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1 Basic probability: warm-up question

1. This question revisits the Wumpus World, but now our valiant hero, having learned the im-
portance of probability by attending Machine Learning and Bayesian Inference, will use prob-
abilistic reasoning instead of the situation calculus.
Through careful consideration of the available knowledge on Wumpus caves, the explorer has
established that each square contains a pit with probability 0.3, and pits are independent of
one-another. Let Piti,j be a Boolean random variable (RV) having values in {⊤,⊥} and
denoting the presence of a pit at row i, column j. So for all (i, j)

Pr (Piti,j = ⊤) = 0.3

Pr (Piti,j = ⊥) = 0.7.

In addition, after some careful exploration of the current cave, the explorer has discovered the
following:
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Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

B denotes squares where a breeze is perceived. Let Breezei,j be a Boolean RV denoting the
presence of a breeze at (i, j)

Breeze1,2 = Breeze2,3 = ⊤
Breeze1,1 = Breeze1,3 = ⊥.

He is considering whether to explore the square at (2, 4). He will do so if the probability that
it contains a pit is less than 0.4. Should he?
Hint: The RVs involved are Breeze1,2,Breeze2,3,Breeze1,1,Breeze1,3 and Piti,j for
all the (i, j). You need to calculate

Pr (Pit2,4|all the evidence you have so far) .
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2 Maximum likelihood and MAP

1. Several exercises in the problem sheet for Artificial Intelligence I are relevant to the initial
lectures of this course. It is worth attempting them now.

2. Lecture notes slide 49: Complete the derivation of theMAP learning algorithm for regression

wopt = argmin
w

[
1

2σ2

m∑
i=1

(
(yi − hw(xi))

2
)
+

λ

2
||w||2

]
.

3. Lecture notes slide 56: Derive the maximum likelihood and MAP algorithms for classifica-
tion.

3 Linear regression and classification

1. Show that ifA ∈ Rn×n is symmetric then

∂xTAx

∂x
= 2Ax.

What is the corresponding result whenA is not symmetric?

2. Lecture notes slide 81: Show that the optimum weight vector for ridge regression is

wopt = (ΦTΦ+ λI)−1ΦTy.

3. Show that ifA ∈ Rn×n then

AT


b1 0 · · · 0
0 b2 · · · 0
...

... . . . ...
0 0 · · · bn

A = C

where

cij =

n∑
k=1

bkakiakj .

4. Lecture notes slide 88: Show that the Hessian matrix for iterative re-weighted least squares
is

H(w) = ΦTZΦ.

Hint: you’ll need the previous result.

2



4 Support vector machines

1. Slide 105 provides an alternative formulation of the maximum margin classifier based on
maximizing γ directly with suitable constraints.
Apply the KKT conditions to this version of the problem. What do they tell you about the
solution, and how does it differ from the version developed in the lectures?

2. Slide 116 states the dual optimization problem for the maximum margin classifier. Provide a
full derivation.

3. Slide 119 states the optimization problem that needs to be solved to train a support vector
machine

argmin
w,w0,ξ

1

2
||w||2 + C

∑
i

ξi such that yifw,w0(xi) ≥ 1− ξi and ξi ≥ 0 for i = 1, . . . ,m.

Apply the KKT conditions to this version of the problem. What do they tell you about the
solution?

5 Machine learning methods

1. Slide 146 uses the following estimate for the variance of a random variable:

σ2 ≃ σ̂2 =
1

n− 1

[
n∑

i=1

(Xi − X̂n)
2

]
.

Show that this estimate is unbiased; that is,

E
[
σ̂2
]
= σ2.

2. Show that if a random variable has zero mean then dividing it by its standard deviation σ
results in a new random variable having zero mean and variance 1. Show that in general
multiplying a random variable having mean µ and variance σ2 by

√
c alters its mean to

√
cµ

and its variance to cσ2.

