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Learning Guide

The course as lectured proceeds fairly evenly through these notes, with 7 lectures devoted to
part A, 5 to part B and 3 or 4 devoted to parts C and D. Part A mainly consists of analy-
sis/transformation pairs on flowgraphs whereas part B consists of more sophisticated analyses
(typically on representations nearer to source languages) where typically a general framework
and an instantiation are given. Part C consists of an introduction to instruction scheduling and
part D an introduction to decompilation and reverse engineering.

One can see part A as intermediate-code to intermediate-code optimisation, part B as (al-
ready typed if necessary) parse-tree to parse-tree optimisation and part C as target-code to
target-code optimisation. Part D is concerned with the reverse process.

Rough contents of each lecture are:

Lecture 1: Introduction, flowgraphs, call graphs, basic blocks, types of analysis

Lecture 2: (Transformation) Unreachable-code elimination

Lecture 3: (Analysis) Live variable analysis

Lecture 4: (Analysis) Available expressions

Lecture 5: (Transformation) Uses of LVA

Lecture 6: (Continuation) Register allocation by colouring

Lecture 7: (Transformation) Uses of Avail; Code motion

Lecture 8: Static Single Assignment; Strength reduction

Lecture 9: (Framework) Abstract interpretation

Lecture 10: (Instance) Strictness analysis

Lecture 11: (Framework) Constraint-based analysis;
(Instance) Control-flow analysis (for λ-terms)

Lecture 12: (Framework) Inference-based program analysis

Lecture 13: (Instance) Effect systems

Lecture 13a: Points-to and alias analysis

Lecture 14: Instruction scheduling

Lecture 15: Same continued, slop

Lecture 16: Decompilation.
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• Aho, A.V., Sethi, R. & Ullman, J.D. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986. Now a bit long in the tooth and only covers part A of the course.
See http://www.aw-bc.com/catalog/academic/product/0,1144,0321428900,00.html

• Appel A. Modern Compiler Implementation in C/ML/Java (2nd edition). CUP 1997.
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Questions, Errors and Feedback

Please let me know if you spot an error in the lecture notes or slides—I will maintain an errata
on the course web page, which will hopefully remain empty. Also on the web I will post a list
of frequently asked questions and answers; please feel free to email me if you have anything to
ask. In addition, I would be very happy to receive any comments you may have (positive and
negative) on the notes, lectures, or course in general.
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Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of a simple non-optimising compiler (e.g. from CST Part Ib).

�
�

�
�character

stream
-

lex

�
�

�
�token

stream
-

syn

�
�

�
�parse

tree
-

trn

�
�

�
�intermediate

code
-

gen

�
�

�
�target

code

In such a compiler “intermediate code” is typically a stack-oriented abstract machine code (e.g.
OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn’ and ‘trn’ are in
principle source language-dependent, but not target architecture-dependent whereas stage ‘gen’
is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’ !) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we use
3-address code (sometimes called ‘quadruples’). This is also near to modern RISC architectures
and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in a flowgraph
G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic blocks’). We
write

pred(n) = {n′ | (n′, n) ∈ edges(G)}
succ(n) = {n′ | (n, n′) ∈ edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph theory
notions like path and cycle.

Forms of 3-address instructions (a, b, c are operands, f is a procedure name, and lab is a
label):

• ENTRY f : no predecessors;

• EXIT: no successors;

• ALU a, b, c: one successor (ADD, MUL, . . . );

• CMP⟨cond⟩ a, b, lab: two successors (CMPNE, CMPEQ, . . . ) — in straight-line code these
instructions take a label argument (and fall through to the next instruction if the branch
doesn’t occur), whereas in a flowgraph they have two successor edges.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP instruc-
tions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic instructions
like ALU a, b, c. Similarly one distinguishes MOV a, b instructions (a special case of ALU ig-
noring one operand) from indirect memory reference instructions (LDI a, b and STI a, b) used
to represent pointer dereference including accessing array elements. Indirect branches (used
for local goto ⟨exp⟩) terminate a basic block (see later); their successors must include all the
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possible branch targets (see the description of Fortran ASSIGNED GOTO). A safe way to over-
estimate this is to treat as successors all labels which occur other than in a direct goto l form.
Arguments to and results from procedures are presumed to be stored in standard places, e.g.
global variables arg1, arg2, res1, res2, etc. These would typically be machine registers in a
modern procedure-calling standard.

As a brief example, consider the following high-level language implementation of the factorial
function:

int fact (int n)

{
if (n == 0) {
return 1;

} else {
return n * fact(n-1);

}
}

This might eventually be translated into the following 3-address code:

ENTRY fact ; begins a procedure called "fact"

MOV t32,arg1 ; saves a copy of arg1 in t32

CMPEQ t32,#0,lab1 ; branches to lab1 if arg1 == 0

SUB arg1,t32,#1 ; decrements arg1 in preparation for CALL

CALL fact ; leaves fact(arg1) in res1 (t32 is preserved)

MUL res1,t32,res1

EXIT ; exits from the procedure

lab1: MOV res1,#1

EXIT ; exits from the procedure

Slogan: Optimisation = Analysis + Transformation

Transformations are often simple (e.g. delete this instruction) but may need complicated analysis
to show that they are valid. Note also the use of Analyses without corresponding Transforma-
tions for the purposes of compile-time debugging (e.g. see the later use of LVA to warn about
the dataflow anomaly of possibly uninitialised variables).

Hence a new structure of the compiler:

�
�

�
�character

stream
-

lex

�
�

�
�token

stream
-

syn

�
�

�
�parse

tree
-

trn

�
�

�
�intermediate

code

��
?

optimise

-

gen

�
�

�
�target

code

This course only considers the optimiser, which in principle is both source-language and target-
architecture independent, but certain gross target features may be exploited (e.g. number of
user allocatable registers for a register allocation phase).
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Often we group instructions into basic blocks: a basic block is a maximal sequence of in-
structions n1, . . . , nk which have

• exactly one predecessor (except possibly for n1)

• exactly one successor (except possibly for nk)

The basic blocks in our example 3-address code factorial procedure are therefore:

ENTRY fact

MOV t32,arg1

CMPEQ t32,#0,lab1

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

lab1: MOV res1,#1

EXIT

Basic blocks reduce space and time requirements for analysis algorithms by calculating and
storing data-flow information once-per-block (and recomputing within a block if required) over
storing data-flow information once-per-instruction.

It is common to arrange that stage ‘trn’, which translates a tree into a flowgraph, uses a new
temporary variable on each occasion that one is required. Such a basic block (or flowgraph) is
referred to as being in normal form. For example, we would translate

x = a*b+c;

y = a*b+d;

into

MUL t1,a,b

ADD x,t1,c

MUL t2,a,b

ADD y,t2,d.

Later we will see how general optimisations can map these code sequences into more efficient
ones.

1.1 Forms of analysis

Form of analysis (and hence optimisation) are often classified:

• ‘local’ or ‘peephole’: within a basic block;

• ‘global’ or ‘intra-procedural’: outwith a basic block, but within a procedure;

• ‘inter-procedural’: over the whole program.

This course mainly considers intra-procedural analyses in part A (an exception being ‘unreachable-
procedure elimination’ in section 1.3) whereas the techniques in part B often are applicable intra-
or inter-procedurally (since the latter are not flowgraph-based, further classification by basic
block is not relevant).
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1.2 Simple example: unreachable-code elimination

(Reachability) Analysis = ‘find reachable blocks’; Transformation = ‘delete code which reach-
ability does not mark as reachable’. Analysis:

• mark entry node of each procedure as reachable;

• mark every successor of a marked node as reachable and repeat until no further marks
are required.

Analysis is safe: every node to which execution may flow at execution will be marked by the
algorithm. The converse is in general false:

if tautology(x) then C1 else C2.

The undecidability of arithmetic (cf. the halting problem) means that we can never spot all
such cases. Note that safety requires the successor nodes to goto ⟨exp⟩ (see earlier) not to
be under-estimated. Note also that constant propagation (not covered in this course) could be
used to propagate known values to tests and hence sometimes to reduce (safely) the number of
successors of a comparison node.

1.3 Simple example: unreachable-procedure elimination

(A simple interprocedural analysis.) Analysis = ‘find callable procedures’; Transformation =
‘delete procedures which analysis does not mark as callable’. Data-structure: call-graph, a graph
with one node for each procedure and an edge (f, g) whenever f has a CALL g statement or f
has a CALLI a statement and we suspect that the value of a may be g. A safe (i.e. over-estimate
in general) interpretation is to treat CALLI a as calling any procedure in the program which
occurs other than in a direct call context—in C this means (implicitly or explicitly) address
taken. Analysis:

• mark procedure main as callable;

• mark every successor of a marked node as callable and repeat until no further marks are
required.

Analysis is safe: every procedure which may be invoked during execution will be marked by
the algorithm. The converse is again false in general. Note that label variable and procedure
variables may reduce optimisation compared with direct code—do not use these features of a
programming language unless you are sure they are of overall benefit.
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2 Live Variable Analysis (LVA)

A variable x is semantically live1 at node n if there is some execution sequence starting at n
whose I/O behaviour can be affected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node n′ at
which the current value of x may be used (i.e. a path from n to n′ which contains no definition
of x and with n′ containing a reference to x). Note that such a path may not actually occur
during any execution, e.g.

l1: ; /* is ’t’ live here? */

if ((x+1)*(x+1) == y) t = 1;

if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⊆ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and ⊢.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =


 ⋃

s∈succ(n)
live(s)


 \ def (n) ∪ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry to
node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ∪ ref (n)

out-live(n) =
⋃

s∈succ(n)
in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;

x = 1, y = 2, z = 3;

p = &x;

if (...) p = &y;

*p = 7;

if (...) p = &x;

t = *p;

print z+t;

1Mention the words ‘extensional’ for this notion and ‘intentional’ for the ‘syntactic’ property below.
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Here we are unsure whether the assignment *p = 7; assigns to x or y. Similarly we are uncertain
whether the reference t = *p; references x or y (but we are certain that both reference p). These
are ambiguous definitions and references. For safety we treat (for LVA) an ambiguous reference
as referencing any address-taken variable (cf. label variable and procedure variables—an indirect
reference is just a ‘variable’ variable). Similarly an ambiguous definition is just ignored. Hence
in the above, for *p = 7; we have ref = {p} and def = {} whereas t = *p; has ref = {p, x, y}
and def = {t}.

Algorithm (implement live as an array live[]):

for i=1 to N do live[i] := {}

while (live[] changes) do

for i=1 to N do

live[i] :=


 ⋃

s∈succ(i)
live[s]


 \ def (i) ∪ ref (i).

Clearly if the algorithm terminates then it results in a solution of the dataflow equation. Actually
the theory of complete partial orders (cpo’s) means that it always terminates with the least
solution, the one with as few variables as possible live consistent with safety. (The powerset
of the set of variables used in the program is a finite lattice and the map from old-liveness to
new-liveness in the loop is continuous.)

Notes:

• we can implement the live[] array as a bit vector with bit k being set to represent that
variable xk (according to a given numbering scheme) is live.

• we can speed execution and reduce store consumption by storing liveness information
only once per basic block and re-computing within a basic block if needed (typically only
during the use of LVA to validate a transformation). In this case the dataflow equations
become:

live(n) =


 ⋃

s∈succ(n)
live(s)


 \ def (ik) ∪ ref (ik) · · · \ def (i1) ∪ ref (i1)

where (i1, . . . , ik) are the instructions in basic block n.

3 Available Expressions (AVAIL)

Available expressions analysis has many similarities to LVA. An expression e (typically the RHS
of a 3-address instruction) is available at node n if on every path leading to n the expression e
has been evaluated and not invalidated by an intervening assignment to a variable occurring in
e. Note that the e on each path does not have to come from the same instruction.

This leads to dataflow equations:

avail(n) =
⋂

p∈pred(n) (avail(p) \ kill(p) ∪ gen(p)) if pred(n) ̸= {}
avail(n) = {} if pred(n) = {}.

