
Hoare logic and Model checking
Part II: Model checking

Lecture 8: Temporal logic

Christopher Pulte cp526
University of Cambridge

CST Part II – 2023/24

Recap

In the previous lecture, we saw how temporal models can be used
to model various kinds of systems.

In this lecture, we will look at how temporal logic can be used to
specify the behaviour of temporal models.

1

Why not use first-order logic?

Why not model time explicitly in first-order logic with equality
and <, and have variables represent time points?

For example:

∀t1. p(t1) ⇒ (∃t2. t1 < t2 ∧ q(t2))

3 It works.
3 It has a well-understood theory.
% It is very error-prone.
% Is is very expensive to check.

2

Temporal logics

• LTL (linear temporal logic): this lecture
• CTL (computation tree logic): next lecture
• CTL∗ combining their expressivity: next lecture
• …

When using model checking, one generally picks (a tool or
language based on) either LTL or CTL.

3

LTL: linear temporal logic

LTL formulas describe temporal models by describing properties of
the paths in the model.

LTL has a linear conception of time. It considers infinite (linear)
paths through the temporal model in which each state has exactly
one successor state. LTL does not “know about” the branching
structure induced by the temporal model (corresponding to the
possible alternative transitions out of some state).

4

Syntax of LTL. Fixed wrt handout.

Given a fixed set of atomic propositions AP ,

φ, . . . ∈ PathProp ::=

⊥ | false
> | true
injp p | atomic proposition
¬φ | negation
φ1 ∧ φ2 | conjunction
φ1 ∨ φ2 | disjunction
φ1 → φ2 | implication
X φ | neXt
G φ | Generally
F φ | Future
φ1 U φ2 Until

We almost always omit injp. 5

Informal semantics of LTL

• An LTL formula is a path property.
• A temporal model satisfies an LTL formula, if all paths from

the initial states satisfy the formula.

6

Informal semantics of LTL

• ⊥: no path satisfies this property
• >: every path satisfies this property
• injp p: the current state satisfies atomic proposition p
• ¬φ : the path does not satisfy φ

• φ1 ∧ φ2: the path satisfies φ1 and satisfies φ2

• φ1 ∨ φ2: the path satisfies φ1 or satisfies φ2

• φ1 → φ2: if the path satisfies φ1 then it satisfies φ2

7

Informal semantics of LTL

• X φ: the tail of the current path satisfies φ

• G φ: every suffix of the current path satisfies φ

• F φ: some suffix of the current path satisfies φ

• φ1 U φ2: some suffix of the current path satisfies φ2, and all
the suffixes of the current path of which that path is a suffix
satisfy φ1

8

Notation

Note: the literature sometimes uses alternative notation for the
temporal operators:

• ©φ instead of X φ

• �φ instead of F φ

• �φ instead of G φ

9

Semantics of LTL – Examples

s0 : {a, b, c}

s1 : {b}

s3 : {c, d}

s2 : {c}

Consider the path π = s0, s1, s2, s2, s2, Then:

• π satisfies a
• π does not satisfy b ∧ X c
• π satisfies a → F c
• π satisfies F (G c)
• π does not satisfy G (F a)

10

Semantics of LTL – Examples (2)

s0 : {a, b, c}

s1 : {b}

s3 : {c, d}

s2 : {c}

Consider the path π = s0, s1, s2, s3, s0, s1, s2, s3, Then:

• π does not satisfy G (F (a ∧ b ∧ d))
• π satisfies (G (F (a)) ∧ G (F (b)) ∧ G (F (d)))
• π does not satisfy G ((c ∧ ¬a) → X d)
• π satisfies G (F (c ∧ X c))

11

Temporal models

A temporal model over atomic propositions AP is a left-total
transition system where states are labelled with some of AP , and
where some states are distinguished as initial:

M, . . . ∈ TModel def
=

(S ∈ Set)× states
(S0 ∈ sub S)× initial states
(À T Á ∈ relation S S)× transition
(` ∈ (S → sub AP)) state labelling

such that T is left-total:

∀s ∈ S.∃s ′ ∈ S. s T s ′

.
12

Semantics of LTL

Now we make the intuition for the meaning of LTL formulas
precise.

We define whether M satisfies φ:

M � φ
def
= ∀s ∈ M�S. (M�S0 s) ⇒ (s �s

M φ)

s �s
M φ

def
=

(
∀π ∈ stream M�S.

IsPath M π ∧ π 0 = s ⇒ π �p
M φ

)

13

Semantics of LTL

We define whether a path π of a model M satisfies φ recursively.

Á �p
À Â ∈ (M ∈ TModel) → stream M�S → PathProp → B

We write the arguments that remain constant in the recursion in
this shade of grey blue.