3. Verify the expression in point 4 on slide 149.

6 Making it all work

Probably the best way to get a feel for this material is to write some code that implements it. In
particular, can you reproduce something like the hyperparameter search graph?
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In order to do this I don’t suggest you attempt to implement SVMs from scratch—having said that, if
you can find a suitable, general constrained optimization library it’s not too hard. A quicker approach
initially is to find a good SVM library in a system such as Matlab or R. You will need to generate
the spiral data set and implement a search using cross-validation to assess possible hyperparameter
values.

7 The Bayesian approach to neural networks

1. Slide 176. Show that
∇∇1

2
||w||2 = I.

2. Slide 179. Show that
Z = (2π)W/2|A|−1/2 exp(−S(wMAP)).

3. For the next question we’re going to need something known variously as thematrix inversion
lemma, the Woodbury formula and the Sherman-Morrison formula, depending on the precise
form used. In order to derive this we’ll first need to know how to derive the formulae stated
on slide 205 for inverting a block matrix.

(a) We want to invert the block matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(1)

to get

Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
. (2)
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Show that

Λ11 = (Σ11 −Σ12Σ
−1
22 Σ21)

−1

Λ12 = −Σ−1
11 Σ12Λ22

Λ21 = −Σ−1
22 Σ21Λ11

Λ22 = (Σ22 −Σ21Σ
−1
11 Σ12)

−1

(Hint: write ΣΣ−1 = I and solve the resulting equations. Note that these are different
to the ones on slide 205, but you can re-arrange one version into the other.)

(b) Now do the same thing again, this time solving Σ−1Σ = I. Show that

Λ12 = −Λ11Σ12Σ
−1
22

Λ21 = −Λ22Σ21Σ
−1
11 .

(c) The two expressions for Λ21 must be equal. Equate them to show that

(Σ11 −Σ12Σ
−1
22 Σ21)

−1 = Σ−1
21 Σ22(Σ22 −Σ21Σ

−1
11 Σ12)

−1Σ21Σ
−1
11 .

You may assume that Σ21 has an inverse1.
Now write Σ−1

21 Σ22 as

Σ−1
21 Σ22 = Σ−1

21 (Σ22 −Σ21Σ
−1
11 Σ12) +Σ−1

11 Σ12

and show that

(Σ11 −Σ12Σ
−1
22 Σ21)

−1 = Σ−1
11 +Σ−1

11 Σ12(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 .

This is the full version of the formula. Note that it is a method for updating an existing
inverse: provided we know the inverse ofΣ11, it tells us how to update that inverse when
−Σ12Σ

−1
22 Σ21 is added to Σ11. We have to be able to calculate a different inverse, but

crucially the new inverse might be much simpler to calculate. We shall see the extreme
version of this in the last part of the question.

(d) Use the special case where y and z are vectors and

Σ =

[
X −y
zT 1

]
to show that

(X+ yzT )−1 = X−1 − X−1yzTX−1

1 + zTX−1y
.

This is what we’ll actually need in the next question.

4. Use the standard Gaussian integral to derive the final equation for Bayesian regression

p(Y |y;x,X) =
1√
2πσ2

Y

exp

(
−(Y − hwMAP(x))

2

2σ2
Y

)
1The formula we are deriving is correct even for non-square Σ21. However a derivation that shows this is somewhat

more involved.
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where
σ2
Y =

1

β
+ gTA−1g

given on slide 181. You might want to break this into steps:

(a) Write down the integral that needs to be evaluated. How does this compare to the stan-
dard integral result presented in the lectures? Can you make an immediate simplifica-
tion? (Hint: the integral is over the whole of the space RW where W is the number of
weights. What happens to the value of an integral over all of R in 1 dimension if you
just shift the integrand a bit to the left? If you can’t see a simplification at this point you
should still be able to complete the question, but it might be more complex.)

