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Last session: estimating parameters of an HMM

The dishonest casino, dice edition.
Two hidden states: L (loaded dice), F (fair dice).

You don’t know which dice is currently in use. You can only
observe the numbers that are thrown.

You estimated transition and emission probabilities (Problem
1 from last time).

We are now turning to Problem 4.

We want the HMM to find out when the fair dice was out,
and when the loaded dice was out.

m We need to write a decoder.



Decoding: finding the most likely path

m Definition of decoding: Finding the most likely hidden state
sequence X that explains the observation O given the HMM
parameters u = (A, B).

A

X = argmax P(X,O|u)
X
=argmax P(O|X, B)P(X|A)
X
T

=argmax | [ P(O¢| X, B)P(X¢| X¢—1, A)
X1. X7 1

m Search space of possible state sequences X is O(NT); too
large for brute force search.



Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:
m Optimal substructure property
m An optimal state sequence X; ... X, ... X7 contains inside it
the sequence X ... X}, which is also optimal
m Overlapping subsolutions property

m If both X; and X, are on the optimal path, with v > ¢, then
the calculation of the probability for being in state X; is part
of each of the many calculations for being in state X,,.
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The intuition behind Viterbi

m Here's how we can save ourselves a lot of time.

m Because of the Limited Horizon of the HMM, we don't need
to keep a complete record of how we arrived at a certain state.

m For the first-order HMM, we only need to record one previous
step.

m Just do the calculation of the probability of reaching each
state once for each time step (variable §).

m Then memoise this probability in a Dynamic Programming
table

m This reduces our effort to O(N2T).

m This is for the first order HMM, which only has a memory of
one previous state.



Viterbi: main data structure

m Memoisation is done using a trellis.

m A trellis is equivalent to a Dynamic Programming table.

m The trellis is (N + 2) x (T'+ 2) in size, with states j as rows
and time steps t as columns.

m Each cell j, t records the Viterbi probability d;(t), the
probability of the most likely path that ends in state s; at

time ¢:
65(6) = max [8,(t = 1) ai; b;(O1)]
m This probability is calculated by maximising over the best
ways of going to s; for each s;.
m a;;: the transition probability from s; to s;

m b;(O;): the probability of emitting O; from destination state
Sj



Viterbi algorithm, initialisation

Note: the probability of a state starting the sequence at t =0 is
just the probability of it emitting the first symbol.



Viterbi algorithm, initialisation
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Viterbi algorithm, main step




Viterbi algorithm, main step: observation is 4




Viterbi algorithm, main step: observation is 4

br<4>z

S (1)=a0rbr(4)54(0)




Viterbi algorithm, main step, ¥

m ¢;(t) is a helper variable that stores the ¢ — 1 state index ¢ on
the highest probability path.

j(t) = argmax[0;(t — 1) a;j b;(Oy)]

1<i<N

m In the backtracing phase, we will use 1 to find the previous
cell/state in the best path.
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Viterbi algorithm, main step: observation is 3
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Viterbi algorithm, main step: observation is 3
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Viterbi algorithm, main step: observation is 5
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Viterbi algorithm, main step: observation is 5
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Viterbi algorithm, termination
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Viterbi algorithm, backtracing
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Why is it necessary to keep N states at each time step?

m We have convinced ourselves that it's not necessary to keep
more than N (“real”) states per time step.

m But could we cut down the table to just a one-dimensional
table of T" time slots by choosing the probability of the best
path overall ending in that time slot, in any of the states?

m This would be the greedy choice

m But think about what could happen in a later time slot.

m You could encounter a zero or very low probability concerning
all paths going through your chosen state s; at time ¢.

m Now a state s;, that looked suboptimal in comparison to s; at
time ¢ becomes the best candidate.

m As we don't know the future, this could happen to any state,
so we need to keep the probabilities for each state at each time
slot.

m But thankfully, no more.



Precision and Recall

m So far, we have measured system success in accuracy or
agreement in Kappa.

m But sometimes it's only one type of instances that we find
interesting.

m We don't want a summary measure that averages over
interesting and non-interesting instances, as accuracy does.

m In those cases, we use precision, recall and F-measure.

m These metrics are imported from the field of information

retrieval, where the difference (in numbers) beween interesting
and non-interesting examples is particularly high.

m Accuracy doesn’t work well when the types of instances are
unbalanced.



True positives, false negatives. . .

System says:

L F Total
Truthis: | L TP FN TP+FN
F FP TN FP+TN
Total | TP+FP | FN+FP | TP4+FP+FN+FP

L is the category we are interested in.

m TP are the true positives.
m The system correctly declared them as positive.
m FN are the false negatives.

m The system didn't declare them as as a positive, but should
have.

m TN are the true negatives.

m The system didn't declare them as a positive, and was right.
m FP are the false positives.

m The system declared them as a positive, but shouldn’t have.



Precision and Recall

System says:
L F Total
Truth is: | L TP FN TP+FN
F FP TN FP+TN
Total | TP4+FP | FN+TN | TP+FP+FN+TN

Precision of L: P, = TPTJF%

Recall of L: Ry,
F-measure of L:

Accuracy: A =

TP
TP+FN

_ 2P Ry
A

TP+TN

TP+FP+FN+TN




Your task today

Task 8:
m Implement the Viterbi algorithm.

m Run it on the dice dataset and measure precision of L (Pp),
recall of L (Rr) and F-measure of L (FL).
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