Here gen(n) gives the expressions freshly computed at n: gen(x = y+z) = {y+ z}, for example;
but gen(x = x+z) = {} because, although this instruction does compute x+ z, it then changes
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the value of x, so if the expression x+ z is needed in the future it must be recomputed in light of
this.2 Similarly kill(n) gives the expressions killed at n, i.e. all expressions containing a variable
updated at n. These are ‘forwards’ equations since avail(n) depends on the past rather than
the future. Note also the change from ∪ in LVA to ∩ in AVAIL. You should also consider the
effect of ambiguous kill and gen (cf. ambiguous ref and def in LVA) caused by pointer-based
access to address-taken variables.

Again any solution of these equations is safe but, given our intended use, we wish the
greatest solution (in that it enables most optimisations). This leads to an algorithm (assuming
flowgraph node 1 is the only entry node):

avail[1] := {}

for i=2 to N do avail[i] := U

while (avail[] changes) do

for i=2 to N do

avail[i] :=
⋂

p∈pred(i)
(avail[p] \ kill(p) ∪ gen(p)).

Here U is the set of all expressions; it suffices here to consider all RHS’s of 3-address instruc-
tions. Indeed if one arranges that every assignment assigns to a distinct temporary (a little
strengthening of normal form for temporaries) then a numbering of the temporary variables
allows a particularly simple bit-vector representation of avail[].

4 Uses of LVA

There are two main uses of LVA:

• to report on dataflow anomalies, particularly a warning to the effect that “variable ‘x’
may be used before being set”;

• to perform ‘register allocation by colouring’.

For the first of these it suffices to note that the above warning can be issued if ‘x’ is live at
entry to the procedure (or scope) containing it. (Note here ‘safety’ concerns are different—it is
debatable whether a spurious warning about code which avoids executing a seeming error for
rather deep reasons is better or worse than omitting to give a possible warning for suspicious
code; decidability means we cannot have both.) For the second, we note that if there is no
3-address instruction where two variables are both live then the variables can share the same
memory location (or, more usefully, the same register). The justification is that when a variable
is not live its value can be corrupted arbitrarily without affecting execution.

4.1 Register allocation by colouring

Generate näıve 3-address code assuming all variables (and temporaries) are allocated a different
(virtual) register (recall ‘normal form’). Gives good code, but real machines have a finite number
of registers, e.g. 8 in x86 or 31 in MIPS. Derive a graph (the ‘clash graph’) whose nodes are

2This definition of gen(n) is rather awkward. It would be tidier to say that gen(x = x+z) = {x+ z}, because
x+ z is certainly computed by the instruction regardless of the subsequent assignment. However, the given
definition is chosen so that avail(n) can be defined in the way that it is; I may say more in lectures.
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virtual registers and there is an edge between two virtual registers which are ever simultaneously
live (this needs a little care when liveness is calculated merely for basic block starts—we need
to check for simultaneous liveness within blocks as well as at block start!). Now try to colour
(= give a different value for adjacent nodes) the clash graph using the real (target architecture)
registers as colours. (Clearly this is easier if the target has a large-ish number of interchangeable
registers—not an early 8086.) Although planar graphs (corresponding to terrestrial maps) can
always be coloured with four colours this is not generally the case for clash graphs (exercise).

Graph colouring is NP-complete but here is a simple heuristic for choosing an order to colour
virtual registers (and to decide which need to be spilt to memory where access can be achieved
via LD/ST to a dedicated temporary instead of directly by ALU register-register instructions):

• choose a virtual register with the least number of clashes;

• if this is less than the number of colours then push it on a LIFO stack since we can
guarantee to colour it after we know the colour of its remaining neighbours. Remove the
register from the clash graph and reduce the number of clashes of each of its neighbours.

• if all virtual registers have more clashes than colours then one will have to be spilt. Choose
one (e.g. the one with least number of accesses3) to spill and reduce the clashes of all its
neighbours by one.

• when the clash graph is empty, pop in turn the virtual registers from the stack and
colour them in any way to avoid the colours of their (already-coloured) neighbours. By
construction this is always possible.

Note that when we have a free choice between several colours (permitted by the clash graph)
for a register, it makes sense to choose a colour which converts a MOV r1,r2 instruction into a
no-op by allocating r1 and r2 to the same register (provided they do not clash). This can be
achieved by keeping a separate ‘preference’ graph.

4.2 Non-orthogonal instructions and procedure calling standards

A central principle which justifies the idea of register allocation by colouring at all is that
of having a reasonably large interchangeable register set from which we can select at a later
time. It is assumed that if we generate a (say) multiply instruction then registers for it can be
chosen later. This assumption is a little violated on the 80x86 architecture where the multiply
instruction always uses a standard register, unlike other instructions which have a reasonably
free choice of operands. Similarly, it is violated on a VAX where some instructions corrupt
registers r0–r5.

However, we can design a uniform framework in which such small deviations from uniformity
can be gracefully handled. We start by arranging that architectural registers are a subset of
virtual registers by arranging that (say) virtual registers v0–v31 are pre-allocated to architec-
tural registers r0–r31 and virtual registers allocated for temporaries and user variables start
from 32. Now

3Of course this is a static count, but can be made more realistic by counting an access within a loop nesting
of n as worth 4n non-loop accesses. Similarly a user register declaration can be here viewed as an extra (say)
1000 accesses.
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• when an instruction requires an operand in a given architectural register, we use a MOV
to move it to the virtual encoding of the given architectural register—the preference graph
will try to ensure calculations are targeted to the given source register;

• similarly when an instruction produces a result in a given architectural register, we move
the result to an allocatable destination register;

• finally, when an instruction corrupts (say) rx during its calculation, we arrange that its
virtual correspondent vx has a clash with every virtual register live at the occurrence of
the instruction.

Note that this process has also solved the problem of handling register allocation over pro-
cedure calls. A typical procedure calling standard specified n registers for temporaries, say
r0–r[n-1] (of which the first m are used for arguments and results—these are the standard
places arg1, arg2, res1, res2, etc. mentioned at the start of the course) and k registers to be
preserved over procedure call. A CALL or CALLI instruction then causes each variable live
over a procedure call to clash with each non-preserved architectural register which results in
them being allocated a preserved register. For example,

int f(int x) { return g(x)+h(x)+1;}

might generate intermediate code of the form

ENTRY f

MOV v32,r0 ; save arg1 in x

MOV r0,v32 ; omitted (by "other lecturer did it" technique)

CALL g

MOV v33,r0 ; save result as v33

MOV r0,v32 ; get x back for arg1

CALL h

ADD v34,v33,r0 ; v34 = g(x)+h(x)

ADD r0,v34,#1 ; result = v34+1

EXIT

which, noting that v32 and v33 clash with all non-preserved registers (being live over a procedure
call), might generate code (on a machine where r4 upwards are specified to be preserved over
procedure call)

f: push {r4,r5} ; on ARM we do: push {r4,r5,lr}

mov r4,r0

call g

mov r5,r0

mov r0,r4

call h

add r0,r5,r0

add r0,r0,#1

pop {r4,r5} ; on ARM we do: pop {r4,r5,pc} which returns ...

ret ; ... so don’t need this on ARM.
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Note that r4 and r5 need to be push’d and pop’d at entry and exit from the procedure to
preserve the invariant that these registers are preserved over a procedure call (which is exploited
by using these registers over the calls to g and h. In general a sensible procedure calling standard
specifies that some (but not all) registers are preserved over procedure call. The effect is that
store-multiple (or push-multiple) instructions can be used more effectively than sporadic ld/st
to stack.

4.3 Global variables and register allocation

The techniques presented have implicitly dealt with register allocation of local variables. These
are live for (at most) their containing procedure, and can be saved and restored by called
procedures. Global variables (e.g. C static or extern) are in general live on entry to, and exit
from, a procedure and in general cannot be allocated to a register except for a whole program
“reserve register r⟨n⟩ for variable ⟨x⟩” declaration. The allocator then avoids such registers for
local variables (because without whole program analysis it is hard to know whether a call may
indirectly affect r⟨n⟩ and hence ⟨x⟩).

An amusing exception might be a C local static variable which is not live on entry to a
procedure—this does not have to be preserved from call-to-call and can thus be treated as an
ordinary local variable (and indeed perhaps the programmer should be warned about sloppy
code). The Green Hills C compiler used to do this optimisation.

5 Uses of AVAIL

The main use of AVAIL is common sub-expression elimination, CSE, (AVAIL provides a tech-
nique for doing CSE outwith a single basic block whereas simple-minded tree-oriented CSE
algorithms are generally restricted to one expression without side-effects). If an expression e is
available at a node n which computes e then we can ensure that the calculations of e on each
path to n are saved in a new variable which can be re-used at n instead of re-computing e at n.

In more detail (for any ALU operation ⊕):

• for each node n containing x := a⊕ b with a⊕ b available at n:

• create a new temporary t;

• replace n : x := a⊕ b with n : x := t;

• on each path scanning backwards from n, for the first occurrence of a⊕b (say n′ : y := a⊕b)
in the RHS of a 3-address instruction (which we know exists by AVAIL) replace n′ with
two instructions n′ : t := a⊕ b; n′′ : y := t.

Note that the additional temporary t above can be allocated by register allocation (and also
that it encourages the register allocator to choose the same register for t and as many as possible
of the various y). If it becomes spilt, we should ask whether the common sub-expression is big
enough to justify the LD/ST cost of spilling of whether the common sub-expression is small
enough that ignoring it by re-computing is cheaper. (See Section 8).

One subtlety which I have rather side-stepped in this course is the following issue. Suppose
we have source code
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x := a*b+c;

y := a*b+c;

then this would become 3-address instructions:

MUL t1,a,b

ADD x,t1,c

MUL t2,a,b

ADD y,t2,c

CSE as presented converts this to

MUL t3,a,b

MOV t1,t3

ADD x,t1,c

MOV t2,t3

ADD y,t2,c

which is not obviously an improvement! There are two solutions to this problem. One is to
consider bigger CSE’s than a single 3-address instruction RHS (so that effectively a*b+c is
a CSE even though it is computed via two different temporaries). The other is to use copy
propagation—we remove MOV t1,t3 and MOV t2,t3 by the expedient of renaming t1 and t2

as t3. This is only applicable because we know that t1, t2 and t3 are not otherwise updated.
The result is that t3+c becomes another CSE so we get

MUL t3,a,b

ADD t4,t3,c

MOV x,t4

MOV y,t4

which is just about optimal for input to register allocation (remember that x or y may be spilt
to memory whereas t3 and t4 are highly unlikely to be; moreover t4 (and even t3) are likely
to be allocated the same register as either x or y if they are not spilt).

6 Code Motion

Transformations such as CSE are known collectively as code motion transformations. Another
famous one (more general than CSE4) is Partial Redundancy Elimination. Consider

a = ...;

b = ...;

do

{ ... = a+b; /* here */

a = ...;

... = a+b;

} while (...)

4One can see CSE as a method to remove totally redundant expression computations.
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the marked expression a+b is redundantly calculated (in addition to the non-redundant calcu-
lation) every time round the loop except the first. Therefore it can be time-optimised (even if
the program stays the same size) by first transforming it into:

a = ...;

b = ...;

... = a+b;

do

{ ... = a+b; /* here */

a = ...;

... = a+b;

} while (...)

and then the expression marked ‘here’ can be optimised away by CSE.

7 Static Single Assignment (SSA) Form

Register allocation re-visited: sometimes the algorithm presented for register allocation is not
optimal in that it assumes a single user-variable will live in a single place (store location or
register) for the whole of its scope. Consider the following illustrative program:

extern int f(int);

extern void h(int,int);

void g()

{ int a,b,c;

a = f(1); b = f(2); h(a,b);

b = f(3); c = f(4); h(b,c);

c = f(5); a = f(6); h(c,a);

}

Here a, b and c all mutually clash and so all get separate registers. However, note that the first
variable on each line could use (say) r4, a register preserved over function calls, and the second
variable a distinct variable (say) r1. This would reduce the need for registers from three to two,
by having distinct registers used for a given variable at different points in its scope. (Note this
may be hard to represent in debugger tables.)

