
Hoare logic and Model checking
Part II: Model checking

Lecture 7: Introduction to model checking

Christopher Pulte cp526
University of Cambridge

CST Part II – 2023/24

Acknowledgements

These slides are heavily based on (1) Jean Pichon-Pharabod’s
slides from the CST Part II – 2020/2021 course, which are in turn
heavily based on previous versions by Mike Gordon, Dominic
Mulligan, Alan Mycroft, and Conrad Watt, and (2, again) on
Dominic Mulligan’s slides for LTL and CTL.

They are also inspired by slides and lecture notes by John
Gallagher, Gourinath Banda, and Pierre Ganty, by Paul Gastin, by
Orna Grumberg, by Arie Gurfinkel, by Daniel Kroening, by Antoine
Miné, by Julien Schmaltz, by David A. Schmidt, and by Carsten
Sinz and Tomáš Balyo.

Thanks to Neel Krishnaswami, David Kaloper Meršinjak, Jack
Parkinson, Peter Rugg, Ben Simner, and two anonymous students,
for remarks and reporting mistakes.

1

Background

There are many verification & validation techniques of varying coverage,
expressivity, level of automation, ..., for example:

typing

testing
model

checking program
logics

operational
reasoning

expressivity (of safety properties)

automation coverage:
complete

bounded

sparse

2

Model checking application examples

• software, e.g. programs with complex control flow
• distributed systems
• protocols
• asynchronous circuits and hardware
• . . .

3

Model checking

desired goalartefact

temporal model M
specification ψ

in temporal logic

OK (M � ψ) | NO (+maybe a counterexample)

human

expert

model

checker

This diagram gives a very static, top-down picture; in practice
these tasks feed back into each other.

4

Toy example

Suppose we are given an algorithm that is supposed to transfer,
from one bank of the Cam to the other, using only a punt with
seat for one, a wolf, a goat, and a cabbage1.

The success criteria are

• safety: the cabbage and the goat, and the wolf and the goat,
cannot be left alone on a bank;

• liveness: all three items are moved to the other bank.

1it is a large cabbage, so it takes up the whole seat

5

Toy example

How to model the problem?

• Option 1:

L = −1
4FµνFµν + iψ̄�Dψ + h.c.+ ψ̄iyijψjφ+ h.c.+ |Dµφ|2 − V (φ) + ???

• Option 2: (G. Doré, anonymous (Wellcome coll.), G. Waddington)

• Option 3: (apologies to the Phaistos cat)

Side ::= Left | Right Item ::=l |d |c |Y
State def

= Item → Side
. . .

6

About finding good models

“All models are wrong, some are useful” applies. The designer
must ensure the model captures the significant aspects of the real
system. Achieving it is a special skill, the acquisition of which
requires thoughtful practice
— How Amazon Web Services Uses Formal Methods

7

Temporal models

Temporal models

A temporal model over atomic propositions AP is a left-total
transition system where states are labelled with some of AP , and
where some states are distinguished as initial:

M, . . . ∈ TModel def
=

(S ∈ Set)× states
(S0 ∈ sub S)× initial states
(T ∈ relation S S)× transition

(` ∈ (S → sub AP)) state labelling

such that T is left-total:

∀s ∈ S.∃s ′ ∈ S. s T s ′

.
8

Temporal model of traffic lights

AP ::= | | | | |

{ , , }

{ , , }

{ , , }

{ , , }

9

Tea & coffee machines

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

Mnice Mbad

10

Corner case: the initial temporal model

0 ∈ TModel

0
def
=

〈
0,

∅,
∅,
s 7→ ∅

〉
(it is empty)

11

Corner case: the terminal temporal model

1 ∈ TModel

1
def
=

〈
AP → B,
{s | >} ,
{s0, s1 | >} ,
s 7→ {p | s p}

〉
∅

{p1}

{p2}
{p1, p2}

{p3}

{p1, p3}

{p2, p3}
{p1, p2, p3}

. . .

12

Temporal model of a terrible punter

A punter with no concern for goat welfare or cabbage welfare:

Side ::= Left | Right Item ::=l |d |c |Y
State def

= Item → Side
. . .

