
7: Catchup Session & very short intro to
Other Classifiers
Non-examinable

Machine Learning and Real-world Data (MLRD)

Simone Teufel (based on slides by Paula Buttery and
Weiwei Sun)



What happens in a catchup session?

Lecture and practical session as normal
New material in lecture is non-examinable
Main purpose: catch up on all ticks in segment
You can also attempt some starred ticks.
Demonstrators help as per usual.



Naive Bayes is a probabilistic classifier

Given a set of input features a probabilistic classifier
provide a distribution over classes.
That is, for a set of observed features O and classes
c1...cn ∈ C gives P (ci|O) for all ci ∈ C

For us O was the set all the words in a review
{w1, w2, ..., wn} where wi is the ith word in a review,
C = {POS, NEG}
We decided on a single class by choosing the one with the
highest probability given the features:

ĉ = argmax
c∈C

P (c|O)



An SVM is a popular discriminative classifier

A Support Vector Machine (SVM) is a non-probabilistic
binary linear classifier
SVMs assign new examples to one category or the other
SVMs can reduce the amount of labeled data required to
gain good accuracy
SVMs can be efficiently adapted to perform a non-linear
classification



SVMs find hyper-planes that separate classes

Our classes exist in a multidimensional feature space
A linear classifier will separate the points with a
hyper-plane



SVMs find a maximum-margin hyper-plane in noisy
data

There are many possible hyper-planes
SVMs find the best hyper-plane such that the distance from
it to the nearest data point from each class is maximised
i.e. the hyper-plane that passes through the widest
possible gap (hopefully helps to avoid over-fitting)



SVMs can be very efficient and effective
Efficient when learning from a large number of features
(good for text)
Effective even with relatively small amounts of labelled
data (we only need points close to the plane to calculate it)
We can choose how many points to involve (size of
margin) when calculating the plane (tuning vs. over-fitting)
Can separate non-linear boundaries by changing the
feature space (using a kernal function)



Choice of classifier will depend on the task

Comparison of a SVM and Naive Bayes on the same task:
2000 imdb movie reviews, 1600/400 test/training split
preprocess with improved tokeniser (lowercased, removed
uninformative words, dealt with punctuation, lemmatised
words)

SVM Naive Bayes
Accuracy on train 0.98 0.96
Accuracy on test 0.84 0.80

But from Naive Bayes I know that character, good, story,
great, ... are informative features
SVMs are more difficult to interpret



Decision tree can be used to visually represent
classifications

bad <= 0.0154
entropy = 1.0

samples = 1600
value = [799, 801]

class = pos

waste <= 0.0218
entropy = 0.9457
samples = 1001

value = [364, 637]
class = pos

True
bad <= 0.0458

entropy = 0.8469
samples = 599

value = [435, 164]
class = neg

False

boring <= 0.0343
entropy = 0.915
samples = 927

value = [306, 621]
class = pos

job <= 0.0186
entropy = 0.7532

samples = 74
value = [58, 16]

class = neg

performance <= 0.0098
entropy = 0.8974

samples = 899
value = [282, 617]

class = pos

really <= 0.0216
entropy = 0.5917

samples = 28
value = [24, 4]

class = neg

excellent <= 0.0153
entropy = 0.9653

samples = 522
value = [204, 318]

class = pos

decent <= 0.0102
entropy = 0.7355

samples = 377
value = [78, 299]

class = pos

potential <= 0.0297
entropy = 0.9785

samples = 488
value = [202, 286]

class = pos

short <= 0.0188
entropy = 0.3228

samples = 34
value = [2, 32]

class = pos

ludicrous <= 0.0146
entropy = 0.9657

samples = 465
value = [182, 283]

class = pos

present <= 0.0134
entropy = 0.5586

samples = 23
value = [20, 3]

class = neg

entropy = 0.9556
samples = 454

value = [171, 283]
class = pos

entropy = 0.0
samples = 11

value = [11, 0]
class = neg

entropy = 0.0
samples = 18

value = [18, 0]
class = neg

entropy = 0.971
samples = 5

value = [2, 3]
class = pos

entropy = 0.0
samples = 29

value = [0, 29]
class = pos

entropy = 0.971
samples = 5

value = [2, 3]
class = pos

poorly <= 0.0106
entropy = 0.6697

samples = 348
value = [61, 287]

class = pos

director <= 0.0049
entropy = 0.9784

samples = 29
value = [17, 12]

class = neg

adam <= 0.0287
entropy = 0.6228

samples = 335
value = [52, 283]

