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Roadmap for Today
Architecture (Re-)Design
1. Early Evolution; Decomposition as a tool
2. Efficient Architectures; Example: MobileNet

Architecture Compression
3. Parameter and Channel Pruning
4. Parameter Quantization
5. Knowledge Distillation 
6. Compression pipelines
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Source: OpenAI

Source: Bianco
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Source: Han
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Source: Gupta
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Matrix Decomposition
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Matrix Decomposition
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Decomposition Benefits
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Google SpeakerID 
Model (FC Layers)

ARM Cortex M3 ARM Cortex M0

32 KB 16 KB

2-4% degradation in accuracy



CNN Kernel Decomposition
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Source: V. Sze

AlexNet (2012)

Inception v3
(2014)

VGG
(2014)

Replacing a 
large filter with 

a series of small 
filters
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Efficient Architecture Evolution
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Source: Lee



MobileNet Example
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Source: Google



MobileNet Block
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Source: Howard

Original Independent  
Kernels

One for each kernel



MobileNet Benefits
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Source: Howard

MACs ReductionParameter Reduction
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Pruning Justification

17http://mlsys.cst.cam.ac.uk/teach Principles of Machine Learning Systems – v1.5

Source: Han



Related Natural Phenomena
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Source: Han



Pruning Algorithm
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Source: Koul

• Range of pruning criteria
• Example: Prune when 

absolute weight is < a 
threshold



Alternative Pruning Criteria

• Magnitude
• Energy
• Estimation
• Measurement

• Random
• etc.
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Source: V. Sze



Pruning Schedule
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Source: Han



Pruning Performance
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Source: Wang
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Guess who
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Guess who
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Numerical Representation
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Low Precision Training
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Source: Gupta



Quantization Implementation
• Linear vs. Non-linear
• Linear – representable space is divided equally “X”
• Non-linear – representable space is divided un-equally “O”

• Round to nearest vs. Stochastic rounding
• Round to nearest – each number is                                   

represented by the 
closest representable number
• Stochastic rounding – each number 

is represented by the closest higher 
or lower value with equal probabilities
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Training Quantized Models
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Weight 
Initialization

Full Precision 
Weights

Quantized 
Weights Prediction

BACKWARD 
PASS

FORWARD 
PASS



Binary: Extreme Quantization
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Source: Geiger

Space 
Reduction

32x

Compute
Reduction

No FP Ops!
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Knowledge Distillation 

Distillation of a large model into a small one is performed in 
a teacher-student setup whereby the student network is 

trained to replicate the teacher’s raw output (logits).
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Knowledge Distillation 
• Knowledge distillation does not 

require 
actual data for the student’s
training since the goal is for
it to match the teacher’s 
output not the implied labels.
• Thus, students can be trained 

on random inputs just as well
as on the original data! The 
teacher provides the targets in 
real time.
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Knowledge Distillation 
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Source: Tang

Achieve comparable results with ELMo, while using roughly 100 times fewer 
parameters and 15 times less inference time.
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Basic Compression Pipeline
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Source: Han



Resource-aware Pipeline
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Source: Yang



Summary of the Day
Architecture (Re-)Design
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2. Efficient Architectures; Example: MobileNet

Architecture Compression
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4. Parameter Quantization
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6. Compression pipelines
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