AP = State

M =

〈
State,
{s | ∀i . s i = Left} ,{

s, s ′
∣∣∣∣∣
(

(s Y) = flip (s ′ Y) ∧
(moveone s s ′ ∨ movezero s s ′)

)}
,

(s 7→ {s})

〉
13

Temporal model of a terrible punter

flip Left def
= Right flip Right def

= Left

moveone s s ′ def
=

(move s s ′ l ∧ stay s s ′ d ∧ stay s s ′ c) ∨

(move s s ′ d ∧ stay s s ′ l ∧ stay s s ′ c) ∨

(move s s ′ c ∧ stay s s ′ l ∧ stay s s ′ d)



movezero s s ′ def
= stay s s ′ l ∧ stay s s ′ d ∧ stay s s ′ c

move s s ′ item def
= (s item) = (s Y) ∧ (s ′ item) = (s ′ Y)

stay s s ′ item def
= (s ′ item) = (s item)

14

Temporal model of a terrible punter

ldcY___

ldc___Y

ldY___c

ld___cY

lcY___d

lc___dY

lY___dc

l___dcY

dcY___l

dc___lY

dY___lc

d___lcY

cY___ld

c___ldY

Y___ldc

___ldcY

Safety: we never go through a red state.
Liveness: we eventually reach the blue state.
Both are pretty clearly false! :-(

15

Informal temporal model of an elevator

Let us try to describe how an elevator
for a building with 3 levels works:

• it starts at the ground floor,
with the door closed, and goes
back there when it is not called;

• if going through a level where it
is called, it stops there and
opens its door;

• . . .

Textual descriptions do not scale very well.

16

Temporal model of an elevator: statics and specification

Direction ::= stay | up | down
Level ::= 0 | 1 | 2
Location ::= 0 | 0.5 | 1 | 1.5 | 2
Called def

= Level → B
DoorStatus ::= open | closed
ElevatorStatus def

= Direction × Location × Called × DoorStatus

Desired goals:

• the door is not open at half-levels;
• if the elevator is called to a level, then it eventually gets there;
• the elevator does not lock people in;
• the path of the elevator is not entirely idiotic.

17

Temporal model of an elevator: partial dynamics

{−,C , , 0}

{−,O, , 0} {−,C , , 0}

{ _,C , , 0.5} {−,O, , 0}

{ _,C , , 1}

{−,O, , 1}

{−,C , , 1}

{

_

,C , , 0.5} . . .

call 0time call 1

time call 0

time
time

time

time

time

time

18

Temporal model of an elevator: complete (?) dynamics

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{
_,O, ,

}
{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{
_,C , ,

}
{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{
_,C , ,

}
{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{
_,O, ,

}
{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{
_,O, ,

}
{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{

_,O, ,
}

{

_,C , ,
}

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{−,O, , }

{−,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{
_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{
_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{
_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{
_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{

_

,C , , }

{

_

,O, , }

{
_

,C , , }

{

_

,O, , }

{

_

,C , , }

How to have any confidence that this is correct? house by Petr Olsšák

19

Definitions

(Infinite) Paths

stream ∈ Set → Set
stream A def

= N → A

IsPath ∈ (M ∈ TModel) → stream M�S → B
IsPath M π

def
= ∀n ∈ N. (π n) M�T (π (n + 1))

Path ∈ TModel → Set
Path M def

= {π ∈ stream M�S | IsPath M π}

20

Reachable states & the tail operation

Because the transition relation is left-total, these infinite paths are
“complete”, in the sense that they capture reachability:

Reachable ∈ (M ∈ TModel) → M�S → B
Reachable M s def

= ∃π ∈ stream M�S, n ∈ N.
IsPath M π ∧ M�S0 (π 0) ∧ s = π n

tailn ∈ (A ∈ Set) → N → stream A → stream A
tailn A n π def

= i 7→ π (i + n)

21

Stuttering

A temporal model is stuttering when all states loop back to
themselves:

stuttering ∈ TModel → B
stuttering M def

= ∀s ∈ M�S. s M�T s

� If the temporal model is not stuttering, then we can count
transitions. This is only sound if they exactly match those of the
system being analysed.

See “What good is temporal logic” §2.3, by Leslie Lamport
https://lamport.azurewebsites.net/pubs/what-good.pdf

22

https://lamport.azurewebsites.net/pubs/what-good.pdf

Applications of model checking

Applications of model checking

• Hardware:
• circuits (with memory) directly translate to temporal models
• lots of protocols

• cache protocols
• bus protocols
• . . .

their specification involves lots of temporal “liveness”
(“eventually something good”) properties

• Software: often not finite a priori, but “proper modelling”, or
bounded model-checking

• Security protocols
• Distributed systems
• . . .

The common denominator of many of these is the “killer app” of
model checking: concurrency.

