
5: Overtraining and Cross-validation
Machine Learning and Real-world Data

Simone Teufel

Computer Laboratory
University of Cambridge



Last session: Significance Testing

You have implemented various system improvements, e.g.,
concerning the (Laplace) smoothing parameter.
You have investigated whether a manipulation leads to a
statistically significant difference.
Let us now think about what our NB classifier has learned:

has it has learned that “excellent” is an indicator for positive
sentiment?
or has is learned that certain people are bad actors?



Ability to Generalise

We want a classifier that performs well on new,
never-before seen data.
That is equivalent to saying we want our classifier to
generalise well.
In detail, we want it to:

recognise only those characteristics of the data that are
general enough to also apply to some unseen data
ignore the characteristics of the training data that are
specific to the training data

Because of this, we never test on our training data, but use
separate test data.



Overtraining

Overtraining is when you think you are making
improvements (because the performance you measure
goes up) . . .
. . . but in reality you are making your classifier worse
because it generalises less well to real unseen data.
Until deployed to real unseen data, there is a danger that
overtraining will go unnoticed.
Other names for this phenomenon:

Overfitting
Type III errors

Testing hypotheses suggested by the data
Choosing the test falsely to suit the significance of the
sample



The “Wayne Rooney” effect

One way to notice overtraining is by time effects.
Time changes public opinion on particular people or effects.
Vampire movies go out of fashion, superhero movies come
into fashion.
People who were hailed as superstars in 2003 might later
get bad press in 2010
Called the “Wayne Rooney” effect

You will test how well your system (trained on data from up
to 2004) performs on reviews from 2015/6



Overtraining with repeated use of test data

Scenario with separate test data:
Make some improvement to your classifier.
Measure performance of system variant on test data.
Repeat
Choose the one system variant that performs best on test
data, and declare as final best system.

What is wrong with this scenario?
Repeatedly use of test data means you still overtrained.
The classifier has now indirectly also picked up accidental
properties of the (small) test data.
You have lost the effect of the data being surprising.



Overtraining, the hidden danger

ML researchers often overlook their own overtraining. There
are reasons for this:

You have to actively work harder (be vigilant) in order to
notice that it’s happening
But you may be tempted not to notice it

performance “increases” are always tempting
(even if you know they might be unjustified).

It’s a question of scientific ethics and “truth-finding”.

The first principle is that you must not fool yourself, and you are
the easiest person to fool. (Richard Feynman)



Am I overtraining?

You can be confident you are not overtraining if you have
large amounts of test data, and use new (and large
enough) test data each time you make an improvement.
You can’t be sure if you are overtraining if you make
incremental improvements to your classifier and repeatedly
optimise the system based on its performance on the
same small test data.
One way to detect overtraining is to inspect the most
characteristic features for each class (cf. starred tick). You
may find features that are unlikely to generalise; sign of
overtraining.



Cross-validation: motivation

We can’t afford getting new test data each time.
We want to use as much training data as possible
(because ML systems trained on more data are almost
always better).
We want to use as much test data as possible (because
then even smaller effect sizes will show up as significant)
But whatever we do, we must never test on the training set.
We can achieve this by using every little bit of training data
for testing
by cleverly iterating the test and training split around



N-Fold Cross-validation

Split data randomly into N equal-sized folds

For each fold X, use all other folds for training, test on fold X only

The final performance is the average of the performances for each fold



N-Fold Cross-Validation and Variance between splits

If all splits perform equally well, this is a good sign
We can calculate variance:

var =
1

n

n∑
i

(xi − µ)2

xi: the score of the ith fold
µ : avgi(xi): the average of the scores



Significance testing under N-Fold Cross-validation

Compare two systems under N-Fold Cross-validation with
each other.
Consider all of the X test folds together as one overall
experiment.
Not as X different experiments
Perform one test, counting positives, negatives and null out
of the total number of mini-events
We don’t care which fold a mini-event came from, as there
won’t be any repetition
You might see significance where there wasn’t one before,
because you now have gained a lot more test data.



Data splits in our experiment

Training set (1,600)
Validation (development) set (200) – old “test” set
Real test set (200) – new today!
Use training + validation corpus for cross-validation



Variations on cross-validation

Stratified cross-validation is a special case of
cross-validation where each split is done in such a way that
it mirrors the distribution of classes observed in the overall
data.
Jack-knifing (leave one out cross-validation): extreme case
of folding where you fold on individual data points
Dependency-sensitive cross-validation: You fold in such a
way that known characteristics of data are isolated in a fold
(e.g. one fold per genre or journal).



Cross-validation doesn’t solve all our problems

Cross-validation gives us some safety from overtraining.
Nevertheless, even with cross-validation we still use data
that is in some sense “seen”.
So it is no good for incremental, small improvements
reached via feature engineering.
We also cannot use the cross-validation trick to set global
parameters
because we only want to accept parameters that are
independent of any training.
As always, the danger is learning accidental properties that
don’t generalise.
Enter the validation corpus



Validation Corpus

The validation corpus is never used in training or testing.
We can therefore use this corpus for two things which are
useful:

We can use it to set any parameters in any algorithm,
before we start with training/testing.
We can also use this corpus as a stopping criterion for
feature engineering

We can detect “improvements” that help in crossvalidation
over the train corpus, but lead to performance losses on the
validation corpus
We stop “fiddling” with the features when the result on
validation corpus start decreasing (in comparison to the
cross-validation results on training set alone).

Then, and only then, do we measure on the test corpus
(once).

Validation corpus is sometimes called “development
corpus”.



For trouble shooting: Confusion Matrix

System says:

POS NEG Total
POS V W 900

TRUTH: NEG X Y 900
Total V+X W+Y 1800

Note that cells along the diagonal (red) are correct decisions.



First task today

Write code that prints out your best system’s confusion
matrix
We recommend that you write your confusion matrix printer
in a parameterised way so that you can reuse it for different
distributions of classes



Second task today

Implement two different cross-validation schemes:
Random
Random Stratified

Observe results. Calculate variance between splits.



Third task today

Use the precious test data for the first time (on the best
system NB you currently have)
Compare results with the those from testing on the
validation set (as you did before today).
Download the 2015/16 review data; run your system on it
Test your sentiment lexicon system on the new test data
and on 2015/16 data.
Differences?



Literature

James, Witten, Hastie and Tibshirani (2013). An
introduction to statistical learning, Springer Texts in
Statistics. Section 5.1.3 p. 181–183 (k-fold
Cross-Validation)


