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Recap

Last time, we introduced separation logic, a reinterpretation of

Hoare logic that makes reasoning about pointers tractable.

Separation logic is based on the notions of separation and

ownership of resources.

A separation logic partial correctness triple ensures that the

execution of the command (1) does not fault in a heap matching

exactly its precondition, which ensures that it asserts ownership of

all the parts of the heap it accesses, and (2) preserves the part of

the heap disjoint from that matching the precondition.

In this lecture, we will look at a proof system for separation logic,

and put separation logic into practice.
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A proof system for separation logic



A proof system for separation logic

Separation logic inherits all the partial correctness rules from Hoare

logic from the first lecture, and extends them with

• rules for each new heap-manipulating command;

• structural rules, including the frame rule.

We now want the rule of consequence to be able to manipulate our

extended assertion language, with our new assertions P ∗ Q,

t1 7→ t2, and emp, and not just first-order logic anymore.
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Recap: The frame rule

The frame rule is the core of separation logic.

It expresses that separation logic triples always preserve any

assertion disjoint from the precondition:

⊢ {P} C {Q} mod(C ) ∩ FV (R) = ∅

⊢ {P ∗ R} C {Q ∗ R}

The second hypothesis ensures that the frame R does not refer to

any program variables modified by the command C .

This builds in modularity.
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Other structural rules

Given the rules that we are going to consider for the

heap-manipulating commands, we are going to need to include

structural rules like the following:

⊢ {P} C {Q}

⊢ {∃x .P} C {∃x .Q}

...

Rules like these were admissible in Hoare logic.

We will represent uses of structural rules by indentation in proof

outlines.
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The heap assignment rule

Separation logic triples must assert ownership of any heap cells

modified by the command. The heap assignment rule thus asserts

ownership of the heap location being assigned:

⊢ {E1 7→ t} [E1] := E2 {E1 7→ E2}

If expressions were allowed to fault, we would need a more complex

rule.
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The heap dereference rule

Separation logic triples must ensure the command does not fault.

The heap dereference rule thus asserts ownership of the given heap

location to ensure the location is allocated in the heap:

⊢ {E 7→ v ∧ X = x} X := [E ] {E [x/X ] 7→ v ∧ X = v}

Here, v and x are auxiliary variables; v is used to refer to the value

of the dereferenced location, and x is used to refer to the initial

value of program variable X in the postcondition.
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Allocation and deallocation

The allocation rule introduces a new points-to assertion for each

newly allocated location:

⊢ {X = x ∧ emp} X := alloc(E0, ...,En) {X 7→ E0[x/X ], ...,En[x/X ]}

The deallocation rule destroys the points-to assertion for the

location to not be available anymore:

⊢ {E 7→ t} dispose(E ) {emp}
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Swap example



Specification of swap

To illustrate these rules, consider the following code snippet:

Cswap ≡ A := [X ];B := [Y ]; [X ] := B; [Y ] := A;

We want to show that it swaps the values in the locations

referenced by X and Y , when X and Y do not alias:

{X 7→ n1 ∗ Y 7→ n2} Cswap {X 7→ n2 ∗ Y 7→ n1}

✎
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Proof outline for swap

{X 7→ n1 ∗ Y 7→ n2}
A := [X ];

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}
B := [Y ];

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1 ∧ B = n2}
[X ] := B;

{(X 7→ B ∗ Y 7→ n2) ∧ A = n1 ∧ B = n2}
[Y ] := A;

{(X 7→ B ∗ Y 7→ A) ∧ A = n1 ∧ B = n2}
{X 7→ n2 ∗ Y 7→ n1}

Justifying these individual steps is now considerably more involved

than in Hoare logic. ✎
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Detailed proof outline for the first triple of swap

{X 7→ n1 ∗ Y 7→ n2}
{∃a. ((X 7→ n1 ∗ Y 7→ n2) ∧ A = a)}

{(X 7→ n1 ∗ Y 7→ n2) ∧ A = a}
{(X 7→ n1 ∧ A = a) ∗ Y 7→ n2}

{X 7→ n1 ∧ A = a}
A := [X ]