class = pos

movie <= 0.0224
entropy = 0.8905

samples = 13
value = [9, 4]
class = neg

entropy = 0.5682
samples = 321

value = [43, 278]
class = pos

entropy = 0.9403
samples = 14
value = [9, 5]
class = neg

entropy = 0.0
samples = 7

value = [7, 0]
class = neg

entropy = 0.9183
samples = 6

value = [2, 4]
class = pos

decent <= 0.0334
entropy = 0.469

samples = 10
value = [1, 9]
class = pos

together <= 0.0167
entropy = 0.6292

samples = 19
value = [16, 3]

class = neg

entropy = 0.7219
samples = 5

value = [1, 4]
class = pos

entropy = 0.0
samples = 5

value = [0, 5]
class = pos

entropy = 0.0
samples = 14

value = [14, 0]
class = neg

entropy = 0.971
samples = 5

value = [2, 3]
class = pos

entropy = 0.0
samples = 21

value = [21, 0]
class = neg

entropy = 0.9852
samples = 7

value = [3, 4]
class = pos

strong <= 0.0251
entropy = 0.5197

samples = 60
value = [53, 7]

class = neg

know <= 0.0145
entropy = 0.9403

samples = 14
value = [5, 9]
class = pos

say <= 0.019
entropy = 0.3138

samples = 53
value = [50, 3]

class = neg

entropy = 0.9852
samples = 7

value = [3, 4]
class = pos

entropy = 0.0
samples = 41

value = [41, 0]
class = neg

show <= 0.0172
entropy = 0.8113

samples = 12
value = [9, 3]
class = neg

entropy = 0.0
samples = 6

value = [6, 0]
class = neg

entropy = 1.0
samples = 6

value = [3, 3]
class = neg

entropy = 0.0
samples = 7

value = [0, 7]
class = pos

entropy = 0.8631
samples = 7

value = [5, 2]
class = neg

waste <= 0.008
entropy = 0.9274

samples = 426
value = [280, 146]

class = neg

bill <= 0.0433
entropy = 0.4817

samples = 173
value = [155, 18]

class = neg

perfect <= 0.0347
entropy = 0.9682

samples = 354
value = [214, 140]

class = neg

work <= 0.0157
entropy = 0.4138

samples = 72
value = [66, 6]

class = neg

great <= 0.024
entropy = 0.9525

samples = 341
value = [214, 127]

class = neg

entropy = 0.0
samples = 13

value = [0, 13]
class = pos

stupid <= 0.0328
entropy = 0.905
samples = 287

value = [195, 92]
class = neg

word <= 0.0201
entropy = 0.9357

samples = 54
value = [19, 35]

class = pos

overall <= 0.0336
entropy = 0.9327

samples = 264
value = [172, 92]

class = neg

entropy = 0.0
samples = 23

value = [23, 0]
class = neg

entropy = 0.9
samples = 250

value = [171, 79]
class = neg

entropy = 0.3712
samples = 14

value = [1, 13]
class = pos

take <= 0.0191
entropy = 0.8427

samples = 48
value = [13, 35]

class = pos

entropy = 0.0
samples = 6

value = [6, 0]
class = neg

entropy = 0.9871
samples = 30

value = [13, 17]
class = pos

entropy = 0.0
samples = 18

value = [0, 18]
class = pos

entropy = 0.0
samples = 47

value = [47, 0]
class = neg

even <= 0.0133
entropy = 0.795

samples = 25
value = [19, 6]

class = neg

entropy = 0.9544
samples = 8

value = [3, 5]
class = pos

late <= 0.0234
entropy = 0.3228

samples = 17
value = [16, 1]

class = neg

entropy = 0.0
samples = 12

value = [12, 0]
class = neg

entropy = 0.7219
samples = 5

value = [4, 1]
class = neg

put <= 0.0435
entropy = 0.4138

samples = 168
value = [154, 14]

class = neg

entropy = 0.7219
samples = 5

value = [1, 4]
class = pos

flick <= 0.0299
entropy = 0.3328

samples = 163
value = [153, 10]

class = neg

entropy = 0.7219
samples = 5

value = [1, 4]
class = pos

despite <= 0.0081
entropy = 0.1841

samples = 143
value = [139, 4]

class = neg

even <= 0.018
entropy = 0.8813

samples = 20
value = [14, 6]

class = neg

entropy = 0.0
samples = 123

value = [123, 0]
class = neg

every <= 0.0241
entropy = 0.7219

samples = 20
value = [16, 4]

class = neg

entropy = 0.0
samples = 13

value = [13, 0]
class = neg

entropy = 0.9852
samples = 7

value = [3, 4]
class = pos

entropy = 0.65
samples = 6

value = [1, 5]
class = pos

character <= 0.017
entropy = 0.3712

samples = 14
value = [13, 1]

class = neg

entropy = 0.7219
samples = 5

value = [4, 1]
class = neg

entropy = 0.0
samples = 9

value = [9, 0]
class = neg

Simple to interpret
Can mix numerical and categorical data
You specify the parameters of the tree (maximum depth,
number of items at leaf nodes—both change accuracy)
But finding the optimal decision tree can be NP-complete



Information gain can be used to decide how to split

Information gain is defined in terms of entropy H

Entropy of tree node:

H(n) = −
∑
p

pi log2 pi

where pi are the probabilities of each class at node n

Information gain I is the reduction in entropy of n achieved
by learning the state of the random variable D.