The transformation is often called live range splitting and can be seen as resulting from
source-to-source transformation:

void g()

{ int a1,a2, b1,b2, c1,c2;

a1 = f(1); b2 = f(2); h(a1,b2);

b1 = f(3); c2 = f(4); h(b1,c2);

c1 = f(5); a2 = f(6); h(c1,a2);

}

This problem does not arise with temporaries because we have arranged that every need
for a temporary gets a new temporary variable (and hence virtual register) allocated (at least
before register colouring). The critical property of temporaries which we wish to extend to
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user-variables is that each temporary is assigned a value only once (statically at least—going
round a loop can clearly assign lots of values dynamically).

This leads to the notion of Static Single Assignment (SSA) form and the transformation to
it.

SSA form (see e.g. Cytron et al. [2]) is a compilation technique to enable repeated assign-
ments to the same variable (in flowgraph-style code) to be replaced by code in which each
variable occurs (statically) as a destination exactly once.

In straight-line code the transformation to SSA is straightforward, each variable v is replaced
by a numbered instance vi of v. When an update to v occurs this index is incremented. This
results in code like

v = 3; v = v+1; v = v+w; w = v*2;

(with next available index 4 for w and 7 for v) being mapped to

v7 = 3; v8 = v7+1; v9 = v8+w3; w4 = v9*2;

On path-merge in the flowgraph we have to ensure instances of such variables continue
to cause the same data-flow as previously. This is achieved by placing a logical (static single)
assignment to a new common variable on the path-merge arcs. Because flowgraph nodes (rather
than edges) contain code this is conventionally represented by a invoking a so-called ϕ-function
at entry to the path-merge node. The intent is that ϕ(x, y) takes value x if control arrived from
the left arc and y if it arrived from the right arc; the value of the ϕ-function is used to define a
new singly-assigned variable. Thus consider

{ if (p) { v = v+1; v = v+w; } else v=v-1; } w = v*2;

which would map to (only annotating v and starting at 4)

{ if (p) { v4 = v3+1; v5 = v4+w; } else v6=v3-1; } v7 = ϕ(v5,v6); w = v7*2;

8 The Phase-Order Problem

The ‘phase-order problem’ refers to the issue in compilation that whenever we have multiple
optimisations to be done on a single data structure (e.g. register allocation and CSE on the
flowgraph) we find situations where doing any given optimisation yields better results for some
programs if done after another optimisation, but better results if done before for others. A
slightly more subtle version is that we might want to bias choices within one phase to make
more optimisations possible in a later phase. These notes just assume that CSE is done before
register allocation and if SSA is done then it is done between them.

We just saw the edge of the phase order problem: what happens if doing CSE causes a
cheap-to-recompute expression to be stored in a variable which is spilt into expensive-to-access
memory. In general other code motion operations (including Instruction Scheduling in Part C)
have harder-to-resolve phase order issues.

9 Compiling for Multi-Core

Multi-core processors are now the norm with the inability of additional transistors due to
Moore’s Law to translate into higher processor clock frequencies (cf. failure of Dennard scaling
and Part II Comparative Architectures).
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Effectively compiling for them is, however, a challenging task and current industrial offerings
are far from satisfactory. One key issue is whether we wish to write in a sequential language
and then hope that the compiler can parallelise it (this is liable to be rather optimistic for
languages which contain aliasing, especially on NUMA architectures, but also on x86-style
multi-core) since “alias analysis” (determining whether two pointers may point to the same
location) is undecidable in theory and tends to be ineffective in practice (see Section 18 for
an O(n3) approach). Otherwise a compiler for a sequential language needs hints about where
parallelism is possible and/or safe. Open/MP and Cilk++ are two general-purpose offerings
with very different flavours.

The alternative is writing explicitly parallel code, but this easily becomes target-specific and
hence non-portable. Languages with explicit message passing (MPI) are possibilities, and for
graphics cards Nvidia’s CUDA or OpenCL (which targets heterogeneous systems in general)
are standard.

A promising direction is that of languages which explicitly express the isolation of two
processes (disjointness of memory accesses).

For time reasons this course will not say more on this topic, but it is worth noting that the
change from uni-processing to multi-core is bigger than almost any other change in computing,
and the sequential languages which we learned how to compile efficiently for sequential machines
seem no longer appropriate.
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Part B: Higher-Level Optimisations

This second part of the course concerns itself with more modern optimisation techniques than
the first part. A simplistic view is that the first part concerned classical optimisations for im-
perative languages and this part concerns mainly optimisations for functional languages but
this somewhat misrepresents the situation. For example even if we perform some of the op-
timisations (like strictness optimisations) detailed here on a functional language, we may still
wish to perform flowgraph-based optimisations like register allocation afterwards. The view I
would like to get across is that the optimisations in this part tend to be interprocedural ones
and these can often be seen with least clutter in a functional language. So a more correct view
is that this part deals with analyses and optimisations at a higher level than that which is easily
represented in a flowgraph. Indeed they tend to be phrased in terms of the original (or possibly
canonicalised) syntax of the programming language, so that flowgraph-like concepts are not
easily available (whether we want them to be or not!).

As a final remark aimed at discouraging the view that the techniques detailed here ‘are only
suited to functional languages’, one should note that for example ‘abstract interpretation’ is
a very general framework for analysis of programs written in any paradigm and it is only the
instantiation of it to strictness analysis given here which causes it to be specialised to programs
written in a functional paradigm. Similarly ‘rule-based program property inference’ can be seen
as a framework which can be specialised into type checking and inference systems (the subject
of another CST Part II course) in addition to the techniques given here.

One must remark however, that the research communities for dataflow analyses and higher-
level program analyses have not always communicated sufficiently for unified theory and notation
to have developed.

We start by looking at classical intra-procedural optimisations which are typically done at
the syntax tree level. Note that these can be seen as code motion transformations (see Section 6).

10 Algebraic Identities

One form of transformation which is is not really covered here is the (rather boring) purely
algebraic tree-to-tree transformation such as e+ 0 −→ e or (e+ n) +m −→ e+ (n+m) which
usually hold universally (without the need to do analysis to ensure their validity, although
neither need hold in floating point arithmetic!). A more programming-oriented rule with a
trivial analysis might be transforming

let x = e in if e’ then ... x ... else e’’

in a lazy language to

if e’ then let x = e in ... x ... else e’’

when e’ and e’’ do not contain x. The flavour of transformations which concern us are those
for which a non-trivial (i.e. not purely syntactic) property is required to be shown by analysis
to validate the transformation.

10.1 Strength reduction

A slightly more exciting example is that of strength reduction. Strength reduction generally
refers to replacing some expensive operator with some cheaper one. A trivial example given by
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a simple algebraic identity such as 2 ∗ e −→ let x = e in x+ x. It is more interesting/useful
to do this in a loop.

First find loop induction variables, those whose only assignment in the loop is i := i ⊕ c
for some operator ⊕ and some constant5 c. Now find other variables j, whose only assignment
in the loop is j := c2 ⊕ c1 ⊗ i, where x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and c1, c2 are constants
(we assume this assignment to j is before the update to i to make the following explanation
simpler).

The optimisation is to move the assignment j := c2 ⊕ c1 ⊗ i to the entry to the loop6, and
add an end-of-loop-body assignment j := j ⊕ (c1 ⊗ c). Now that we know the relation of i to
j we can, for example, change any loop-termination test using i to one using j and therefore
sometimes eliminate i entirely. For example, assume int v[100]; and ints to be 4 bytes wide
on a byte addressed machine. Let us write &&v for the byte address of the first element of array
v, noting it is a constant, and consider

for (i=0; i<100; i++) v[i] = 0;

Although this code is sometimes optimal, many machines need to calculate the physical byte
address &&v + 4 ∗ i separately from the store instruction, so the code is really

for (i=0; i<100; i++) { p = &&v + 4*i; Store4ZerobytesAt(p); }

Strength reduction gives:

for ((i=0, p=&&v); i<100; (i++, p+=4)) Store4ZerobytesAt(p);

and rewriting the loop termination test gives

for ((i=0, p=&&v); p<&&v+400; (i++, p+=4)) Store4ZerobytesAt(p);

Dropping the i (now no longer used), and re-expressing in proper C gives

int *p;

for (p=&v[0]; p<&v[100]; p++) *p = 0;

which is often (depending on exact hardware) the optimal code, and is perhaps the code that
the C-hackers of you might have been tempted to write. Let me discourage you—this latter
code may save a few bytes on your current hardware/compiler, but because of pointer-use, is
much harder to analyse—suppose your shiny new machine has 64-bit operations, then the loop
as originally written can (pretty simply, but beyond these notes) be transformed to be a loop
of 50 64-bit stores, but most compilers will give up on the ‘clever C programmer’ solution.

I have listed strength reduction in this tree-oriented-optimisation section. In many ways it is
easier to perform on the flowgraph, but only if loop structure has been preserved as annotations
to the flowgraph (recovering this is non-trivial—see the Decompilation section).

5Although I have written ‘constant’ here I really only need “expression not affected by execution of (invariant
in) the loop”.

6If i is seen to be assigned a constant on entry to the loop then the RHS simplifies to constant.
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11 Abstract Interpretation

In this course there is only time to give the briefest of introductions to abstract interpretation.
We observe that to justify why (−1515)× 37 is negative there are two explanations. One is

that (−1515)×37 = −56055 which is negative. Another is that −1515 is negative, 37 is positive
and ‘negative × positive is negative’ from school algebra. We formalise this as a table

⊗ (−) (0) (+)

(−) (+) (0) (−)
(0) (0) (0) (0)
(+) (−) (0) (+)

Here there are two calculation routes: one is to calculate in the real world (according to the
standard interpretation of operators (e.g. ×means multiply) on the standard space of values) and
then to determine the whether the property we desire holds; the alternative is to abstract to an
abstract space of values and to compute using abstract interpretations of operators (e.g. × means
⊗) and to determine whether the property holds there. Note that the abstract interpretation
can be seen as a ‘toy-town’ world which models certain aspects, but in general not all, of reality
(the standard interpretation).

When applying this idea to programs undecidability will in general mean that answers
cannot be precise, but we wish them to be safe in that “if a property is exhibited in the
abstract interpretation then the corresponding real property holds”. (Note that this means we
cannot use logical negation on such properties.) We can illustrate this on the above rule-of-
signs example by considering (−1515)+37: real-world calculation yields −1478 which is clearly
negative, but the abstract operator ⊕ on signs can only safely be written

⊕ (−) (0) (+)

(−) (−) (−) (?)
(0) (−) (0) (+)
(+) (?) (+) (+)

where (?) represents an additional abstract value conveying no knowledge (the always-true
property), since the sign of the sum of a positive and a negative integer depends on their
relative magnitudes, and our abstraction has discarded that information. Abstract addition ⊕
operates on (?) by (?) ⊕ x = (?) = x ⊕ (?) — an unknown quantity may be either positive
or negative, so the sign of its sum with any other value is also unknown. Thus we find that,
writing abs for the abstraction from concrete (real-world) to abstract values we have

abs((−1515) + 37) = abs(−1478) = (−), but
abs(−1515)⊕ abs(37) = (−)⊕ (+) = (?).

Safety is represented by the fact that (−) ⊆ (?), i.e. the values predicted by the abstract
interpretation (here everything) include the property corresponding to concrete computation
(here {z ∈ ZZ | z < 0}).

Note that we may extend the above operators to accept (?) as an input, yielding the
definitions

⊗ (−) (0) (+) (?)

(−) (+) (0) (−) (?)
(0) (0) (0) (0) (0)
(+) (−) (0) (+) (?)
(?) (?) (0) (?) (?)

