
Topics in Logic and Complexity

Handout 3

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2324/L15



Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are not
de�nable in �rst-order logic.

• There is no sentence ϕ of �rst-order logic such that A |= ϕ if, and
only if, |A| is even.

• There is no sentence ϕ that de�nes exactly the connected graphs.

How do we prove these facts?

Our next aim is to develop the tools that enable such proofs.
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Quanti�er Rank

The quanti�er rank of a formula ϕ, written qr(ϕ) is de�ned inductively as
follows:

1. if ϕ is atomic then qr(ϕ) = 0,

2. if ϕ = ¬ψ then qr(ϕ) = qr(ψ),

3. if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 then
qr(ϕ) = max(qr(ψ1), qr(ψ2)).

4. if ϕ = ∃xψ or ϕ = ∀xψ then qr(ϕ) = qr(ψ) + 1

More informally, qr(ϕ) is the maximum depth of nesting of quanti�ers
inside ϕ.
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Formulas of Bounded Quanti�er Rank

Note: For the rest of this lecture, we assume that our signature consists
only of relation and constant symbols. That is, there are no function
symbols of non-zero arity.

With this proviso, it is easily proved that in a �nite vocabulary, for each
q, there are (up to logical equivalence) only �nitely many sentences ϕ
with qr(ϕ) ≤ q.

To be precise, we prove by induction on q that for all m, there are only
�nitely many formulas of quanti�er rank q with at most m free variables.
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Formulas of Bounded Quanti�er Rank

If qr(ϕ) = 0 then ϕ is a Boolean combination of atomic formulas. If it is
has m variables, it is equivalent to a formula using the variables
x1, . . . , xm. There are �nitely many formulas, up to logical equivalence.

Suppose qr(ϕ) = q + 1 and the free variables of ϕ are among x1, . . . , xm.
Then ϕ is a Boolean combination of formulas of the form

∃xm+1ψ

where ψ is a formula with qr(ψ) = q and free variables x1, . . . , xm, xm+1.
By induction hypothesis, there are only �nitely many such formulas, and
therefore �nitely many Boolean combinations.
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Equivalence Relation

For two structures A and B, we say A ≡q B if for any sentence ϕ with
qr(ϕ) ≤ q,

A |= ϕ if, and only if, B |= ϕ.

More generally, if a and b are m-tuples of elements from A and B
respectively, then we write (A, a) ≡q (B, b) if for any formula ϕ with m
free variables qr(ϕ) ≤ q,

A |= ϕ[a] if, and only if, B |= ϕ[b].

Anuj Dawar Logic and Complexity



Partial Isomorphisms

A map f is a partial isomorphism between structures A and B, if
• the domain of f = {a1, . . . , al} ⊆ A,

• the range of f = {b1, . . . , bl} ⊆ B,

• f is an isomorphism between the substructures generated by its
domain and its range.

Note that, in the absence of function symbols, the substructure
generated by {a1, . . . , al} ⊆ A is the structure induced by
{a1, . . . , al} ∪ {cA | c a constant}.
Note that if f is a partial isomorphism taking a tuple a to a tuple b, then
for any quanti�er-free formula θ

A |= θ[a] if, and only if, B |= θ[b].
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Ehrenfeucht-Fraïssé Games

The q-round Ehrenfeucht game on structures A and B proceeds as
follows:

• There are two players called Spoiler and Duplicator.

• At the ith round, Spoiler chooses one of the structures (say B) and
one of the elements of that structure (say bi ).

• Duplicator must respond with an element of the other structure (say
ai ).

• If, after q rounds, the map ai 7→ bi is a partial isomorphism, then
Duplicator has won the game, otherwise Spoiler has won.
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Equivalence and Games

Write A ∼q B to denote the fact that Duplicator has a winning strategy
in the q-round Ehrenfeucht game on A and B.
The relation ∼q is, in fact, an equivalence relation.

Theorem (Fraïssé 1954; Ehrenfeucht 1961)
A ∼q B if, and only if, A ≡q B

While one direction A ∼q B ⇒ A ≡q B is true for an arbitrary
vocabulary, the other direction assumes that the vocabulary is �nite and
has no function symbols.
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Proof

To prove A ∼q B ⇒ A ≡q B, it su�ces to show that if there is a
sentence ϕ with qr(ϕ) ≤ q such that

A |= ϕ and B ̸|= ϕ

then Spoiler has a winning strategy in the q-round Ehrenfeucht game on
A and B.