(b) Use the integral identity from the lectures to evaluate the integral.
(c) Does the expression you now have for p(Y |y;x,X) look familiar? You should find that

it looks like a Gaussian density. Extract expressions for the mean and variance.
(d) Use the matrix inversion lemma derived above to simplify the expression for the variance

to give the final result presented in the lectures.

5. This question asks you to produce a version of the graph on slide 183, using the Metropolis
algorithm. Any programming language is fine, although Matlab is probably the most straight-
forward.
The data is simple artificial data for a one-input regression problem. Use the target function

f(x) =

(
x3 − 1

2
x2 − 7

2
x+ 2

)
× 0.35

and generate 30 examples in each of two clusters, one uniform in [−2.− 1] and one uniform
in [0, 1]. Then label these examples

yi = f(xi) + n

where n is Gaussian noise of variance 0.1. You should have something like this:
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-1

0
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2

3

Letw be the weight vector andW the total number of weights inw. You should use the prior
and likelihood from the lectures, so

p(w) =

(
2π

α

)−W/2

exp
(
−α

2
||w||2

)
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and

p(y|w;X) =

(
2π

β

)−m/2

exp

(
−β

2

m∑
i=1

(yi − hw(xi))
2

)
wherem is the number of examples and hw(x) is the function computed by a suitable neural
networkwithweightsw. Note that we are assuming that hyperparametersα and β are known;
the values used to produce the lecture material were α = 1 and β = 10.
Complete the following steps:

(a) Write the code required to compute the prior and likelihood functions.
(b) Implement a multilayer perceptron with a single hidden layer, a basic feedforward struc-

ture as illustrated in the AI I lectures, and a single output node. The network should use
sigmoid activation functions for the hidden units and a linear activation function for its
output. (The lecture material was produced using 5 hidden units.)

(c) Starting with a weight vector chosen at random, use the Metropolis algorithm to sample
the posterior distribution p(w|y;X). You should generate a sequence w1,w2, . . . ,wN

of N weight vectors. The lecture material used N = 500, 000. However, note that you
will probably find some degree of experimentation is required here, and it may be a good
idea to start with a much smaller N while you explore parameter settings.
For example, you may find that an initial starting value for w1 is inappropriate, and
you will find that the algorithm behaves differently for different step sizes taken when
updating wi to wi+1—try varying it and seeing how the proportion of steps accepted is
affected. (The lecture material was produced using a step variance of 0.25.)

(d) Plot the function hwi(x) computed by the neural network for a few of the weight vectors
obtained. You may see a surprising amount of variation in areas where there was no
training data. (To see this it helps to take vectors from different areas in the sequence.)
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(e) It takes a while for the Markov chain to settle in. Discard an initial chunk of the vectors
generated. Using the remainingM , calculate themean and variance of the corresponding
functions using

mean(x) = 1

M

∑
i

hwi(x)

and a similar expression to estimate the variance. Plot the mean function along with
error bars at ±2σY .
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Typical behaviour of the Bayesian solution

8 Gaussian processes

1. Slide 201: Show that when Gaussian noise is added as described

p(y) = N (0,K+ σ2I).

2. Slide 202, note 2: what difference is made by the inclusion or otherwise of σ2 in k?

3. Slide 206: provide the derivation for the final result

p(y′|y) = N (kTL−1y, k − kTL−1k).

9 Unsupervised learning and the EM algorithm

We’re going to need to enter a world of matrix calculus. We’ve already seen derivatives of scalars
by vectors, but now we need derivatives of scalars by matrices, and matrices by scalars. These have
the obvious interpretation: if x is a scalar and X is an n bym matrix then

∂x

∂X
=


∂x

∂X1,1

∂x
∂X1,2

· · · ∂x
∂X1,m

∂x
∂X2,1

∂x
∂X2,2

· · · ∂x
∂X2,m

...
... · · ·

...
∂x

∂Xn,1

∂x
∂Xn,2

· · · ∂x
∂Xn,m


so (

∂x

∂X

)
i,j

=
∂x

∂Xi,j

and similarly (
∂X

∂x

)
i,j

=
∂Xi,j

∂x
.

