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Recap: Unbiased Estimators and Bias

An estimator T is called an unbiased estimator for
a parameter θ if

E [T ] = θ,

irrespective of the value θ. The bias is defined as

E [T ] − θ = E [T − θ ] .

Definition

Source: Edwin Leuven (Point Estimation)

How can we measure the accuracy of an estimator?
; bias and mean-squared error

If there are several unbiased estimators, which one to
choose? ; mean-squared error (or variance)
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An Unbiased Estimator may not always exist

Suppose that we have one sample X ∼ Bin(n,p), where 0 < p < 1 is
unknown but n is known. Prove there is no unbiased estimator for 1/p.

Answer

First a simpler proof which exploits that p might be arbitrarily small

Intuition: By making p smaller and smaller, we force max0≤k≤n T (k),
k ∈ {0,1, . . . ,n} to become bigger and bigger
Formal Argument:

Fix any estimator T(X)
Define M ∶= max0≤k≤n T(k). Then,

E [T(X) ] =
n
∑
k=0

(n
k
)pk(1 − p)n−k ⋅ T(k)

≤ M ⋅
n
∑
k=0

(n
k
)pk(1 − p)n−k = M.

Hence this estimator does not work for p < 1
M , since then

E [T(X) ] ≤ M < 1
p (negative bias!)

The next proof will work even if p ∈ [a,b] for 0 < a < b ≤ 1.

Example 6
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An Unbiased Estimator may not always exist (cntd. - non-examinable)

Suppose that we have one sample X ∼ Bin(n,p), where 0 < p < 1 is
unknown but n is known. Prove there is no unbiased estimator for 1/p.

Answer

Suppose there exists an unbiased estimator with E [T (X) ] = 1/p.

Then

1 = p ⋅ E [T (X) ]

= p ⋅
n

∑
k=0

P [X = k ] ⋅ T (k)

= p ⋅
n

∑
k=0

(
n
k
)pk

⋅ (1 − p)n−k
⋅ T (k)

Last term is a polynomial of degree n + 1 with constant term zero

⇒ p ⋅ E [T (X) ] − 1 is a (non-zero) polynomial of degree ≤ n + 1

⇒ this polynomial has at most n + 1 roots

⇒ E [T (X) ] can be equal to 1/p for at most n + 1 values of p, and
thus cannot be an unbiased.

Example 6 (cntd.)

.2Intro to Probability Recap 4



Outline

Recap

Estimating Population Size (First Version)

Mean Squared Error

Estimating Population Size (Second Version)

Intro to Probability Estimating Population Size (First Version) 5



Estimating Population Size (First Version)

Suppose we have a sample of a few serial numbers (IDs) of some product

We assume IDs are running from 1 to an unknown parameter N (so N = θ)

Each of the IDs is drawn without replacement from the discrete uniform
distribution over {1,2, . . . ,N}

This is also known as Tank Estimation Problem or (Discrete) Taxi Problem

7,3,10,46,14

As before, we denote the samples X1,X2, . . . ,Xn

Since sampling is without replacement:
they are not independent! (but identically distributed)
their number must satisfy n ≤ N

Warning
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First Estimator Based on Sample Mean

Construct an unbiased estimator using the sample mean.
Answer

The sample mean is

X n =
X1 + X2 +⋯ + Xn

n
.

Linearity of expectation applies (even for dependent random var.!):

E [X n ] =
n ⋅ E [X1 ]

n
= E [X1 ]

=
N

∑
i=1

i ⋅
1
N

=
N + 1

2
.

Thus we obtain an unbiased estimator by

T1 ∶= 2 ⋅ X n − 1.

Example 1
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Example: Odd Behaviour of T1

Suppose n = 5

Let the sample be

7,3,10,46,14
The estimator returns:

T1 = 2 ⋅ X n − 1 = 2 ⋅
80
5
− 1 = 31 /

This estimator will often unnecessarily
underestimate the true value N.