⊕ (−) (0) (+) (?)

(−) (−) (−) (?) (?)
(0) (−) (0) (+) (?)
(+) (?) (+) (+) (?)
(?) (?) (?) (?) (?)
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and hence allowing us to compose these operations arbitrarily; for example,

(abs(−1515)⊗ abs(37))⊕ abs(42) = ((−)⊗ (+))⊕ (+) = (?), or
(abs(−1515)⊕ abs(37))⊗ abs(0) = ((−)⊕ (+))⊗ (0) = (0).

Similar tricks abound elsewhere e.g. ‘casting out nines’ (e.g. 123456789 divides by 9 because
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 does, 45 because 4+5 does).

One point worth noting, because it turns up in programming equivalents, is that two different
syntactic forms which have the same standard meaning may have differing abstract meanings.
An example for the rule-of-signs is (x+ 1)× (x− 3) + 4 which gives (?) when x = (−) whereas
(x× x) + (−2× x) + 1 gives (+).

Abstract interpretation has been used to exhibit properties such as live variable sets, avail-
able expression sets, types etc. as abstract values whose computation can be seen as pre-
evaluating the user’s program but using non-standard (i.e. abstract) operators during the com-
putation. For this purpose it is useful to ensure the abstract computation is finite, e.g. by
choosing finite sets for abstract value domains.

12 Strictness Analysis

This is an example of abstract interpretation which specialises the general framework to deter-
mining when a function in a lazy functional language is strict in a given formal parameter (i.e.
the actual parameter will necessarily have been evaluated whenever the function returns). The
associated optimisation is to use call-by-value (eager evaluation) to implement the parameter
passing mechanism for the parameter. This is faster (because call-by-value is closer to current
hardware than the suspend-resume of lazy evaluation) and it can also reduce asymptotic space
consumption (essentially because of tail-recursion effects). Note also that strict parameters can
be evaluated in parallel with each other (and with the body of the function about to be called!)
whereas lazy evaluation is highly sequential.

In these notes we will not consider full lazy evaluation, but a simple language of recur-
sion equations; eager evaluation is here call-by-value (CBV—evaluate argument once before
calling the function); lazy evaluation corresponds to call-by-need (CBN—pass the argument
unevaluated and evaluate on its first use (if there is one) and re-use this value on subsequent
uses—argument is evaluated 0 or 1 times). In a language free of side-effects CBN is seman-
tically indistinguishable (but possibly distinguishable by time complexity of execution) from
call-by-name (evaluate a parameter each time it is required by the function body—evaluates
the argument 0,1,2,. . . times).

The running example we take is

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).

To illustrate the extra space use of CBN over CBV we can see that

plus(3,4) 7→ cond(3=0,4,plus(3-1,4+1))

7→ plus(3-1,4+1)

7→ plus(2-1,4+1+1)

7→ plus(1-1,4+1+1+1)

7→ 4+1+1+1

7→ 5+1+1
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7→ 6+1

7→ 7.

The language we consider here is that of recursion equations:

F1(x1, . . . , xk1) = e1

· · · = · · ·
Fn(x1, . . . , xkn) = en

where e is given by the syntax

e ::= xi | Ai(e1, . . . , eri) | Fi(e1, . . . eki)

where the Ai are a set of symbols representing built-in (predefined) function (of arity ri). The
technique is also applicable to the full λ-calculus but the current formulation incorporates recur-
sion naturally and also avoids difficulties with the choice of associated strictness optimisations
for higher-order situations.

We now interpret the Ai with standard and abstract interpretations (ai and a♯i respectively)

and deduce standard and abstract interpretations for the Fi (fi and f ♯
i respectively).

Let D = ZZ⊥(= ZZ ∪ {⊥}) be the space of integer values (for terminating computations
of expressions e) augmented with a value ⊥ (to represent non-termination). The standard
interpretation of a function Ai (of arity ri) is a value ai ∈ Dri → D. For example

+(⊥, y) = ⊥
+(x,⊥) = ⊥
+(x, y) = x+ZZ y otherwise

cond(⊥, x, y) = ⊥
cond(0, x, y) = y

cond(p, x, y) = x otherwise

(Here, and elsewhere, we treat 0 as the false value for cond and any non-0 value as true, as in
C.)

We can now formally define the notion that a function A (of arity r) with semantics a ∈
Dr → D is strict in its ith parameter (recall earlier we said that this was if the parameter had
necessarily been evaluated whenever the function returns). This happens precisely when

(∀d1, . . . , di−1, di+1, . . . , dr ∈ D) a(d1, . . . , di−1,⊥, di+1, . . . , dr) = ⊥.

We now let D♯ = 2
def
= {0, 1} be the space of abstract values and proceed to define an a♯i

for each ai. The value ‘0’ represents the property ‘guaranteed looping’ whereas the value ‘1’
represents ‘possible termination’.

Given such an a ∈ Dr → D we define a♯ : 2r → 2 by

a♯(x1, . . . , xr) = 0 if (∀d1, . . . , dr ∈ D s.t. (xi = 0 ⇒ di = ⊥)) a(d1, . . . , dr) = ⊥
= 1 otherwise.
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This gives the strictness function a♯i which provides the strictness interpretation for each Ai.
Note the equivalent characterisation (to which we shall return when we consider the relationship
of f ♯ to f)

a♯(x1, . . . , xr) = 0 ⇔ (∀d1, . . . , dr ∈ D s.t. (xi = 0 ⇒ di = ⊥)) a(d1, . . . , dr) = ⊥

For example we find

+♯(x, y) = x ∧ y

cond ♯(p, x, y) = p ∧ (x ∨ y)

We build a table into our analyser giving the strictness function for each built-in function.

Strictness functions generalise the above notion of “being strict in an argument”. For a
given built-in function a, we have that a is strict in its ith argument iff

a♯(1, . . . , 1, 0, 1, . . . , 1) = 0

(where the ‘0’ is in the ith argument position). However strictness functions carry more infor-
mation which is useful for determining the strictness property of one (user) function in terms
of the functions which it uses. For example consider

let f1(x,y,z) = if x then y else z

let f2(x,y,z) = if x then y else 42

let g1(x,y) = f1(x,y,y+1)

let g2(x,y) = f2(x,y,y+1)

Both f1 and f2 are strict in x and nothing else—which would mean that the strictness of g1
and g2 would be similarly deduced identical—whereas their strictness functions differ

f1♯(x, y, z) = x ∧ (y ∨ z)

f2♯(x, y, z) = x

and this fact enables us (see below) to deduce that g1 is strict in x and y while g2 is merely
strict in x. This difference between the strictness behaviour of f1 and f2 can also be expressed
as the fact that f1 (unlike f2) is jointly strict in y and z (i.e. (∀x ∈ D)f(x,⊥,⊥) = ⊥) in
addition to being strict in x.

Now we need to define strictness functions for user-defined functions. The most exact way
to calculate these would be to calculate them as we did for base functions: thus

f(x,y) = if tautology(x) then y else 42

would yield

f ♮(x, y) = x ∧ y

assuming that tautology was strict. (Note use of f ♮ in the above—we reserve the name f ♯ for
the following alternative.) Unfortunately this is undecidable in general and we seek a decidable
alternative (see the corresponding discussion on semantic and syntactic liveness).
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To this end we define the f ♯
i not directly but instead in terms of the same composition and

recursion from the a♯i as that which defines the Fi in terms of the Ai. Formally this can be seen
as: the fi are the solution of the equations

F1(x1, . . . , xk1) = e1

· · · = · · ·
Fn(x1, . . . , xkn) = en

when the Ai are interpreted as the ai whereas the f
♯
i are the solutions when the Ai are interpreted

as the a♯i.
Safety of strictness can be characterised by the following: given user defined function F (of

arity k) with standard semantics f : Dk → D and strictness function f ♯ : 2k → 2 by

f ♯(x1, . . . , xk) = 0 ⇒ (∀d1, . . . , dk ∈ D s.t. (xi = 0 ⇒ di = ⊥)) f(d1, . . . , dk) = ⊥

Note the equivalent condition for the Ai had ⇒ strengthened to ⇔—this corresponds to the
information lost by composing the abstract functions instead of abstracting the standard com-
position. An alternative characterisation of safety is that f ♮(x⃗) ≤ f ♯(x⃗).

Returning to our running example

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).

we derive equation

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)). (1)

Simplifying with built-ins

eq♯(x, y) = x ∧ y

0♯ = 1

add1 ♯(x) = x

sub1 ♯(x) = x

gives
plus♯(x, y) = x ∧ (y ∨ plus♯(x, y)).

Of the six possible solutions (functions in 2 × 2 → 2 which do not include negation—negation
corresponds to ‘halt iff argument does not halt’)

{λ(x, y).0, λ(x, y).x ∧ y, λ(x, y).x, λ(f, y).y, λ(x, y).x ∨ y, λ(x, y).1}

we find that only λ(x, y).x and λ(x, y).x ∧ y satisfy equation (1) and we choose the latter for
the usual reasons—all solutions are safe and this one permits most strictness optimisations.

Mathematically we seek the least fixpoint of the equations for plus♯ and algorithmically we
can solve any such set of equations (using f#[i] to represent f ♯

i , and writing e♯i to mean ei with

the Fj and Aj replaced with f ♯
j and a♯j) by:

for i=1 to n do f#[i] := λx⃗.0
while (f#[] changes) do

for i=1 to n do

f#[i] := λx⃗.e♯i.
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Note the similarity to solving dataflow equations—the only difference is the use of functional
dataflow values. Implementation is well served by an efficient representation of such boolean
functions. ROBDDs7 are a rational choice in that they are a fairly compact representation with
function equality (for the convergence test) being represented by simple pointer equality.

For plus♯ we get the iteration sequence λ(x.y).0 (initial), λ(x, y).x ∧ y (first iteration),
λ(x, y).x ∧ y (second iteration, halt as converged).

Since we can now see that plus♯(0, 1) = plus♯(1, 0) = 0 we can deduce that plus is strict in
x and in y.

We now turn to strictness optimisation. Recall we suppose our language requires each
parameter to be passed as if using CBN. As indicated earlier any parameter shown to be strict
can be implemented using CBV. For a thunk-based implementation of CBN this means that we
continue to pass a closure λ().e for any actual parameter e not shown to be strict and evaluate
this on first use inside the body; whereas for a parameter shown to be strict, we evaluate e
before the call by passing it using CBV and then merely use the value in the body.

13 Constraint-Based Analysis

In constraint-based analysis, the approach taken is that of walking the program emitting con-
straints (typically, but not exclusively) on the sets of values which variables or expressions may
take. These sets are related together by constraints. For example if x is constrained to be an
even integer then it follows that x+ 1 is constrained to be an odd integer.

Rather than look at numeric problems, we choose as an example analysis the idea of control-
flow analysis (CFA, technically 0-CFA for those looking further in the literature); this attempts
to calculate the set of functions callable at every call site.

13.1 Constraint systems and their solution

This is a non-examinable section, here to provide a bit of background.

Many program analyses can be seen as solving a system of constraints. For example in
LVA, the constraints were that a “set of live variables at one program point is equal to some
(monotonic) function applied to the sets of live variables at other program points”. Boundary
conditions were supplied by entry and/or exit nodes. I used the “other lecturer did it” tech-
nique (here ‘semantics’) to claim that such sets of such constraints have a minimal solution.
Another example is Hindley-Milner type checking—we annotate every expression with a type
ti, e.g. (e

t1
1 e

t2
2 )

t3 and then walk the program graph emitting constraints representing the need
for consistency between neighbouring expressions. The term above would emit the constraint
t1 = (t2 → t3) and then recursively emit constraints for e1 and e2. We can then solve these
constraints (now using unification) and the least solution (substituting types to as few ti as
possible) corresponds to ascribing all expressions their most-general type.

