
2. Naive Bayes Classification
Machine Learning and Real-world Data (MLRD)

Simone Teufel

Last session: we used a sentiment lexicon for
sentiment classification

Movie review sentiment classification was based on a
lexicon, ie., lexicographers’ intuition.
Possible problems with using a lexicon:

is limited to human intuition
is static and cannot react to language change (terrific!,
sick!)
required many hours of human labour to build

Today we will build a machine learning classifier that makes
decisions based on the data that it’s been exposed to.

What is Machine Learning?

a program that learns from data.
a program that adapts its behaviour after having been
exposed to new data.
... and does so without explicit programming
... implicitly, from data alone

A Machine Learning approach to sentiment
classification

The sentiment lexicon approach relied on a fixed,
predefined list of words.
The list was decided independently from our data before
the experiment
Instead we want to use machine learning to find out which
words (out of all words in our data) express sentiment

Classification based on observations

First some terminology:
features are easily (automatically) observable properties of
the data.
In our case the features of a movie review will be the words
they contain.
classes are the meaningful labels associated with the data,
which are not easily automatically observable.
In our case the classes are the two sentiments: POS and
NEG.
Classification then is function that maps from features to a
target class.
In our case, from the words in a review to a sentiment.

Probabilistic classifiers provide a distribution over
classes

Given a set of input features a probabilistic classifier
returns the probability of each class.
That is, for a set of observed features O and classes
c1...cm ∈ C gives P (ci|O) for all ci ∈ C

For us O are all the words in a review {w1, w2, ..., wn}
where wi is the ith word in the review, C = {POS, NEG}
We get: P (POS|w1, w2, ..., wn) and P (NEG|w1, w2, ..., wn)

We can decide on a single class by choosing the one with
the highest probability given the features:

ĉ = argmax
c∈C

P (c|O)

Today we will build a Naive Bayes Classifier

Naive Bayes classifiers are simple probabilistic classifiers
based on applying Bayes’ theorem.

Bayes Theorem:

P (c|O) =
P (c)P (O|c)

P (O)

cNB = argmax
c∈C

P (c|O) = argmax
c∈C

P (c)P (O|c)
P (O)

= argmax
c∈C

P (c)P (O|c)

We can remove P (O) because it is constant during a given
classification and does not affect the result of argmax

Naive Bayes classifiers assume feature independence

cNB = argmax
c∈C

P (c|O) = argmax
c∈C

P (c)P (O|c)
P (O)

= argmax
c∈C

P (c)P (O|c)

For us P (O|c) = P (w1, w2, ..., wn|c)
Naive Bayes makes a strong (naive) independence
assumption between the observed features.

P (O|c) = P (w1, w2, ..., wn|c) ≈ P (w1|c)×P (w2|c)×· · ·×P (wn|c)

so then:

cNB = argmax
c∈C

P (c)

n∏
i=1

P (wi|c)

The probabilities we need are derived during training

cNB = argmax
c∈C

P (c)

n∏
i=1

P (wi|c)

In the training phase, we collect whatever information is
needed to calculate P (wi|c) and P (c).
In the testing phase, we apply the above formula to derive
cNB, the classifier’s decision.
This is supervised ML because you use information about
the classes during training.

The distinction between testing and training

A machine learning algorithm has two phases: training and
testing.
Training: the process of making observations about some
known data set
In supervised machine learning, the classes that come
with the data are used during training
Testing: the process of applying the knowledge obtained in
the training stage to some new, unseen data
We never test on data that we trained a system on

Task 2: Step 0 – Split the dataset from Task 1

From last time, you have 1800 reviews which you used for
evaluation.
We now perform a data split into 200 for testing and 1600
for training.
You will compare the performance of the NB classifier you
build today with the sentiment lexicon classifier.
i.e. the NB classifier and the sentiment lexicon classifier
will be evaluated on the same 200 reviews.
Preview: There exist a further 200 reviews (bringing the
total to 2000) that you will use for more formal testing and
evaluation in a subsequent session.

Task 2: Step 1 – Parameter estimation

Write code that estimates P (wi|c) and P (c) using the
training data.

Maximum likelihood estimation (MLE) is a method of estimating
the parameters of a statistical model given observations

P̂ (wi|c) =
count(wi, c)∑
w∈V count(w, c)

where count(wi, c) is number of times wi occurs with class c
and V is vocabulary of all distinct words.

P̂ (c) =
Nc

Nrev

where Nc is number of reviews with class c and Nrev is total
number of reviews

P̂ (wi|c) ≈ P (wi|c) and P̂ (c) ≈ P (c)

Task 2: Step 2 – Classification

In practice we use logs:

cNB = argmax
c∈C

logP (c) +

n∑
i=1

logP (wi|c)

Problems you will notice:
A certain word may not have occurred together with one
class
Understand why this is a problem
Work out what you could do to deal with it (there is more
than one thing you could do)

Task 2: Step 3 – Smoothing

Add-one (Laplace) smoothing is the simplest form of
smoothing:

P̂ (wi|c) =
count(wi, c) + 1∑

w∈V (count(w, c) + 1)
=

count(wi, c) + 1

(
∑

w∈V count(w, c)) + |V |

where V is vocabulary of all distinct words

See handbook and further reading:
https://web.stanford.edu/~jurafsky/slp3/4.pdf

https://web.stanford.edu/~jurafsky/slp3/4.pdf

Demonstrator Session today

Passing pretester is mandatory for everybody.
Ticks are voluntary unless you have been random-selected
(selection happens in session 3).
Use the whiteboard to announce that you are ready to be
ticked (after passing pretester)
There is a starred tick available today (in "Further Notes on
Naive Bayes"); strictly voluntary
Good luck and have fun!
Join me and the demonstrators in the lab at 2:30.