14

Semantics of LTL

π �p
M > def

= >
π �p

M ⊥ def
= ⊥

π �p
M injp p def

= M�` (π 0) p
π �p

M ¬φ def
= ¬(π �p

M φ)

π �p
M φ1 ∧ φ2

def
=
(
π �p

M φ1
)
∧
(
π �p

M φ2
)

π �p
M φ1 ∨ φ2

def
=
(
π �p

M φ1
)
∨
(
π �p

M φ2
)

π �p
M φ1 → φ2

def
=
(
¬(π �p

M φ1)
)
∨
(
π �p

M φ2
)

15

Semantics of LTL

π �p
M X φ

def
= (tailn M�S 1 π) �p

M φ

π �p
M F φ

def
= ∃n ∈ N. (tailn M�S n π) �p

M φ

π �p
M G φ

def
= ∀n ∈ N. (tailn M�S n π) �p

M φ

π �p
M φ1 U φ2

def
=

∃n ∈ N.

(∀k ∈ N. 0 ≤ k < n ⇒ (tailn M�S k π) �p
M φ1

)
∧

(tailn M�S n π) �p
M φ2



16

LTL examples: Goat puzzle

Assume AP includes such atomic propositions as

• lL: “the cabbage is on the left side of the river”, and
• YR : “the boat is on the right side of the river”.

Intended properties:

• The cabbage is never left alone with the goat, the goat never
left alone with the wolf.

• Eventually all items are on the right side of the river.

17

LTL examples: Goat puzzle

• “The cabbage is never left alone with the goat, the goat never
left alone with the wolf.”

CabbageSafe def
=

(
lL ∧YL

)
∨
(
lR ∧YR

)
∨(

lL ∧dR
)
∨
(
lR ∧dL

)
GoatSafe def

= . . .

Safe def
= G (CabbageSafe ∧ GoatSafe)

• “Eventually all items are on the right side of the river.”

Live def
= F

(
lR ∧dR ∧cR ∧YR

)
A model satisfying Safe ∧ Live is a solution to the puzzle.

18

LTL examples: elevator

Returning to the elevator example, assume AP includes such
atomic propositions as:

• Open, Closed: the door is open/closed
• Up, Stay, Down: the elevator is moving

upwards/staying/moving downwards
• Calln: the elevator is called to level n
• Locn: the elevator is currently at level n

Intended properties:

• The door is not open at half-levels.
• The elevator does not lock people in.
• If the elevator is called to a level, then it eventually gets there.
• The path of the elevator is not entirely idiotic.

19

LTL examples: elevator

• “The door is not open at half-levels.”
G ((Loc0.5 ∨ Loc1.5) → Closed)
(“The door is closed when the elevator is between levels.”)

• “The elevator does not lock people in.”
G (F (Open))
(“For every state along the path there is a subsequent state in
which the door is open.” or “The elevator door is open
infinitely often.”)
Or: ¬(F (G (Closed))))

20

LTL examples.

• “If the elevator is called to a level, then it eventually gets
there.”
G (Call2 → F (Loc2))

• Maybe: G (Call2 → (Call2 U (Loc2 ∧ Open)))
“If there is a call to level 2, this call is not lost until the
elevator is at level 2 and has opened the door.”

• “The path of the elevator is not entirely idiotic.”
?

21

Caution: implication and negation. Fixed typo wrt handout.

What is the meaning of ¬ap (for some atomic proposition ap);
does ¬ap hold for a path π where s = π 0 is not labelled with ap?

π �p
M ¬ap = ¬(π �p

M ap) = ¬(M�` (π 0) ap) = >

Use of negation and implication are potentially brittle, because
they can conflate two situations:

• s is not labelled with ap because ap does not hold in s.
• s is not labelled with ap because we do not know whether ap

holds/should hold in s.

E.g. in developing a temporal model from an artefact we may
abstract over some detail, merging states in which ap holds and in
which it does not hold.

22

Implication and negation

One may sometimes wish to be careful about this and use
implication-free (negation-free) LTL: instead making AP include for
each ap also nap for the contrary of ap. Then one can distinguish:

1. ap ∈ `(s)
2. nap ∈ `(s)
3. {ap, nap} ∩ `(s) = ∅

{ , , }

{ , , }

{ , , }

{ , , }

{ }

{ , }

{ }

{ }
23

Counting steps

G (Call1 → (Loc1 ∨ X (Loc1) ∨ . . . ∨ X (X (X (X (X (Loc1)))))))

“If there is a call of the elevator to level 1, the elevator will get to
level 1 in at most 5 steps.”

Counting steps, as in the specification above, is only useful if the
temporal model corresponds well enough to the real artefact.

24

Branching

“The path of the elevator is not entirely idiotic.” One possibly
desirable property: “If it is possible to answer a call to some level
in the next step, then the elevator does that.”

LTL cannot express this: it cannot express properties relating to
the different possible transitions out of a state. In the next lecture
we will see CTL, which can express such properties.

25

Tea & coffee machines

∅

{£}

{ } {�}

∅

{£} {£}

{ } {�}

Mnice Mbad

A good property about Mnice: “Following payment, it is possible
to receive coffee in the next state”. We cannot say this in LTL.

26

Summary

LTL formulae allow specifying temporal models, by describing the
properties of infinite paths in the model. LTL has a linear notion of
time, in which each state in a path has a unique successor state.

27