You can easily verify that the usual rules apply. For example

∂XY

∂x
= X

∂Y

∂x
+

∂X

∂x
Y. (3)
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We’re specifically going to need derivatives involving inverses. To get started, note that using (3) and
the fact thatXX−1 = X−1X = I we have

∂XX−1

∂x
= X

∂X−1

∂x
+

∂X

∂x
X−1 = 0

which can be re-arranged to get

∂X−1

∂x
= −X−1∂X

∂x
X−1.

1. Let J(k, l) be an n by n matrix where

J(k, l)i,j =

{
1 if i = k and j = l

0 otherwise
.

(In other words, it has all zero elements except at row k, column l, which is 1.) LetK be an n
by n matrix. Show that

(KJ(k, l)K)i,j = Ki,kKl,j .

2. Show that (
∂X−1

∂Xk,l

)
i,j

= −X−1
i,kX

−1
l,j .

3. Let y and z be n by 1 vectors. Show that

∂yTX−1z

∂X
= −X−TyzTX−T .

4. Show that
∂ log |X|

∂X
= X−T .

(Hint: you might want to remind yourself of the full definition of |X|.)

5. Complete the derivation of the EM-based clustering algorithm based on a mixture of Gaus-
sians.

6. Implement the EM algorithm for clustering based on a mixture of Gaussians.

10 Bayesian networks

1. Prove that the two definitions for conditional independence given in the lectures are equiva-
lent.

2. Continuing with the running example of the roof-climber alarm…
The porter in lodge 1 has left and been replaced by a somewhat more relaxed sort of chap, who
doesn’t really care about roof-climbers and therefore acts according to the probabilities

Pr (l1|a) = 0.3 Pr (¬l1|a) = 0.7
Pr (l1|¬a) = 0.001 Pr (¬l1|¬a) = 0.999

.
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Your intrepid roof-climbing buddy is on the roof. What is the probability that lodge 1 will
report him? Use the variable elimination algorithm to obtain the relevant probability. Do you
learn anything interesting about the variable L2 in the process?

3. In designing a Bayesian network you wish to include a node representing the value reported
by a sensor. The quantity being sensed is real-valued, and if the sensor is working correctly
it provides a value close to the correct value, but with some noise present. The correct value
is provided by its first parent. A second parent is a Boolean random variable that indicates
whether the sensor is faulty. When faulty, the sensor flips between providing the correct
value, although with increased noise, and a known, fixed incorrect value, again with some
added noise. Suggest a conditional distribution that could be used for this node.

11 Old exam questions

Bayes decision rule:

• 2020, paper 8, question 10.

Support vector machines:

• 2022, paper 9, question 8.

• 2018, paper 7, question 10.

Maximum likelihood, MAP, linear regression and classification: although this is a new course
it has some level of overlap with its predecessor Artificial Intelligence II. In particular it might be
worth attempting 2010, paper 8, question 2. Also, some old exam questions for Artificial Intelligence
I are usable warm-ups for the start of this course, so you may like to attempt:

• 2021, paper 8, question 10.

• 2019, paper 8, question 9.

• 2015, paper 4, question 1.

• 2013, paper 4, question 2.

• 2011, paper 4, question 1.

• 2007, paper 4, question 7.

Machine learning methods: most of the material here is quite new, so the only relevant past
question is:

• 2020, paper 9, question 10.
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• 2016, paper 8, question 2.

The EM algorithm:

• 2022, paper 8, question 8.

• 2018, paper 8, question 8.

Bayesian Networks:

1. 2021, paper 9, question 10.

2. 2005, paper 8, question 2.

3. 2006, paper 8, question 9.

4. 2009, paper 8, question 1.

5. 2014, paper 7, question 2.

6. 2016, paper 7, question 3.

7. 2017, paper 7, question 3.
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