In the CFA below, the constraints are inequations, but they again have the property that a
minimal solution can be reached by initially assuming that all sets αi are empty, then for each
constraint α ⊇ ϕ (note we exploit that the LHS is always a flow variable) which fails to hold,
we update α to be ϕ and loop until all equations hold.

7ROBBD means Reduced Ordered Binary Decision Diagram, but often OBDD or BDD is used to refer to the
same concept.
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One exercise to think of solving inequation systems is to consider how, given a relation R,
its transitive closure T may be obtained. This can be expressed as constraints:

R ⊆ T

{(x, y)} ⊆ T ∧ {(y, z)} ⊆ R =⇒ {(x, z)} ⊆ T

14 Control-Flow Analysis (For λ-Terms)

This is not to be confused with the simpler intraprocedural reachability analysis on flow graphs,
but rather generalises call graphs. Given a program P the aim is to calculate, for each expression
e, the set of primitive values (here integer constants and λ-abstractions) which can result from
e during the evaluation of P . (This can be seen as a higher-level technique to improve the
resolution of the approximation “assume an indirect call may invoke any procedure whose
address is taken” which we used in calculating the call graph.)

We take the following language for concrete study (where we consider c to range over a set
of (integer) constants and x to range over a set of variables):

e ::= x | c | λx.e | e1e2 | let x = e1 in e2.

Programs P are just terms in e with no free variables. For this lecture we will consider the
program, P , given by

let id = λx.x in id id 7

We now need a notion of program point (generalisation of label) which we can use to reference
uniquely a given expression in context. This is important because the same expression may
occur twice in a program but we wish it to be treated separately. Thus we label the nodes
of the syntax tree of the above program uniquely with their occurrences in the tree (formally
sequences of integers representing the route from the root to the given node, but here convenient
integers). This gives

(let id10 = (λx20.x21)22 in ((id30 id31)32 733)34)1.

The space of flow values F for this program is

{(λx20.x21)22, 733}
which again in principle require the labelling to ensure uniqueness. Now associate a flow variable
with each program point, i.e.

α1, α10, α20, α21, α22, α30, α31, α32, α33, α34.

In principle we wish to associate, with each flow variable αi associated with expression ei, the
subset of the flow values which it yields during evaluation of P . Unfortunately again this is
undecidable in general and moreover can depend on the evaluation strategy (CBV/CBN). We
have seen this problem before and, as before, we give a formulation to get safe approximations
(here possibly over-estimates) for the αi.

8 Moreover these solutions are safe with respect to any
evaluation strategy for P (this itself is a source of some imprecision!).

We get constraints on the αi determined by the program structure (the following constraints
are in addition to the ones recursively generated by the subterms e, e1, e2 and e3):

8The above is the normal formulation, but you might prefer to think in dataflow terms. αi represents
possible-values(i) and the equations below are dataflow equations.
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• for a term xi we get the constraint αi ⊇ αj where xj is the associated binding (via
let xj = · · · or λxj . · · ·);

• for a term ci we get the constraint αi ⊇ {ci};

• for a term (λxj .ek)i we get the constraint αi ⊇ {(λxj .ek)i};

• for a term (ej1e
k
2)

i we get the compound constraint (αk 7→ αi) ⊇ αj ;

• for a term (let xl = ej1 in ek2)
i we get the constraints αi ⊇ αk and αl ⊇ αj ;

• for a term (if ej1 then ek2 else el3)
i we get the constraints αi ⊇ αk and αi ⊇ αl.

Here (γ 7→ δ) ⊇ β represents the fact that the flow variable β (corresponding to the information
stored for the function to be applied) must include the information that, when provided an
argument contained within the argument specification γ, it yields results contained within the
result specification δ. (Of course δ may actually be larger because of other calls.) Formally
(γ 7→ δ) ⊇ β is shorthand for the compound constraint that (i.e. is satisfied when)

whenever β ⊇ {(λxq.er)p} we have αq ⊇ γ ∧ δ ⊇ αr.

You may prefer instead to to see this directly as “applications generate an implication”:

• for a term (ej1e
k
2)

i we get the constraint implication

αj ⊇ {(λxq.er)p} =⇒ αq ⊇ αk ∧ αi ⊇ αr.

Now note this implication can also be written as two implications

αj ⊇ {(λxq.er)p} =⇒ αq ⊇ αk

αj ⊇ {(λxq.er)p} =⇒ αi ⊇ αr

Now, if you know about Prolog/logic programming then you can see these expression forms as
generating clauses defining the predicate symbol ⊇. Most expressions generate simple ‘always
true’ clauses such as αi ⊇ {ci}, whereas the application form generates two implicational clauses:

αq ⊇ αk ⇐= αj ⊇ {(λxq.er)p}
αi ⊇ αr ⇐= αj ⊇ {(λxq.er)p}

Compare the two forms respectively with the two clauses

app([],X,X).

app([A|L],M,[A|N]) :- app(L,M,N).

which constitutes the Prolog definition of append.

As noted in Section 13.1 the constraint set generated by walking a program has a unique
least solution.
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The above program P gives the following constraints, which we should see as dataflow
inequations:

α1 ⊇ α34 let result
α10 ⊇ α22 let binding
α22 ⊇ {(λx20.x21)22} λ-abstraction
α21 ⊇ α20 x use
α33 ⊇ {733} constant 7
α30 ⊇ α10 id use

α31 7→ α32 ⊇ α30 application-32
α31 ⊇ α10 id use

α33 7→ α34 ⊇ α32 application-34

Again all solutions are safe, but the least solution is

α1 = α34 = α32 = α21 = α20 = {(λx20.x21)22, 733}
α30 = α31 = α10 = α22 = {(λx20.x21)22}

α33 = {733}

You may verify that this solution is safe, but note that it is imprecise because (λx20.x21)22 ∈ α1

whereas the program always evaluates to 733. The reason for this imprecision is that we have only
a single flow variable available for the expression which forms the body of each λ-abstraction.
This has the effect that possible results from one call are conflated with possible results from
another. There are various enhancements to reduce this which we sketch in the next paragraph
(but which are rather out of the scope of this course).

The analysis given above is a monovariant analysis in which one property (here a single
set-valued flow variable) is associated with a given term. As we saw above, it led to some
imprecision in that P above was seen as possibly returning {7, λx.x} whereas the evaluation of
P results in 7. There are two ways to improve the precision. One is to consider a polyvariant
approaching in which multiple calls to a single procedure are seen as calling separate procedures
with identical bodies. An alternative is a polymorphic approach in which the values which flow
variables may take are enriched so that a (differently) specialised version can be used at each
use. One can view the former as somewhat akin to the ML treatment of overloading where we
see (letting ∧ represent the choice between the two types possessed by the + function)

op + : int*int->int ∧ real*real->real

and the latter can similarly be seen as comparable to the ML typing of

fn x=>x : ∀α.α->α.

This is an active research area and the ultimately ‘best’ treatment is unclear.

15 Class Hierarchy Analysis

This section is just a pointer for those of you who want to know more about optimising object-
oriented programs. Dean et al. [3] “ Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis” is the original source. Ryder [4] “Dimensions of Precision in Reference
Analysis of Object-Oriented Programming Languages” gives a retrospective.
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16 Inference-Based Program Analysis

This is a general technique in which an inference system specifies judgements of the form

Γ ⊢ e : ϕ

where ϕ is a program property and Γ is a set of assumptions about free variables of e. One
standard example (covered in more detail in the CST Part II ‘Types’ course) is the ML type
system. Although the properties are here types and thus are not directly typical of program
optimisation (the associated optimisation consists of removing types of values, evaluating in a
typeless manner, and attaching the inferred type to the computed typeless result; non-typable
programs are rejected) it is worth considering this as an archetype. For current purposes ML
expressions e can here be seen as the λ-calculus:

e ::= x | λx.e | e1e2
and (assuming α to range over type variables) types t of the syntax

t ::= α | int | t → t′.

Now let Γ be a set of assumptions of the form {x1 : t1, . . . , xn : tn} which assume types ti for
free variables xi; and write Γ[x : t] for Γ with any assumption about x removed and with x : t
additionally assumed. We then have inference rules:

(VAR)
Γ[x : t] ⊢ x : t

(LAM)
Γ[x : t] ⊢ e : t′

Γ ⊢ λx.e : t → t′

(APP)
Γ ⊢ e1 : t → t′ Γ ⊢ e2 : t

Γ ⊢ e1e2 : t′
.

Safety: the type-safety of the ML inference system is clearly not part of this course, but its
formulation clearly relates to that for other analyses. It is usually specified by the soundness
condition:

({} ⊢ e : t) ⇒ ([[e]] ∈ [[t]])

where [[e]] represents the result of evaluating e (its denotation) and [[t]] represents the set of
values which have type t. Note that (because of {}) the safety statement only applies to closed
programs (those with no free variables) but its inductive proof in general requires one to consider
programs with free variables.

The following gives a more program-analysis–related example; here properties have the form

ϕ ::= odd | even | ϕ → ϕ′.

We would then have rules:

(VAR)
Γ[x : ϕ] ⊢ x : ϕ

(LAM)
Γ[x : ϕ] ⊢ e : ϕ′

Γ ⊢ λx.e : ϕ → ϕ′

(APP)
Γ ⊢ e1 : ϕ → ϕ′ Γ ⊢ e2 : ϕ

Γ ⊢ e1e2 : ϕ′ .
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Under the assumptions

Γ = {2 : even, + : even → even → even, × : even → odd → even}

we could then show
Γ ⊢ λx.λy.2× x+ y : odd → even → even.

but note that showing

Γ′ ⊢ λx.λy.2× x+ 3× y : even → even → even.

would require Γ′ to have two assumptions for × or a single assumption of a more elaborate
property, involving conjunction, such as:

× : even → even → even ∧
even → odd → even ∧
odd → even → even ∧
odd → odd → odd .

Exercise: Construct a system for odd and even which can show that

Γ ⊢ (λf.f(1) + f(2))(λx.x) : odd

for some Γ.

17 Effect Systems

This is an example of inference-based program analysis. The particular example we give concerns
an effect system for analysis of communication possibilities of systems.

The idea is that we have a language such as the following

e ::= x | λx.e | e1e2 | ξ?x.e | ξ!e1.e2 | if e1 then e2 else e3.

which is the λ-calculus augmented with expressions ξ?x.e which reads an int from a channel ξ
and binds the result to x before resulting in the value of e (which may contain x) and ξ!e1.e2
which evaluates e1 (which must be an int) and writes its value to channel ξ before resulting in
the value of e2. Under the ML type-checking regime, side effects of reads and writes would be
ignored by having rules such as:

(READ)
Γ[x : int ] ⊢ e : t

Γ ⊢ ξ?x.e : t

(WRITE)
Γ ⊢ e1 : int Γ ⊢ e2 : t

Γ ⊢ ξ!e1.e2 : t
.

For the purpose of this example, we suppose the problem is to determine which channels
may be read or written during evaluation of a closed term P . These are the effects of P . Here
we take the effects, ranged over by F , to be subsets of

{Wξ, Rξ | ξ a channel}.
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The problem with the natural formulation is that a program like

ξ!1.λx.ζ!2.x

has an immediate effect of writing to ξ but also a latent effect of writing to ζ via the resulting
λ-abstraction.

We can incorporate this notion of effect into an inference system by using judgements of the
form

Γ ⊢ e : t, F

whose meaning is that when e is evaluated then its result has type t and whose immediate effects
are a subset (this represents safety) of F . To account for latent effects of a λ-abstraction we
need to augment the type system to

t ::= int | t F→ t′.

Letting one(f) = {f} represent the singleton effect, the inference rules are then

(VAR)
Γ[x : t] ⊢ x : t, ∅

(READ)
Γ[x : int ] ⊢ e : t, F

Γ ⊢ ξ?x.e : t, one(Rξ) ∪ F

(WRITE)
Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F

′

Γ ⊢ ξ!e1.e2 : t, F ∪ one(Wξ) ∪ F ′

(LAM)
Γ[x : t] ⊢ e : t′, F

Γ ⊢ λx.e : t
F→ t′, ∅

(APP)
Γ ⊢ e1 : t

F ′′
→ t′, F Γ ⊢ e2 : t, F

′

Γ ⊢ e1e2 : t′, F ∪ F ′ ∪ F ′′ .