Assume that ϕ is in negation normal form, i.e. all negations are in front of

atomic formulas.
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Proof

We prove by induction on q the stronger statement that if ϕ is a formula
with qr(ϕ) ≤ q and a = (a1, . . . , am) and b = (b1, . . . , bm) are tuples of
elements from A and B respectively such that

A |= ϕ[a] and B ̸|= ϕ[b]

then Spoiler has a winning strategy in the q-round Ehrenfeucht game
which starts from a position in which a1, . . . , am and b1, . . . , bm have
already been selected.
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Proof

When q = 0, ϕ is a quanti�er-free formula. Thus, if

A |= ϕ[a] and B ̸|= ϕ[b]

there is an atomic formula θ that distinguishes the two tuples and
therefore the map taking a to b is not a partial isomorphism.

When q = p + 1, there is a subformula θ of ϕ of the form ∃xψ or ∀xψ
such that qr(ψ) ≤ p and

A |= θ[a] and B ̸|= θ[b]

If θ = ∃xψ, Spoiler chooses a witness for x in A.
If θ = ∀xψ, B |= ∃x¬ψ and Spoiler chooses a witness for x in B.
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Using Games

To show that a class of structures S is not de�nable in FO, we �nd, for
every q, a pair of structures Aq and Bq such that

• Aq ∈ S , Bq ∈ S ; and

• Duplicator wins a q-round game on Aq and Bq.

This shows that S is not closed under the relation ≡q for any q.

Fact:
S is de�nable by a �rst order sentence if, and only if, S is closed
under the relation ≡q for some q.

The direction from right to left requires a �nite, function-free vocabulary.
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Evenness

Let A be a structure in the empty vocabulary with q elements and B be a
structure with q + 1 elements.
Then, it is easy to see that A ∼q B.

It follows that there is no �rst-order sentence that de�nes the structures
with an even number of elements.

If S ⊆ N is a set such that

{A | |A| ∈ S}

is de�nable by a �rst-order sentence then S is �nite or co-�nite.
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Linear Orders

Let Ln denote the structure in one binary relation ≤ which is a linear
order of n elements. Then L6 ̸≡3 L7 but L7 ≡3 L8.

In general, for m, n ≥ 2p − 1,

Lm ≡p Ln

Duplicator's strategy is to maintain the following condition after r
rounds of the game:
for 1 ≤ i < j ≤ r ,

• either length(ai , aj) = length(bi , bj)

• or length(ai , aj), length(bi , bj) ≥ 2p−r − 1

Evenness is not �rst order de�nable, even on linear orders.
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Connectivity

Consider the signature (E , <).

Consider structures G = (V ,E , <) in which E is a graph relation and <
is a linear order.

There is no �rst order sentence γ in this signature such that

G |= γ if, and only if, (V ,E ) is connected.
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Proof

Suppose there was such a formula γ.

Let γ′ be the formula obtained by replacing every occurrence of E (x , y)
in γ by the following formula

y = x + 2∨
(x = max∧y = min+1)∨
(y = min∧x = max−1).

Then, ¬γ′ de�nes evenness on linear orders!
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Proof

We obtain two disjoint cycles on linear orders of even length, and a single
cycle on linear orders of odd length.
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Reduction

The above is, in fact, a �rst-order de�nable reduction from the problem of
evenness of linear orders to the problem of connectivity of ordered graphs.

It follows from the above that there is no �rst order formula that can
express the transitive closure query on graphs.

Any such formula would also work on ordered graphs.
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Gaifman Graphs and Neighbourhoods

On a structure A, de�ne the binary relation:

E (a1, a2) if, and only if, there is some relation R and some tuple
a containing both a1 and a2 with R(a).

The graph GA = (A,E ) is called the Gaifman graph of A.

dist(a, b) � the distance between a and b in the graph (A,E ).

NbdAr (a) � the substructure of A given by the set:

{b | dist(a, b) ≤ r}
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Hanf Locality Theorem

We say A and B are Hanf equivalent with radius r (A ≃r B) if, there is a
bijection f : A → B such that:

for all a ∈ A : NbdAr (a)
∼= NbdBr (f (a))

by an isomorphism that takes a to f (a).

Theorem (Hanf)
For every vocabulary σ and every p there is r ≤ 3p such that for any
σ-structures A and B: if A ≃r B then A ≡p B.