Challenging exercise: Find a lower bound on P [T1 < max(X1,X2, . . . ,Xn) ]

Achieving unbiasedness alone is not a good strategy

Improvement: find an estimator which always returns a value
at least max(X1,X2, . . . ,Xn)
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Intuition: Constructing an Estimator based on Maximum

Suppose n = 15

Our samples are:

9,82,39,35,20,51,54,62,81,29,84,59,3,34,55

How much should we add to the maximum?

x
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Rearrange the other 14 points equi-spaced between 0 and 84.

This suggests 84 + 6 = 90 as the estimate!max(X1, . . . ,Xn) +
max(X1,...,Xn)

n−1

x
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

6 6
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Deriving the Estimator Based on Maximum

Construct an unbiased estimator using max(X1, . . . ,Xn)

Answer

Calculate expectation of the maximum (for details see Dekking et al.)

E [max(X1, . . . ,Xn) ] = . . . =
n

n + 1
⋅N +

n
n + 1

=
n

n + 1
⋅ (N + 1).

x
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

6 6 N

Equi-spaced configuration would suggest max(X1, . . . ,Xn) ≈ n−1
n ⋅N

Hence we obtain an unbiased estimator by

T2 ∶=
n + 1

n
⋅max(X1, . . . ,Xn) − 1.

For our samples before, we get t2 = 16
15 ⋅ 84 − 1 = 88.6.

Example 2
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Empirical Analysis of the two Estimators

Source: Modern Introduction to StatisticsSource: Modern Introduction to Statistics

T1 T2

Figure: Histogram of 2000 values for T1 and T2, when N = 1000 and n = 10.

Can we find a quantity that captures the superiority of T2 over T1?
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Mean Squared Error

Let T be an estimator for a parameter θ. The mean squared error of T is

MSE [T ] = E [ (T − θ)2
] .

Mean Squared Error Definition

According to this, estimator T1 better than T2 if MSE [T1 ] < MSE [T2 ].

The mean squared error can be decomposed into:

MSE [T ] = (E [T ] − θ)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= Bias2

+ V [T ]
´¹¹¹¹¹¸¹¹¹¹¹¶

= Variance

Bias-Variance Decomposition

If T1 and T2 are both unbiased, T1 is better than T2 iff V [T1 ] < V [T2 ].
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Bias-Variance Decomposition: Derivation

We need to prove: MSE [T ] = (E [T ] − θ)2
+ V [T ].

Answer

MSE [T ] = E [ (T − θ)2
]

= E [T 2
− 2Tθ + θ2

]

= E [T ]
2
− 2 ⋅ E [T ] ⋅ θ + θ2

+ E [T 2
] − E [T ]

2

= (E [T ] − θ)2
+ V [T ] .

Example 3
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Bias-Variance Decomposition: Illustration

Source: Edwin Leuven (Point Estimation)
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Analysis of the MSE for T1

It holds that MSE [T1 ] = Θ (N2

n ), where T1 = 2 ⋅ X n − 1.

Answer

Since T1 is unbiased, MSE [T1 ] = (E [T1 ] − θ)2 + V [T1 ] = V [T1 ], and

V [T1 ] = V [2 ⋅ X n − 1 ] = 4 ⋅ V [X n ] = 4
n2
⋅ V [X1 +⋯ + Xn ]

Note: The Xi ’s are not independent!
Use generalisation of V [X1 + X2 ] = V [X1 ] + V [X2 ] + 2 ⋅ Cov [X1,X2 ] (Exercise
Sheet) to n r.v.’s, and then that the Xi ’s are identically distributed, and also the (Xi ,Xj),
i ≠ j :

V [X1 +⋯ + Xn ] =
n

∑
i=1

V [Xi ] + 2
n

∑
i=1

n

∑
j=i+1

Cov [Xi ,Xj ]

= n ⋅ V [X1 ] + 2(n
2
) ⋅ Cov [X1,X2 ] .

By definition of the discrete uniform distribution, V [X1 ] = (N+1)(N−1)
12

Intuitively, X1 and X2 are negatively correlated, which would be sufficient to complete
the proof. For a more rigorous and precise derivation (see Dekking et al.):

Cov [X1,X2 ] = −
1

12
(N + 1).