{X [a/A] 7→ n1 ∧ A = n1}
{X 7→ n1 ∧ A = n1}

{(X 7→ n1 ∧ A = n1) ∗ Y 7→ n2}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1}

{∃a. ((X 7→ n1 ∗ Y 7→ n2) ∧ A = n1)}
{(X 7→ n1 ∗ Y 7→ n2) ∧ A = n1} 10



For reference: proof of the first triple of swap

To prove this first triple, we use the heap dereference rule to derive:

{X 7→ n1 ∧ A = a} A := [X ] {X [a/A] 7→ n1 ∧ A = n1}

Applying the rule of consequence, we obtain:

{X 7→ n1 ∧ A = a} A := [X ] {X 7→ n1 ∧ A = n1}

Then we use the frame rule:

{(X 7→ n1∧A = a)∗Y 7→ n2} A := [X ] {(X 7→ n1∧A = n1)∗Y 7→ n2}
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(continued) For reference: proof of the first triple of swap

Using the rule of consequnce to rephrase its pre and post conditions

(using separation logic properties we will see later in this lecture):

{(X 7→ n1∗Y 7→ n2)∧A = a} A := [X ] {(X 7→ n1∗Y 7→ n2)∧A = n1}

Then we existentially quantify the auxiliary variable a:

{∃a. (X 7→ n1∗Y 7→ n2)∧A = a} A := [X ] {∃a. (X 7→ n1∗Y 7→ n2)∧A = n1}

And finally, we use the rule of consequence to match the intended

pre and post condition.
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Proof of the first triple of swap (continued)

We relied on many properties of our assertion logic.

For example, to justify the first application of consequence, we

need to show that

P ⇒ ∃a. (P ∧ A = a)

and to justify the last application of the rule of consequence, we

need to show that:

((X 7→ n1 ∧ A = n1) ∗ Y 7→ n2) ⇒ ((X 7→ n1 ∗ Y 7→ n2) ∧ A = n1)
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Properties of separation logic

assertions



Syntax of assertions in separation logic

We now have an extended language of assertions, with a new

connective, the separating conjunction ∗:

P,Q ::= ⊥ | ⊤ | P ∧ Q | P ∨ Q | P ⇒ Q

| P ∗ Q | emp

| ∀x .P | ∃x .P | t1 = t2 | p(t1, ..., tn) n ≥ 0

7→ is a predicate symbol of arity 2.

This is not just usual first-order logic anymore: this is an instance

of the classical first-order logic of bunched implication (which is

related to linear logic).

We will also require inductive predicates later.

We will take an informal look at what kind of properties hold and

do not hold in this logic. Using the semantics, we can prove the

properties we need as we go. 14



Properties of separating conjunction

Separating conjunction is a commutative and associative operator

with emp as a neutral element (like ∧ was with ⊤):

⊢BI P ∗ Q ⇔ Q ∗ P
⊢BI (P ∗ Q) ∗ R ⇔ P ∗ (Q ∗ R)
⊢BI P ∗ emp ⇔ P

Separating conjunction is monotone with respect to implication:

⊢BI P1 ⇒ Q1 ⊢BI P2 ⇒ Q2

⊢BI P1 ∗ P2 ⇒ Q1 ∗ Q2

Separating conjunction distributes over disjunction:

⊢BI (P ∨ Q) ∗ R ⇔ (P ∗ R) ∨ (Q ∗ R)

15



Properties of separating conjunction (continued)

Assertions in separation logic are not freely duplicable in general:

̸⊢BI P ⇒ P ∗ P

in general.

For example, we want

̸⊢BI t1 7→ t2 ⇒ (t1 7→ t2) ∗ (t1 7→ t2)

This is the sense in which assertions in separation logic are

resources: we cannot just duplicate them, we have to account for

them.
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Properties of separating conjunction (continued)

In linear separation logic, ⊤ is not a neutral element for the

separating conjunction: we only have

⊢BI P ⇒ P ∗ ⊤

but ̸⊢BI P ∗ ⊤ ⇒ P in general.

