Ue no
» A(¢1Utp2) and E(1U): N dUa vyes
» Does 1); have to continue holding? {a,c} —— {c} G(avbVec) yes
= What about 1,7 GFb yes
FGb no

16 17

CTL examples

v MEY
EX(bA—c) yes
gl AFd no
{b} «——{b,d} EFd yes
R {a}// E(aUd) vyes
\ AGEFd vyes
{a,c} {c} AFEGd no
EFEGd yes

E((aV c)U(EGD)) vyes

18
LTL/CTL expressivity
An LTL formula not expressible in CTL: ¢ = (F p) — (F q).
a) CTL formula 1 = (A F p) — (A F q).
¢ does not hold, 11 does.
0 J 0
3:{}+——1:{} ———2:{p}
b) CTL formula ¢ =A G (p — (A F q)).
¢ holds, 1> does not.
()
—4:{q} —5:{p}
20

LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”
CTL: ¢ =A G ((Calla ANE X Loca) — A X Loc)

Q: Can we express the same in LTL with
¢ = G (Cally A (Locy V Locz)) — X Locy?

This depends on the details of the elevator temporal model.! In
any case, 1) and ¢ are not generally equivalent. The point is:
expressing properties of the tree of possible paths out of a given
state — such as asserting the existence of some path — is not
possible with LTL.

1| think — the way we have sketched the elevator in lecture 7 — this will not
work: Loci V Locs does not imply there exists a next step such that Locy holds.

19

LTL/CTL expressivity

Why are F G pin LTL and A F A G p in CTL not equivalent?

= 1:{p} 2:{} 3:{p}
U U

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3
forever. Both kinds of paths eventually reach a state in which p
holds generally (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics):

= all paths 7 from 1 satisfy F A G p, so
= all paths 7 from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in 1, A G p is not
satisfied, because there exists a path m that goes to 2 from there.

21

Why have simulation relations and not simulation functions?

AP = AP" = {good}

M M’
— 1} b---a4:{}
It is good to be careful about the unexpected interaction of the
temporal operators, with other temporal operators and with path
quantifiers.
2:{good} «----------- t-+45: {good}
_A
Y
o
3: {good}
U
29 M simulates M’
Good luck!

24