Information gain:

I(n,D) = H(n)−H(n|D)

where H(n|D) is the weighted entropy of the daughter nodes if
we split on D.



Information gain can be used to decide how to split

bad <= 0.0157
entropy = 0.9999
samples = 1600

value = [809, 791]
class = neg

waste <= 0.022
entropy = 0.952
samples = 1014

value = [377, 637]
class = pos

True

bad <= 0.0475
entropy = 0.8309

samples = 586
value = [432, 154]

class = neg

False

many <= 0.0094
entropy = 0.9238

samples = 944
value = [320, 624]

class = pos

strong <= 0.0257
entropy = 0.6924

samples = 70
value = [57, 13]

class = neg

great <= 0.004
entropy = 0.9783

samples = 561
value = [232, 329]

class = pos

memorable <= 0.0091
entropy = 0.7776

samples = 383
value = [88, 295]

class = pos

(...) (...) (...) (...)

show <= 0.0287
entropy = 0.4237

samples = 58
value = [53, 5]

class = neg

move <= 0.0127
entropy = 0.9183

samples = 12
value = [4, 8]
class = pos

(...) (...) (...) (...)

suppose <= 0.0144
entropy = 0.907
samples = 428

value = [290, 138]
class = neg

flick <= 0.0343
entropy = 0.473
samples = 158

value = [142, 16]
class = neg

perfect <= 0.0343
entropy = 0.9432

samples = 366
value = [234, 132]

class = neg

life <= 0.0194
entropy = 0.4587

samples = 62
value = [56, 6]

class = neg

(...) (...) (...) (...)

together <= 0.0284
entropy = 0.339
samples = 143

value = [134, 9]
class = neg

reason <= 0.0084
entropy = 0.9968

samples = 15
value = [8, 7]
class = neg

(...) (...) (...) (...)



Results on the movie review dataset:

SVM Naive Bayes DTree (max depth 7)
Accuracy on train 0.98 0.96 0.80
Accuracy on test 0.84 0.80 0.69



Feed-forward Neural Networks

Think about multi-class classification:
D – number of features (input)
K – number of classes (output)
x – the input feature vector

Think about a particular class, say yk. We describe the
“friendship" between x and yk in the following way:

score_function(x, yk) = w0 +

D∑
i=1

wixi

where w measures how much each feature wi contributes to yk.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again and
again. This is called perceptron, which was invented by Frank
Rosenblatt in 1958.Things will be much more fun if we have a
stack of perceptrons (MLP). Oops, must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing.

Again and
again and again. This is called perceptron, which was invented
by Frank Rosenblatt in 1958.Things will be much more fun if we
have a stack of perceptrons (MLP). Oops, must add
something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again

and again and
again. This is called perceptron, which was invented by Frank
Rosenblatt in 1958.Things will be much more fun if we have a
stack of perceptrons (MLP). Oops, must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again

and
again. This is called perceptron, which was invented by Frank
Rosenblatt in 1958.Things will be much more fun if we have a
stack of perceptrons (MLP). Oops, must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again and
again. This is called perceptron, which was invented by
Frank Rosenblatt in 1958.

Things will be much more fun if we
have a stack of perceptrons (MLP). Oops, must add
something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again and
again. This is called perceptron, which was invented by Frank
Rosenblatt in 1958.Things will be much more fun if we have
a stack of perceptrons (MLP).

Oops, must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

σ

(
w0 +

D∑
i=1

wixi

)
...

For each class yk, we do the same thing. Again and again and
again. This is called perceptron, which was invented by Frank
Rosenblatt in 1958.Things will be much more fun if we have a
stack of perceptrons (MLP). Oops, must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication.

Now you can do
non-linear classification.



Feed-forward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

σ

(
w0 +

D∑
i=1

wixi

)
...

For each class yk, we do the same thing. Again and again and
again. This is called perceptron, which was invented by Frank
Rosenblatt in 1958.Things will be much more fun if we have a
stack of perceptrons (MLP). Oops, must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do
non-linear classification.



Nature of decision Boundaries: artificial data

Modified from SciKit Learn Classifier Comparison



More classifiers

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Training data points: dark
Test data points: light



End of Classification Topic

Next topic on Friday
Hidden Markov Models
Lecturer: Andreas Vlachos