This means that we cannot “forget” about allocated locations:

we have ⊢BI P ∗ Q ⇒ P ∗ ⊤, but ̸⊢BI P ∗ Q ⇒ P in general.

To actually get rid of Q, we have to deallocate the corresponding

locations.
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Properties of pure assertions

An assertion is pure when it does not talk about the heap.

Syntactically, this means it does not contain emp or 7→.

Separating conjunction and conjunction become more similar when

they involve pure assertions:

⊢BI P ∧ Q ⇒ P ∗ Q when P or Q is pure

⊢BI P ∗ Q ⇒ P ∧ Q when P and Q are pure

⊢BI (P ∧ Q) ∗ R ⇔ P ∧ (Q ∗ R) when P is pure

Separating conjunction semi-distributes over conjunction (but not

the other direction in general):

⊢BI (P ∧ Q) ∗ R ⇒ (P ∗ R) ∧ (Q ∗ R)
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Axioms for the points-to assertion

We also need some axioms about 7→:

null cannot point to anything:

⊢BI ∀t1, t2. t1 7→ t2 ⇒ (t1 7→ t2 ∧ t1 ̸= null)

locations combined by ∗ are disjoint:

⊢BI ∀t1, t2, t3, t4. (t1 7→ t2 ∗ t3 7→ t4) ⇒ ((t1 7→ t2 ∗ t3 7→ t4) ∧ t1 ̸= t3)

...

We need to repeat the non-duplicable assertions on the right-hand

side of the implication to not “lose” them.
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Verifying abstract data types



Verifying ADTs

Separation logic is very well-suited for specifying and reasoning

about mutable data structures typically found in standard libraries

such as lists, queues, stacks, etc.

To illustrate this, we will specify and verify a library for working

with lists, implemented using null-terminated singly-linked lists,

using separation logic.
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A list library implemented using singly-linked lists

First, we need to define a memory representation for our lists.

We will use null-terminated singly-linked list, starting from some

designated HEAD program variable that refers to the first element

of the linked list.

(We have to make do with this unique head in WHILEp.)

For instance, we will represent the mathematical list [12, 99, 37] as

we did in the previous lecture:

12 99 37HEAD

21



Representation predicates

To formalise the memory representation, separation logic uses

representation predicates that relate an abstract description of

the state of the data structure with its concrete memory

representations.

For our example, we want a predicate list(t, α) that relates a

mathematical list, α, with its memory representation starting at

location t (here, α, β, . . . are just terms, but we write them

differently to clarify the fact that they refer to mathematical lists).

To define such a predicate formally, we need to extend the

assertion logic to reason about inductively defined predicates. We

probably also want to extend it to reason about mathematical lists

directly rather than through encodings. We will elide these details.
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Representation predicates

We are going to define the list(t, α) predicate by induction on the

list α:

• The empty list [] is represented as a null pointer:

list(t, [])
def
= (t = null) ∧ emp

• The list h :: α (again, h is just a term) is represented by a

pointer to two consecutive heap cells that contain the head h

of the list and the location of the representation of the tail α

of the list, respectively:

list(t, h :: α)
def
= ∃y . (t 7→ h) ∗ ((t + 1) 7→ y) ∗ list(y , α)

(recall that t 7→ h ⇒ ((t 7→ h) ∧ t ̸= null))
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Representation predicates

The representation predicate allows us to specify the behaviour of

the list operations by their effect on the abstract state of the list.

For example, assuming that we represent the mathematical list α

at location HEAD, we can specify a push operation Cpush that

pushes the value of program variable X onto the list in terms of its

behaviour on the abstract state of the list as follows:

{list(HEAD, α) ∧ X = x} Cpush {list(HEAD, x :: α)}
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Representation predicates

We can specify all the operations of the library in a similar manner:

{emp} Cnew {list(HEAD, [])}{
list(HEAD, α) ∧
X = x

}
Cpush {list(HEAD, x :: α)}

{list(HEAD, α)} Cpop



(
list(HEAD, []) ∧
α = [] ∧ ERR = 1

)
∨∃h, β.