23

Examples

In the rest of this lecture, we will sketch how some of these are
approached.

The point is not the details of any individual temporal model, but
the overall approach.

24

Temporal model from operational
semantics

Temporal model from operational semantics

An initial configuration for a small-step operational semantics
naturally leads to a temporal model: take

• configurations as states,
• the initial configuration as the (only) initial state,
• steps as transitions, and
• some interesting properties as atomic propositions, for

example

X ,Y ,Z , . . . ∈ Var
v ∈ Z
AP ::= X ·

= v | X ·
= Y | X

·
< Y |

X
·
+ Y

·
< Z | X

·
× Y

·
< Z |

. . .

25

Temporal model from operational semantics

For example, for a language with a concurrent composition with
interleaving dynamics (as in lecture 6):

〈C1||C2||C3, sa〉

〈C ′
1||C2||C3, sb〉

〈C1||C ′
2||C3, sc〉

〈C1||C2||C ′
3, sd〉

〈C ′
1||C2||C ′

3, se〉
〈C ′′

1 ||C2||C3, sf 〉

〈C ′
1||C ′

2||C3, sg〉

〈C ′
1||C ′

2||C3, sh〉
〈C1||C ′′

2 ||C3, si〉
〈C1||C ′

2||C ′
3, sh〉

〈C1||C ′
2||C ′

3, sk〉

〈C1||C2||C ′′
3 , sl〉

〈C ′
1||C2||C ′

3, sm〉

. . .

26

Dealing with the size of temporal model from operational se-
mantics

These temporal models are very often infinite or intractably large!

Many approaches:

• bounded model checking:
• assume (and possibly check whether) loops execute no more

than n times
• consider executions of length smaller than n
• . . .

• use a model checking DSL to write an idealised version of the
program

• use abstraction

27

Temporal model from circuits

Example circuit

Synchronous (the clock is left implicit) counter that goes
0, 1, 2, 0, 1, 2, . . . (assuming all registers are initially 0):

nor

r1

r0

x1

x0

Registers make the circuit not be a simple function, which
motivates using a temporal model.

28

Example circuit temporal model

The states of the temporal model are the state of the registers,
and the labels are which registers are set to 1:

∅ {r0}

{r1}{r0, r1}

Safety: The state {r0, r1} should never be reached.
Liveness: all other states should be visited infinitely often.

29

Difference circuit

Given two circuits C1,C2 ∈ SCircuit i 1, we can define their
difference circuit C1 � C2:

...

... C1

... C2

If the answer is always 0, then they are equivalent.
The typical use case is to have a simple, clearly correct C1, and a
complex C2 to verify.

30

Temporal models of distributed
algorithms

Temporal models of distributed algorithms

Nodes in distributed algorithms
are often specified in terms of in-
teracting automata; the temporal
model directly results from their
interaction.

See IB Concurrent and Dis-
tributed Systems

Distributed Algorithms, by Nancy Lynch.

31

Models of cache algorithms

Models of cache algorithms

Cache algorithms are also often
specified in terms of interacting
automata (they are distributed
algorithms too).

See Section 21.5.2.1 German’s
Protocol in the Handbook of
Model Checking.

Computer Architecture: A Quantitative Approach,
by Hennessy & Patterson.

32

Models of security protocols

Models of security protocols

Given a security protocol, define a temporal model where a state
contains:

• the state of each agent
• the set of messages sent
• the set of all the messages that can be deduced from the

messages sent; this includes taking messages apart, and
reassembling them, including via hashing or encrypting using
known keys

and where there is a transition from one state to another when

• an agent sends a message
• an adversary sends a deducible message to an agent

See Chapter 22 Model Checking Security Protocols, in the Handbook of Model

Checking. 33

Remark on examples

As illustrated, interesting programs are big, often too big to work
on by hand. This is why we use model checkers.

We cannot easily work with such examples here. Instead, we will
mostly look at toy examples like the cabbage-goat-wolf puzzle here.

34

Summary

Temporal models make it possible to describe systems that evolve
in time. Model checking allows checking temporal properties of
such models.

Temporal models have to capture the relevant parts of an artefact.
They can sometimes be extracted directly, for example from
circuits, or are hand-crafted to do that.

In the next lecture, we will see how to use temporal logic(s) to
specify the behaviour of temporal models.

35

	Temporal models
	Definitions
	Applications of model checking
	Temporal model from operational semantics
	Temporal model from circuits
	Temporal models of distributed algorithms
	Models of cache algorithms
	Models of security protocols