Note that by changing the space of effects into a more structured set of values (and by
changing the understanding of the ∅, one and ∪ constants and operators on effects e.g. using
sequences with ∪ being append) we could have captured more information such as temporal
ordering since

ξ?x.ζ!(x+ 1).42 : int , {Rξ} ∪ {Wζ}

and

ζ!7.ξ?x, 42 : int , {Wζ} ∪ {Rξ}.

Similarly one can extend the system to allow transmitting and receiving more complex types
than int over channels.

One additional point is that care needs to be taken about allowing an expression with fewer
effects to be used in a context which requires more. This is an example of subtyping although
the example below only shows the subtype relation acting on the effect parts. The obvious rule
for if-then-else is:

(COND)
Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F

′ Γ ⊢ e3 : t, F
′′

Γ ⊢ if e1 then e2 else e3 : t, F ∪ F ′ ∪ F ′′ .
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However, this means that

if x then λx.ξ!3.x+ 1 else λx.x+ 2

is ill-typed (the types of e2 and e3 mismatch because their latent effects differ). Thus we tend
to need an additional rule which, for the purposes of this course can be given by

(SUB)
Γ ⊢ e : t

F ′
→ t′, F

Γ ⊢ e : t
F ′′→ t′, F

(provided F ′ ⊆ F ′′)

Safety can then similarly approached to that of the ML type system where semantic function
[[e]] is adjusted to yield a pair (v, f) where v is a resulting value and f the actual (immediate)
effects obtained during evaluation. The safety criterion is then stated:

({} ⊢ e : t, F ) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])

Incidentally, various “purity analyses” for Java (which capture that a pure method has no
effect on existing data structures) are closely related to effect systems.

18 Points-To and Alias Analysis

Consider an MP3 player containing code:

for (channel = 0; channel < 2; channel++)

process_audio(channel);

or even

process_audio_left();

process_audio_right();

These calls can only be parallelised (useful for multi-core CPUs) if neither call writes to a
memory location read or written by the other.

So, we want to know (at compile time) what locations a procedure might write to or read
from at run time.

For simple variables, even including address-taken variables, this is moderately easy (we
have done similar things in “ambiguous ref” in LVA and “ambiguous kill” in Avail), but note
that multi-level pointers int a, *b=&a, **c=&b; make the problem more complicated here.

So, given a pointer value, we are interested in finding a (finite) description of what locations
it might point to—or, given a procedure, a description of what locations it might read from or
write to. If two such descriptions have empty intersection then we can parallelise.

To deal with new() we will adopt the crude idea that all allocations done at a single program
point may alias, but allocations done at two different points cannot:

for (i=1; i<2; i++)

{ t = new();

if (i==1) a=t; else b=t;

}

c = new();

d = new();
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We see a and b as possibly aliasing (as they both point to the new on line 2, while c and d

cannot alias with a, b or each other. A similar effect would occur in

for (...)

{ p = cons(a,p);

p = cons(b,p);

}

Where we know that p points to a new from line 2, which points to a new from line 3, which
points to a new from line 2 . . . .

Another approximation which we will make is to have a single points-to summary that says
(e.g.) p may point to c or d, but definitely nothing else. We could record this information on a
per-statement level which would be more accurate, but instead choose to hold this information
once (per-procedure). Hence in

p = &c;

*p = 3;

p = &d;

q = &e;

we will assume that the indirect write may update c or d but not e.

Strategy:

• do a “points-to” analysis which associates each variable with (a description of) a set of
locations.

• can now just say “x and y may alias if their results from points-to analysis is not provably
disjoint”.

Alias analysis techniques can become very expensive for large programs “alias analysis is unde-
cidable in theory and intractable in practice”. Simpler techniques tend to say “I don’t know”
too often.

We will present Andersen’s O(n3) algorithm, at least in part because the constraint-solving
is identical to 0-CFA! Note that we only consider the intra-procedural situation.

First assume programs have been written in 3-address code and with all pointer-typed oper-
ations being of the form

x := newℓ ℓ is a program point (label)
x := null optional, can see as variant of new
x := &y only in C-like languages, also like new variant
x := y copy
x := ∗y field access of object
∗x := y field access of object

Note that pointer arithmetic is not considered. Also, note that while new can be seen as
allocating a record, we only provide operations to read and write all fields at once. This means
that fields are conflated, i.e. we analyse x.f = e and x.g = e as identical—and equivalent to
∗x = e. It is possible to consider so-called ‘field-sensitive’ analyses (not in this course though,
so use google if you want to know more).
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18.1 Andersen’s analysis in detail

Define a set of abstract values

V = Var ∪ {newℓ | ℓ ∈ Prog} ∪ {null}

As said before, we treat all allocations at a given program point as indistinguishable.
Now consider the points-to relation. Here we see this as a function pt(x) : V → P(V ). As

said before, we keep one pt per procedure (intra-procedural analysis).
Each line in the program generates zero or more constraints on pt :

⊢ x := &y : y ∈ pt(x) ⊢ x := null : null ∈ pt(x)

⊢ x := newℓ : newℓ ∈ pt(x) ⊢ x := y : pt(y) ⊆ pt(x)

z ∈ pt(y)

⊢ x := ∗y : pt(z) ⊆ pt(x)

z ∈ pt(x)

⊢ ∗x := y : pt(y) ⊆ pt(z)

Note that the first three rules are essentially identical.
The above rules all deal with atomic assignments. The next question to consider is control-

flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

x = 1; y =2 ; print x; print y

differently (as required when allocating registers to x and y). However, Andersen’s algorithm is
flow-insensitive, we simply look at the set of statements in the program and not at their order
or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive means
property inference rules are essentially of the form (here C is a command, and S is a set of
constraints):

(ASS)⊢ e := e′ : ⟨as above⟩ (SEQ)
⊢ C : S ⊢ C ′ : S′

⊢ C;C ′ : S ∪ S′

(COND)
⊢ C : S ⊢ C ′ : S′

⊢ if e then C else C ′ : S ∪ S′

(WHILE)
⊢ C : S

⊢ while e do C : S

The safety property A program analysis on its own is never useful—we want to be able to
use it for transformations, and hence need to know what the analysis guarantees about run-time
execution.
Given pt solving the constraints generated by Andersen’s algorithm then we have that

• at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for newℓ this means that x points to a
memory cell allocated there.
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Hence (alias analysis, and its uses):

• If pt(x)∩ pt(y) is empty, then x and y cannot point to the same location, hence it is safe
to (e.g.) swap the order of n=*x; *y=m, or even to run them in parallel.

Epilogue for Part B

You might care to reflect that program analyses and type systems have much in common. Both
attempt to determine whether a given property of a program holds (in the case of type systems,
this is typically that the application of an operator is type-safe). The main difference is the use
to which analysis results are put—for type systems failure to guarantee type correctness causes
the program to be rejected whereas for program analysis failure to show a result causes less
efficient code to be generated.
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Part C: Instruction Scheduling

19 Introduction

In this part we introduce instruction scheduling for a processor architecture of complexity typical
of the mid-1980’s. Good examples would be the MIPS R-2000 or SPARC implementations of
this period. Both have simple 5-stage pipelines (IF,RF,EX,MEM,WB) with register bypassing
and both have delayed branches and delayed loads. One difference is that the MIPS had no
interlocks on delayed loads (therefore requiring the compiler writer, in general, to insert NOP’s
to ensure correct operation) whereas the SPARC had interlocks which cause pipeline stalls
when a later instruction refers to an operand which is not yet available. In both cases faster
execution (in one case by removing NOP’s and in the other by avoiding stalls) is often possible
by re-ordering the (target) instructions essentially within each basic block.

Of course there are now more sophisticated architectures: many processors have multi-
ple dispatch into multiple pipelines. Functional units (e.g. floating point multipliers) may be
scheduled separately by the pipeline to allow the pipeline to continue while they complete.
They may be also duplicated. High-performance architectures go as far as re-scheduling in-
struction sequences dynamically, to some extent making instruction scheduling at compile time
rather redundant. However, the ideas presented here are an intellectually satisfactory basis for
compile-time scheduling for all architectures.

The data structure we operate upon is a graph of basic blocks, each consisting of a sequence of
target instructions obtained from blow-by-blow expansion of the abstract 3-address intermediate
code we saw in Part A of this course. Scheduling algorithms usually operate within a basic block
and adjust if necessary at basic block boundaries—see later.

The objective of scheduling is to minimise the number of pipeline stalls (or the number
of inserted NOP’s on the MIPS). Sadly the problem of such optimal scheduling is often NP-
complete and so we have to fall back on heuristics for life-size code. These notes present the
O(n2) algorithm due to Gibbons and Muchnick [5].

Observe that two instructions may be permuted if neither writes to a register read or written
by the other. We define a graph (actually a DAG), whose nodes are instructions within a basic
block. Place an edge from instruction a to instruction b if a occurs before b in the original
instruction sequence and if a and b cannot be permuted. Now observe that any of the minimal
elements of this DAG (normally drawn at the top in diagrammatic form) can be validly scheduled
to execute first and after removing such a scheduled instruction from the graph any of the new
minimal elements can be scheduled second and so on. In general any topological sort of this
DAG gives a valid scheduling sequence. Some are better than others and to achieve non-NP-
complete complexity we cannot in general search freely, so the current O(n2) algorithm makes
the choice of the next-to-schedule instruction locally, by choosing among the minimal elements
with the static scheduling heuristics

• choose an instruction which does not conflict with the previous emitted instruction

• choose an instruction which is most likely to conflict if first of a pair (e.g. ld.w over add)

• choose an instruction which is as far as possible (over the longest path) from a graph-
maximal instruction—the ones that can validly be scheduled as the last of the basic block.
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On the MIPS or SPARC the first heuristic can never harm. The second tries to get instructions
which can provoke stalls out of the way in the hope that another instruction can be scheduled
between a pair which cause a stall when juxtaposed. The third has similar aims—given two
independent streams of instructions we should save some of each stream for inserting between
stall-pairs of the other.

So, given a basic block

• construct the scheduling DAG as above; doing this by scanning backwards through the
block and adding edges when dependencies arise, which works in O(n2)

• initialise the candidate list to the minimal elements of the DAG

• while the candidate list is non-empty

– emit an instruction satisfying the static scheduling heuristics (for the first iteration
the ‘previous instruction’ with which we must avoid dependencies is any of the final
instructions of predecessor basic blocks which have been generated so far.

– if no instruction satisfies the heuristics then either emit NOP (MIPS) or emit an
instruction satisfying merely the final two static scheduling heuristics (SPARC).

– remove the instruction from the DAG and insert the newly minimal elements into
the candidate list.

On completion the basic block has been scheduled.
One little point which must be taken into account on non-interlocked hardware (e.g. MIPS)

is that if any of the successor blocks of the just-scheduled block has already been generated
then the first instruction of one of them might fail to satisfy timing constraints with respect to
the final instruction of the newly generated block. In this case a NOP must be appended.

20 Antagonism Between Register Allocation and Instruction
Scheduling

Register allocation by colouring attempts to minimise the number of store locations or registers
used by a program. As such we would not be surprised to find that the generated code for

x := a; y := b;

were to be

ld.w a,r0

st.w r0,x

ld.w b,r0

st.w r0,y

This code takes 6 cycles9 to complete (on the SPARC there is an interlock delay between each
load and store, on the MIPS a NOP must be inserted). According to the scheduling theory
developed above, each instruction depends on its predecessor (def-def or def-use conflicts inhibit
all permutations) this is the only valid execution sequence. However if the register allocator
had allocated r1 for the temporary copying y to b, the code could have been scheduled as

9Here I am counting time in pipeline step cycles, from start of the first ld.w instruction to the start of the
instruction following the final st.w instruction.
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ld.w a,r0

ld.w b,r1

st.w r0,x

st.w r1,y

which then executes in only 4 cycles.
For some time there was no very satisfactory theory as to how to resolve this (it is related to

the ‘phase-order problem’ in which we would like to defer optimisation decisions until we know
how later phases will behave on the results passed to them). The CRAIG system [1] is one
exception, and 2002 saw Touati’s thesis [8] “Register Pressure in Instruction Level Parallelism”
which addresses a related issue.