Rearranging and simplifying gives

V [T1 ] =
(N + 1)(N − n)

3n
.

Example 4
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Analysis of the MSE for T2 (non-examinable)

It holds that MSE [T2 ] = Θ (N2

n2 ), where T2 =
n+1

n ⋅max(X1, . . . ,Xn) − 1.

Answer

T2 is unbiased⇒ need V [T2 ] which reduces to V [max(X1, . . . ,Xn) ]

One can prove:

V [max(X1, . . . ,Xn) ] = ⋯ =
n(N + 1)(N − n)
(n + 2)(n + 1)2 = Θ(

N2

n2 )

For details see Dekking et al.

x
70 75 80 85 90 95 100

µµ − σ N = µ + σ

Equi-spaced (idealised) configuration suggests a standard deviation of σ ≈ N
n

Maximum could have equally likely taken any value between 79 and 90

MSE [T2 ] is much lower than MSE [T1 ] = Θ (N2

n ), i.e., MSE[T1 ]
MSE[T2 ] =

n+2
3

⇒ confirms simulations suggesting that T2 is better than T1!

can be shown T2 is the best unbiased estimator, i.e., it minimises MSE.

Example 5
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A New Estimation Problem

Population/ID space S = {1,2, . . . ,N}

We take uniform samples from S without replacement

Goal: Find estimator for N

Previous Model

Population/ID space of size ∣S∣ = N

We take uniform samples from S with replacement

Goal: Find estimator for N

New Model

Similar idea applies to situations where elements are not la-
belled before we see them first time (Mark & Recapture Method)

Suppose n = 6, N = 11, S = {3,4,7,8,10,15.83356,20,21,56,81,10000}
Let the sample be

10,81,20,3,81,10000

As we do not know S, our only clue are elements that were sampled twice.

Let us call this a collision
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Birthday Problem

Birthday Problem: Given a set of k people

What is the probability of having two with the same birthday (i.e.,
having at least one collision)?

What is the expected number of people one needs to ask until the first
collision occurs?

23

Note that
√

365 ≈ 19.10...

k

P [ collision ]

≈ 1 − exp (−
k(k−1)
2⋅365 )

36520 40 60 80 1001

1

0.5
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Estimation via Collision: The Algorithm

Recall: As we do not know S, our only information are collisions.

FIND-FIRST-COLLISION(S)
1: C = ∅

2: For i = 1,2, . . .
3: Take next i.i.d. sample Xi from S
4: If Xi /∈ C then C ← C ∪ {Xi}

5: else return T (i)
6: End For T (i) will be the value of the estimator if algo

returns after i rounds. (We want T unbiased)

Running Time: The expected time until the algorithm stops is:
= the expected number of samples until a collision...

Same as the birthday problem, but now with ∣S∣ = N days... ,

√
πN
2

−
1
3
+O (

1
√

N
) .

Expected Running Time (Knuth, Ramanujan)

Exercise: Prove a bound of ≤ 2 ⋅
√

N
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Estimation via Collision: Getting the Estimator Unbiased

One can define T (i), i ∈ N, such that E [T ] = ∣S∣ for any finite,
non-empty set S.

Answer

We outline a construction by induction.
Case ∣S∣ = 1: Algo always stops after i = 2 rounds and returns T (2).
We want

1 = E [T ] = T (2) ⇒ T (2) = 1.

Case ∣S∣ = 2: Algo stops after 2 or 3 rounds (w.p. 1/2 each).
We want

2 = E [T ] =
1
2
⋅ T (2) +

1
2
⋅ T (3) ⇒ T (3) = 3.

Case ∣S∣ = 3: gives 3 = E [T ] = 1
3 ⋅ T (2) + 4

9 ⋅ T (3) + 2
9 ⋅ T (4)

⇒ T (4) = 6, similarly, T (5) = 10 etc.
can continue to define T (i) inductively in this way (note T is unique)
(a proof that T (i) = (

i
2) is harder)

Example 6
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