 α = h :: β ∧
list(HEAD, β) ∧
RET = h ∧ ERR = 0





{list(HEAD, α)} Cdelete {emp}

...

The emp in the postcondition of Cdelete ensures that the locations

of the precondition have been deallocated. 25



Implementation of push

The push operation stores the HEAD pointer into a temporary

variable Y before allocating two consecutive locations for the new

list element, storing the start-of-block location to HEAD:

Cpush ≡ Y := HEAD;HEAD := alloc(X ,Y )

We wish to prove that Cpush satisfies its intended specification:

{list(HEAD, α) ∧ X = x} Cpush {list(HEAD, x :: α)}

✎

(We could use HEAD := alloc(X ,HEAD) instead.)
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Proof outline for push

Here is a proof outline for the push operation:

{list(HEAD, α) ∧ X = x}
Y := HEAD;

{list(Y , α) ∧ X = x}
HEAD := alloc(X ,Y )

{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x}
{list(HEAD,X :: α) ∧ X = x}
{list(HEAD, x :: α)}

For the alloc step, we frame off list(Y , α) ∧ X = x .
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For reference: detailed proof outline for the allocation

{list(Y , α) ∧ X = x}
{∃z . (list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∧ HEAD = z}
{(list(Y , α) ∧ X = x) ∗ (HEAD = z ∧ emp)}

{HEAD = z ∧ emp}
HEAD := alloc(X ,Y )

{HEAD 7→ X [z/HEAD],Y [z/HEAD]}
{HEAD 7→ X ,Y }

{(list(Y , α) ∧ X = x) ∗ HEAD 7→ X ,Y }
{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x)}

{∃z . (list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x)}
{(list(Y , α) ∗ HEAD 7→ X ,Y ) ∧ X = x}
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Implementation of delete

The delete operation iterates down over the list, deallocating

nodes until it reaches the end of the list.

Cdelete ≡ X := HEAD;

while X ̸= null do

(Y := [X + 1];dispose(X );dispose(X + 1);X := Y )

We wish to prove that Cdelete satisfies its intended specification:

{list(HEAD, α)} Cdelete {emp}

For that, we need a suitable loop invariant.
To execute safely, X effectively needs to point to a list (which is α

only at the start).
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Proof outline for delete

We can pick the invariant that we own the rest of the list:

{list(HEAD, α)}
X := HEAD;

{list(X , α)}
{∃β. list(X , β)}
while X ̸= null do

{∃β. list(X , β) ∧ X ̸= null}
(Y := [X + 1];dispose(X );dispose(X + 1);X := Y )

{∃β. list(X , β)}
{∃β. list(X , β) ∧ ¬(X ̸= null)}
{emp}

We need to complete the proof outline for the body of the loop.
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Proof outline for the loop body of delete

To verify the loop body, we need a lemma to unfold the list

representation predicate in the non-null case:

{∃β. list(X , β) ∧ X ̸= null}
{∃h, y , γ.X 7→ h, y ∗ list(y , γ)}
Y := [X + 1];

{∃h, γ.X 7→ h,Y ∗ list(Y , γ)}
dispose(X );dispose(X + 1);

{∃γ. list(Y , γ)}
X := Y

{∃γ. list(X , γ)}
{∃β. list(X , β)}
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Linear separation logic and deallocation

If we did not have the two deallocations in the body of the loop,

we would have to do something with

(X 7→ h) ∗ (X + 1 7→ Y )

We can weaken that assertion to ⊤, but not fully eliminate it.

We could weaken our loop invariant to ∃β. list(X , β) ∗ ⊤:

the ⊤ would indicate the memory leak.