One rather ad hoc solution is to allocate temporary registers cyclically instead of re-using
them at the earliest possible opportunity. In the context of register allocation by colouring this
can be seen as attempting to select a register distinct from all others allocated in the same basic
block when all other constraints and desires (recall the MOV preference graph) have been taken
into account.

This problem also poses dynamic scheduling problems in pipelines for corresponding 80x86
instruction sequences which need to reuse registers as much as possible because of their limited
number. High-performance processors achieve effective dynamic rescheduling by having a larger
register set in the computational engine than the potentially small instruction set registers and
dynamically ‘recolouring’ live-ranges of such registers with the larger register set. This then
achieves a similar effect to the above example in which the r0-r1 pair replaces the single r0,
but without the need to tie up another user register.
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Part D: Decompilation and Reverse
Engineering

This final lecture considers the topic of decompilation, the inverse process to compilation
whereby assembler (or binary object) files are mapped into one of the source files which could
compile to the given assembler or binary object source.

Note in particular that compilation is a many-to-one process—a compiler may well ignore
variable names and even compile x<=9 and x<10 into the same code. Therefore we are picking
a representative program.

There are three issues which I want to address:

• The ethics of decompilation;

• Control structure reconstruction; and

• Variable and type reconstruction.

You will often see the phrase reverse engineering to cover the wider topic of attempting
to extract higher-level data (even documentation) from lower-level representations (such as
programs). Our view is that decompilation is a special case of reverse engineering. A site
dedicated to reverse engineering is:

http://www.reengineer.org/

Legality/Ethics

Reverse engineering of a software product is normally forbidden by the licence terms which a
purchaser agrees to, for example on shrink-wrap or at installation. However, legislation (varying
from jurisdiction to jurisdiction) often permits decompilation for very specific purposes. For
example the EU 1991 Software Directive (a world-leader at the time, now superseded by the EU’s
2009/24/EC Directive “on the legal protection of computer programs”) allowed the reproduction
and translation of the form of program code, without the consent of the owner, only for the
purpose of achieving the interoperability of the program with some other program, and only if
this reverse engineering was indispensable for this purpose. Newer legislation has been enacted,
for example the US Digital Millennium Copyright Act which came into force in October 2000
has a “Reverse Engineering” provision which

“. . . permits circumvention, and the development of technological means for such
circumvention, by a person who has lawfully obtained a right to use a copy of a
computer program for the sole purpose of identifying and analyzing elements of the
program necessary to achieve interoperability with other programs, to the extent
that such acts are permitted under copyright law.”

Note that the law changes with time and jurisdiction, so do it where/when it is legal! Note also
that copyright legislation covers “translations” of copyrighted text, which will certainly include
decompilations even if permitted by contract or by overriding law such as the above.

A good source of information is the Decompilation Page [9] on the web

http://www.program-transformation.org/Transform/DeCompilation

in particular the “Legality Of Decompilation” link in the introduction.

39



Control Structure Reconstruction

Extracting the flowgraph from an assembler program is easy. The trick is then to match intervals
of the flowgraph with higher-level control structures, e.g. loops, if-the-else. Note that non-
trivial compilation techniques like loop unrolling will need more aggressive techniques to undo.
Cifuentes and her group have worked on many issues around this topic. See Cifuentes’ PhD [10]
for much more detail. In particular pages 123–130 are mirrored on the course web site

http://www.cl.cam.ac.uk/Teaching/current/OptComp/

Variable and Type Reconstruction

This is trickier than one might first think, because of register allocation (and even CSE). A
given machine register might contain, at various times, multiple user-variables and temporaries.
Worse still these may have different types. Consider

f(int *x) { return x[1] + 2; }

where a single register is used to hold x, a pointer, and the result from the function, an integer.
Decompilation to

f(int r0) { r0 = r0+4; r0 = *(int *)r0; r0 = r0 + 2; return r0; }

is hardly clear. Mycroft uses transformation to SSA form to undo register colouring and then
type inference to identify possible types for each SSA variable. See [11] via the course web site

http://www.cl.cam.ac.uk/Teaching/current/OptComp/
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Optimising Compilers
Computer Science Tripos Part II

Timothy Jones

Lecture 1
Introduction

A non-optimising compiler

intermediate code

parse tree

token stream

character stream

target code

lexing

parsing

translation

code generation

An optimising compiler

intermediate code

parse tree

token stream

character stream

target code

lexing

parsing

translation

code generation

optimisation

optimisation

optimisation

decompilation

Optimisation
(really “amelioration”!)

• Smaller

• Faster

• Cheaper (e.g. lower power consumption)

Good humans write simple, maintainable, general code.

Compilers should then remove unused generality,
and hence hopefully make the code:

Optimisation 
=

Analysis
+

Transformation

Analysis + Transformation

• Transformation does something dangerous.

• Analysis determines whether it’s safe.

Analysis + Transformation

• An analysis shows that your program has 
some property...

• ...and the transformation is designed to 
be safe for all programs with that 
property...

• ...so it’s safe to do the transformation.

Lecture 1: Introduction
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int main(void) 
{ 
 return 42; 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation

int main(void) 
{ 
 return 42; 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation

✓
int main(void) 
{ 
 return f(21); 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation

int main(void) 
{ 
 return f(21); 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation

✗

while (i <= k*2) { 
 j = j * i; 
 i = i + 1; 
}

Analysis + Transformation

int t = k * 2; 
while (i <= t) { 
 j = j * i; 
 i = i + 1; 
}

✓

Analysis + Transformation

while (i <= k*2) { 
 k = k - i; 
 i = i + 1; 
}

Analysis + Transformation

int t = k * 2; 
while (i <= t) { 
 k = k - i; 
 i = i + 1; 
}

✗

Analysis + Transformation

Lecture 1: Introduction
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Stack-oriented code
iload 0 
iload 1 
iadd 
iload 2 
iload 3 
iadd 
imul 
ireturn

?
3-address code
MOV t32,arg1 
MOV t33,arg2 
ADD t34,t32,t33 
MOV t35,arg3 
MOV t36,arg4 
ADD t37,t35,t36 
MUL res1,t34,t37 
EXIT

int fact (int n) { 
 if (n == 0) { 
  return 1; 
 } else { 
  return n * fact(n-1); 
 } 
}

C into 3-address code C into 3-address code
     ENTRY fact 
     MOV t32,arg1 
     CMPEQ t32,#0,lab1 
     SUB arg1,t32,#1 
     CALL fact 
     MUL res1,t32,res1 
     EXIT 
lab1: MOV res1,#1 
     EXIT

Flowgraphs

Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of a simple non-optimising compiler (e.g. from CST Part Ib).

⌅
⇤

�
⇥character

stream
�

lex

⌅
⇤

�
⇥token

stream
�

syn

⌅
⇤

�
⇥parse

tree
�

trn

⌅
⇤

�
⇥intermediate

code
�

gen

⌅
⇤

�
⇥target

code

In such a compiler “intermediate code” is typically a stack-oriented abstract machine code
(e.g. OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn’ and ‘trn’
are in principle source language-dependent, but not target architecture-dependent whereas
stage ‘gen’ is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’ !) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we
use 3-address code (sometimes called ‘quadruples’). This is also near to modern RISC archi-
tectures and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in
a flowgraph G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic
blocks’). We write

pred(n) = {n� | (n�, n) ⇥ edges(G)}
succ(n) = {n� | (n, n�) ⇥ edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph
theory notions like path and cycle.

Forms of 3-address instructions (a, b, c are operands, f is a procedure name, and lab is a
label):

• ENTRY f : no predecessors;

• EXIT: no successors;

• ALU a, b, c: one successor (ADD, MUL, . . . );

• CMP⇧cond⌃ a, b, lab: two successors (CMPNE, CMPEQ, . . . ) — in straight-line code these
instructions take a label argument (and fall through to the next instruction if the branch
doesn’t occur), whereas in a flowgraph they have two successor edges.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP in-
structions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic
instructions like ALU a, b, c. Similarly one distinguishes MOV a, b instructions (a special case
of ALU ignoring one operand) from indirect memory reference instructions (LDI a, b and
STI a, b) used to represent pointer dereference including accessing array elements. Indirect
branches (used for local goto ⇧exp⌃) terminate a basic block (see later); their successors must
include all the possible branch targets (see the description of Fortran ASSIGNED GOTO).

4

• A graph representation of a program

• Each node stores 3-address instruction(s) 

• Each edge represents (potential) control flow:

Flowgraphs
ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT

Basic blocks

A maximal sequence of instructions n1, ..., nk which have

• exactly one predecessor (except possibly for n1)

• exactly one successor (except possibly for nk)

Basic blocks
ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT

Lecture 1: Introduction
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Basic blocks

ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT

Basic blocks

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

MOV res1,#1

ENTRY fact

EXIT

Basic blocks

A basic block doesn’t contain any interesting control flow.

Basic blocks

Reduce time and space requirements
for analysis algorithms

by calculating and storing data flow information

once per block
(and recomputing within a block if required)

instead of

once per instruction.

Basic blocks

MOV t32,arg1 
MOV t33,arg2 
ADD t34,t32,t33 
MOV t35,arg3 
MOV t36,arg4 
ADD t37,t35,t36 
MUL res1,t34,t37
?

Basic blocks

?

?

?

?

?

Types of analysis

• Within basic blocks (“local” / “peephole”)

• Between basic blocks (“global” / “intra-procedural”)

• e.g. live variable analysis, available expressions

• Whole program (“inter-procedural”)

• e.g. unreachable-procedure elimination

(and hence optimisation)

Scope:

Peephole optimisation

ADD t32,arg1,#1 
MOV r0,r1 
MOV r1,r0 
MUL t33,r0,t32

ADD t32,arg1,#1 
MOV r0,r1 
MUL t33,r0,t32

matches
MOV x,y 
MOV y,x

with
MOV x,y

replace

Lecture 1: Introduction
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Types of analysis

• Control flow

• Discovering control structure (basic blocks, 
loops, calls between procedures)

• Data flow

• Discovering data flow structure (variable uses, 
expression evaluation)

(and hence optimisation)

Type of information:

Finding basic blocks

1. Find all the instructions which are leaders:

• the first instruction is a leader;

• the target of any branch is a leader; and

• any instruction immediately following a 
branch is a leader.

2. For each leader, its basic block consists of 
itself and all instructions up to the next leader.

     ENTRY fact 
     MOV t32,arg1 
     CMPEQ t32,#0,lab1 
     SUB arg1,t32,#1 
     CALL fact 
     MUL res1,t32,res1 
     EXIT 
lab1: MOV res1,#1 
     EXIT

Finding basic blocks Summary
• Structure of an optimising compiler

• Why optimise?

• Optimisation = Analysis + Transformation

• 3-address code

• Flowgraphs

• Basic blocks

• Types of analysis

• Locating basic blocks

Lecture 1: Introduction
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Lecture 2
Unreachable-code &

-procedure elimination

Control-flow analysis

Discovering information about how control (e.g. the 
program counter) may move through a program.

?

?

?

?

?

Intra-procedural analysis
An intra-procedural analysis collects information

about the code inside a single procedure.

We may repeat it many times (i.e. once per procedure), 
but information is only propagated within

the boundaries of each procedure,
not between procedures.