In other words, if r ≥ 3p, the equivalence relation ≃r is a re�nement of
≡p.
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Hanf Locality

Duplicator's strategy is to maintain the following condition:
After k moves, if a1, . . . , ak and b1, . . . , bk have been selected, then⋃

i

NbdA
3p−k (ai ) ∼=

⋃
i

NbdB
3p−k (bi )

by an isomorphism that takes ai to bi .
If Spoiler plays on a within distance 2 · 3p−k−1 of a previously chosen
point, play according to the isomorphism, otherwise, �nd b such that

Nbd3p−k−1(a) ∼= Nbd3p−k−1(b)

and b is not within distance 2 · 3p−k−1 of a previously chosen point.
Such a b is guaranteed by ≃r .
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Uses of Hanf locality

The Hanf locality theorem immediately yields, as special cases, the proofs
of unde�nability of:

• connectivity;

• 2-colourability

• acyclicity

• planarity

A simple illustration can su�ce.
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Connectivity

To illustrate the unde�nability of connectivity and 2-colourability,
consider on the one hand the graph consisting of a single cycle of length
4r + 6 and, on the other hand, a graph consisting of two disjoint cycles
of length 2r + 3.
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Acyclicity

A �gure illustrating that acyclicity is not �rst-order de�nable.
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Planarity

A �gure illustrating that planarity is not �rst-order de�nable.
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Monadic Second Order Logic

MSO consists of those second order formulas in which all relational
variables are unary.

That is, we allow quanti�cation over sets of elements, but not
other relations.

Any MSO formula can be put in prenex normal form with second-order
quanti�ers preceding �rst order ones.

Mon.Σ1

1
� MSO formulas with only existential second-order quanti�ers

in prenex normal form.

Mon.Π1

1
� MSO formulas with only universal second-order quanti�ers in

prenex normal form.
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Unde�nability in MSO

The method of games and locality can also be used to show
inexpressibility results in MSO.

In particular,
There is a Mon.Σ1

1
query that is not de�nable in Mon.Π1

1

(Fagin 1974)

Note: A similar result without the monadic restriction would imply that
NP ̸= co-NP and therefore that P ̸= NP.
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Connectivity

Recall that connectivity of graphs can be de�ned by a Mon.Π1

1
sentence.

∀S(∃x Sx ∧ (∀x∀y (Sx ∧ Exy) → Sy)) → ∀x Sx

and by a Σ1

1
sentence (simply because it is in NP).

We now aim to show that connectivity is not de�nable by a Mon.Σ1

1

sentence.
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MSO Game

The m-round monadic Ehrenfeucht game on structures A and B proceeds
as follows:

• At the ith round, Spoiler chooses one of the structures (say B) and
plays either a point move or a set move.

In a point move, it chooses one of the elements of the chosen
structure (say bi ) � Duplicator must respond with an element of
the other structure (say ai ).
In a set move, it chooses a subset of the universe of the chosen
structure (say Si ) � Duplicator must respond with a subset of
the other structure (say Ri ).
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MSO Game

• If, after m rounds, the map

ai 7→ bi

is a partial isomorphism between

(A,R1, . . . ,Rq) and (B,S1, . . . ,Sq)

then Duplicator has won the game, otherwise Spoiler has won.
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MSO Game

If we de�ne the quanti�er rank of an MSO formula by adding the
following inductive rule to those for a formula of FO:

if ϕ = ∃Sψ or ϕ = ∀Sψ then qr(ϕ) = qr(ψ) + 1

then, we have

Duplicator has a winning strategy in the m-round monadic
Ehrenfeucht game on structures A and B if, and only if, for
every sentence ϕ of MSO with qr(ϕ) ≤ m

A |= ϕ if, and only if, B |= ϕ
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Existential Game

The m, p-move existential game on (A,B):
• First Spoiler makes m set moves on A, and Duplicator replies on B.
• This is followed by an Ehrenfeucht game with p point moves.

If Duplicator has a winning strategy, then for every Mon.Σ1

1
sentence:

ϕ ≡ ∃R1 . . . ∃Rm ψ

with qr(ψ) = p,
if A |= ϕ then B |= ϕ
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Variation

To show that a Boolean query Q is not Mon.Σ1

1
de�nable, �nd for each

m and p

• A ∈ Q; and

• B ̸∈ Q; such that

• Duplicator wins the m, p move game on (A,B).
Or,

• Duplicator chooses A.
• Spoiler colours A (with 2m colours).

• Duplicator chooses B and colours it.

• They play a p-round Ehrenfeucht game.
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Application

Write Cn for the graph that is a simple cycle of length n.

For n su�ciently large, and any colouring of Cn, we can �nd an n′ < n
and a colouring of

Cn′ ⊕ Cn−n′ the disjoint union of two cycles�one of length n′,
the other of length n − n′

So that the graphs Cn and Cn′ ⊕ Cn−n′ are ≃r equivalent.

Taking n > (4r + 2)(2m)2r+1 su�ces.
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