Linear separation logic forces us to deallocate.
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Reasoning about the abstract state

To specify that a command computes the maximum element of a

non-empty list, we do not need to change our representation

predicate: we can just define a maxl predicate on the

mathematical list to specify our Cmax command:

maxl([x ])
def
= x

maxl(x :: y :: α)
def
= max(x ,maxl(y :: α))

where max is the maximum function on integers,

and then have the following specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∧M = maxl(h :: α)}
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Implementation of max

The max operation iterates over a non-empty list, computing its

maximum element:

Cmax ≡
X := [HEAD + 1];M := [HEAD];

while X ̸= null do

(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

We wish to prove that Cmax satisfies its intended specification:

{list(HEAD, h :: α)} Cmax {list(HEAD, h :: α) ∧M = maxl(h :: α)}

For that, we need a suitable loop invariant. However, the lists

represented starting at HEAD and X are not disjoint.
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Representation predicate for partial lists

To talk about partial lists, we can define a representation predicate

for partial lists, plist(t1, α, t2), inductively:

plist(t1, [], t2)
def
= (t1 = t2) ∧ emp

plist(t1, h :: α, t2)
def
= (∃y . t1 7→ h, y ∗ plist(y , α, t2))

In particular, we can split lists in the middle:

⊢BI list(t1, α ++ β) ⇔ (∃y . plist(t1, α, y) ∗ list(y , β))
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Proof outline for max

We can use plist to express our invariant:

{list(HEAD, h :: α)}
X := [HEAD + 1];M := [HEAD];

{(plist(HEAD, [h],X ) ∗ list(X , α)) ∧M = max([h])}
{∃β, γ. h :: α = β ++ γ ∧ (plist(HEAD, β,X ) ∗ list(X , γ)) ∧M = maxl(β)}
while X ̸= null do

(E := [X ]; (if E > M then M := E else skip);X := [X + 1])

{list(HEAD, h :: α) ∧M = maxl(h :: α)}

We only use plist in the proof, not in the specification.
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Implementation of merge (of merge sort)

{list(X , α) ∗ list(Y , β) ∧ sorted(α) ∧ sorted(β)}
Z := alloc(0,null);P := Z ;

while X ̸= null and Y ̸= null do
U := [X ];V := [Y ];

if U ≤ V then ([P + 1] := X ;X := [X + 1])

else ([P + 1] := Y ;Y := [Y + 1]);

P := [P + 1]

 ;

if X = null then ([P + 1] := Y ;Y := null)

else ([P + 1] := X ;X := null);

P := [Z + 1];dispose(Z );dispose(Z + 1);Z := P

{∃γ. list(Z , γ) ∧ sorted(γ) ∧ permutation(γ, α ++ β)}

We need to find a suitable invariant  37



Specification of merge

Again, we did not need to change our representation predicate: we

only need to state that the mathematical list that is represented is

sorted:

sorted([])
def
= ⊤

sorted([x ])
def
= ⊤

sorted(x :: y :: α)
def
= x ≤ y ∧ sorted(y :: α)

and that a list is a permutation of another:

permutation(α, β)
def
=

(α = β = []) ∨
(∃a, α′, β′. α = [a] :: α′ ∧ β = [a] :: β′ ∧ permutation(α′, β′)) ∨
(∃a, b, γ. α = [a] :: [b] :: γ ∧ β = [b] :::: [a]γ) ∨
(∃γ. permutation(α, γ) ∧ permutation(γ, β))
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Invariant of merge. Updated wrt handout.

We can now express our invariant:

∃α1, α2, β1, β2, γ, γ1, a, q.

α = α1 ++ α2 ∧ β = β1 ++ β2 ∧
sorted(α) ∧ sorted(β) ∧
sorted(γ) ∧ γ1 ++ [a] = 0 :: γ ∧
permutation(γ, α1 ++ β1) ∧
list(X , α2) ∗ list(Y , β2) ∗
plist(Z , γ1,P) ∗ plist(P, [a], q)

It is a rather readable — albeit detailed — description of why the

program is correct.
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Summary

We can specify abstract data types using representation predicates

which relate an abstract model of the state of the data structure

with a concrete memory representation.

We only need to know what the representation predicate is when

we implement and verify our library, not when we use it. This gives

us abstraction and modularity.

Justification of individual steps has to be made quite carefully

given the unfamiliar interaction of connectives in separation logic,

but proof outlines remain very readable.

In the next lecture, we will look at some extensions of Hoare logic.
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