One example of an intra-procedural control-flow 
optimisation (an analysis and an accompanying 
transformation) is unreachable-code elimination.

int f(int x, int y) { 
  int z = x * y; 
  return x + y; 
}

Dead vs. unreachable code

Dead code computes unused values.

DEAD

(Waste of time.)

int f(int x, int y) { 
  return x + y; 
  int z = x * y; 
}

Dead vs. unreachable code

Unreachable code cannot possibly be executed.

UNREACHABLE

(Waste of space.)

Dead vs. unreachable code

Deadness is a data-flow property:
“May this data ever arrive anywhere?”

int f(int x, int y) { 
  int z = x * y; 
  ⋮

? ?
?

Dead vs. unreachable code

Unreachability is a control-flow property:
“May control ever arrive here?”

  ⋮  
  int z = x * y; 
}

? ??

bool g(int x) { 
  return false; 
}

Safety of analysis

UNREACHABLE?

int f(int x, int y) { 
  if (g(x)) { 
    int z = x * y; 
  } 
  return x + y; 
}

✓

Lecture 2: Unreachable-code elimination
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Safety of analysis

UNREACHABLE?

bool g(int x) { 
  return ...x...; 
}

int f(int x, int y) { 
  if (g(x)) { 
    int z = x * y; 
  } 
  return x + y; 
}

?

Safety of analysis

UNREACHABLE?

int f(int x, int y) { 
  if (g(x)) { 
    int z = x * y; 
  } 
  return x + y; 
}

In general, this is undecidable.
(Arithmetic is undecidable; cf. halting problem.)

Safety of analysis

• Many interesting properties of programs are 
undecidable and cannot be computed 
precisely...

• ...so they must be approximated.

• A broken program is much worse than an 
inefficient one...

• ...so we must err on the side of safety.

Safety of analysis
• If we decide that code is unreachable then we 

may do something dangerous (e.g. remove it!)...

• ...so the safe strategy is to overestimate 
reachability.

• If we can’t easily tell whether code is reachable, 
we just assume that it is. (This is conservative.)

• For example, we assume

• both branches of a conditional are reachable

• and that loops always terminate.

Safety of analysis
Naïvely,

if (false) { 
  int z = x * y; 
}

this instruction is reachable,

while (true) { 
  // Code without ‘break’ 
} 
int z = x * y;

and so is this one.

Safety of analysis

Another source of uncertainty is encountered
when constructing the original flowgraph:

the presence of indirect branches
(also known as “computed jumps”).

      ⋮ 
      MOV t32,r1 
      JMP lab1 

      ⋮ 
lab1: ADD r0,r1,r2 
      ⋮

Safety of analysis

⋮ 
MOV t32,r1 

ADD r0,r1,r2 
⋮

⋮ 
MOV t33,#&lab1 
MOV t34,#&lab2 
MOV t35,#&lab3 

⋮ 
JMPI t32

Safety of analysis

lab1: ADD r0,r1,r2 
      ⋮ 

lab2: MUL r3,r4,r5 
      ⋮ 

lab3: MOV r0,r1 
      ⋮

?

?

?

Lecture 2: Unreachable-code elimination
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Safety of analysis

MUL r3,r4,r5 
⋮

MOV t33,#&lab1 
MOV t34,#&lab2 
MOV t35,#&lab3 
⋮

ADD r0,r1,r2 
⋮

MOV r0,r1 
⋮

Safety of analysis

Again, this is a conservative overestimation of reachability.

In the worst-case scenario in which branch-address 
computations are completely unrestricted (i.e. the target 
of a jump could be absolutely anywhere), the presence 

of an indirect branch forces us to assume that all 
instructions are potentially reachable

in order to guarantee safety.

Safety of analysis

program instructions

sometimes
executed

never
executed

Safety of analysis

“reachable”

imprecision

Unreachable code

This naïve reachability analysis is simplistic, 
but has the advantage of corresponding to a 

very straightforward operation on the 
flowgraph of a procedure:

1.mark the procedure’s entry node as reachable;

2.mark every successor of a marked node as reachable 
and repeat until no further marking is required.

?

??

?

??

Unreachable code
ENTRY f

?

?

EXIT

Unreachable code
ENTRY f

?

?

EXIT

Unreachable code

Programmers rarely write code which is
completely unreachable in this naïve sense.

Why bother with this analysis?

• Naïvely unreachable code may be introduced as a 
result of other optimising transformations.

• With a little more effort, we can do a better job.

Lecture 2: Unreachable-code elimination
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if (false) { 
  int z = x * y; 
}

Unreachable code

Obviously, if the conditional expression in an if 
statement is literally the constant “false”, it’s safe to 

assume that the statements within are unreachable.

UNREACHABLE

But programmers never write code like that either.

bool debug = false; 
⋮ 
if (debug) { 
  int z = x * y; 
}

Unreachable code

However, other optimisations might produce such code.
For example, copy propagation:

⋮ 
if (false) { 
  int z = x * y; 
}

Unreachable code

However, other optimisations might produce such code.
For example, copy propagation:

UNREACHABLE

Unreachable code

We can try to spot (slightly) more subtle things too.

• if (!true) {... }

• if (false && ...) {... }

• if (x != x) {... }

• while (true) {... } ...

• ...

Unreachable code

Note, however, that the reachability analysis no longer 
consists simply of checking whether any paths to an 

instruction exist in the flowgraph, but whether any of the 
paths to an instruction are actually executable.

With more effort we may get arbitrarily clever at 
spotting non-executable paths in particular cases,

but in general the undecidability of arithmetic means that
we cannot always spot them all.

Unreachable code

Although unreachable-code elimination can only make a 
program smaller, it may enable other optimisations which 

make the program faster.

?

?

Unreachable code
For example, straightening is an optimisation which can 

eliminate jumps between basic blocks by coalescing them:

?

ENTRY f

?

?

EXIT

?

?

Unreachable code
For example, straightening is an optimisation which can 

eliminate jumps between basic blocks by coalescing them:

?

ENTRY f

?

?

EXIT

Lecture 2: Unreachable-code elimination
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Unreachable code
For example, straightening is an optimisation which can 

eliminate jumps between basic blocks by coalescing them:

ENTRY f

?

EXIT

?
Straightening

has removed a branch 
instruction, so the

new program
will execute faster.

Inter-procedural analysis

An inter-procedural analysis collects information
about an entire program.

Information is collected from the instructions of each 
procedure and then propagated between procedures.

One example of an inter-procedural control-flow 
optimisation (an analysis and an accompanying 

transformation) is unreachable-procedure elimination.

Unreachable procedures

Unreachable-procedure elimination is very similar in 
spirit to unreachable-code elimination, but relies on a 

different data structure known as a call graph.

Call graphs

f

i h

g

j

main

ENTRY g 
⋮ 
EXIT

Call graphs
Again, the precision of the graph is compromised in 

the presence of indirect calls. 

ENTRY h 
⋮ 
EXIT

ENTRY f 
⋮ 
EXIT

ENTRY main 
⋮ 
MOV t33,#&f 
MOV t34,#&g 
MOV t35,#&h 
⋮ 
CALLI t32 
⋮ 
EXIT

?

?

?

Call graphs
Again, the precision of the graph is compromised in 

the presence of indirect calls. 

f h

main

g

And as before, this is a safe overestimation of reachability.

Call graphs

In general, we assume that a procedure containing an 
indirect call has all address-taken procedures as successors 

in the call graph — i.e., it could call any of them.

This is obviously safe; it is also obviously imprecise.

As before, it might be possible to do better
by application of more careful methods

(e.g. tracking data-flow of procedure variables).

Unreachable procedures

The reachability analysis is virtually identical to that 
used in unreachable-code elimination, but this time 
operates on the call graph of the entire program 

(vs. the flowgraph of a single procedure):

1.mark procedure main as callable;

2.mark every successor of a marked node as 
callable and repeat until no further marking is 
required.

Lecture 2: Unreachable-code elimination
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i j

Unreachable procedures

f

h

g

main

i j

Unreachable procedures

f

h

g

main

Safety of transformations
• All instructions/procedures to which 

control may flow at execution time will 
definitely be marked by the reachability 
analyses...

• ...but not vice versa, since some marked 
nodes might never be executed.

• Both transformations will definitely not 
delete any instructions/procedures which 
are needed to execute the program...

• ...but they might leave others alone too.

If simplification

• Let’s look at another set of basic control-
flow transformations that can be carried 
out with only small amounts of analysis

• In this case, if simplification, which alters the 
structure of if statements (or removes 
them altogether) when possible

if (f(x)) { 
}

If simplication

Empty then in if-then

(Assuming that f has no side effects.)

if (f(x)) { 
  z = x * y; 
} else { 
}

If simplication

Empty else in if-then-else

if (!f(x)) { 
} else { 
  z = x * y; 
}

If simplication

Empty then in if-then-else

if (f(x)) { 
} else { 
}

If simplication

Empty then and else in if-then-else

Lecture 2: Unreachable-code elimination
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if (true) { 
  z = x * y; 
}

If simplication

Constant condition
if (x > 3 && t) { 
  ⋮ 
  if (x > 3) { 
    z = x * y; 
  } else { 
    z = y - x; 
  } 
}

If simplication

Nested if with common subexpression

Loop simplification

int x = 0; 
int i = 0; 
while (i < 4) { 
  i = i + 1; 
  x = x + i; 
}

Loop simplification

int x = 10; 
int i = 4;

Summary
• Control-flow analysis operates on the control 

structure of a program (flowgraphs and call 
graphs)

• Unreachable-code elimination is an intra-
procedural optimisation which reduces code size

• Unreachable-procedure elimination is a similar, 
inter-procedural optimisation making use of the 
program’s call graph

• Analyses for both optimisations must be imprecise 
in order to guarantee safety 

Lecture 2: Unreachable-code elimination
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Lecture 3
Live variable analysis

Discovering information about how data (i.e. variables and 
their values) may move through a program.

Data-flow analysis
MOV t32,arg1 
MOV t33,arg2 
ADD t34,t32,t33 
MOV t35,arg3 
MOV t36,arg4 
ADD t37,t35,t36 
MUL res1,t34,t37

Motivation
Programs may contain

• code which gets executed but which has no useful 
effect on the program’s overall result;

• occurrences of variables being used before they 
are defined; and

• many variables which need to be allocated 
registers and/or memory locations for compilation.

The concept of variable liveness is useful in 
dealing with all three of these situations.

Liveness

Liveness is a data-flow property of variables: 
“Is the value of this variable needed?” (cf. dead code)

int f(int x, int y) { 
  int z = x * y; 
  ⋮

? ?
?

Liveness
At each instruction, each variable in the program

is either live or dead.

We therefore usually consider liveness from an 
instruction’s perspective: each instruction (or node of the 

flowgraph) has an associated set of live variables.

⋮ 
int z = x * y; 
return s + t;

n: live(n) = { s, t, x, y }

Semantic vs. syntactic

There are two kinds of variable liveness:

• Semantic liveness

• Syntactic liveness

int x = y * z; 
⋮ 
return x; 

Semantic vs. syntactic

A variable x is semantically live at a node n if there is 
some execution sequence starting at n whose (externally 
observable) behaviour can be affected by changing the 

value of x.

x LIVE x DEADint x = y * z; 
⋮ 
x = a + b; 
⋮ 
return x;

Semantic vs. syntactic

A variable x is semantically live at a node n if there is 
some execution sequence starting at n whose (externally 
observable) behaviour can be affected by changing the 

value of x.
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Semantic vs. syntactic

Semantic liveness is concerned with
the execution behaviour of the program.

This is undecidable in general.
(e.g. Control flow may depend upon arithmetic.)

Syntactic liveness is concerned with properties of 
the syntactic structure of the program.

Of course, this is decidable.

Semantic vs. syntactic

A variable is syntactically live at a node if there is a 
path to the exit of the flowgraph along which its 

value may be used before it is redefined. 

So what’s the difference?

int t = x * y; 
if ((x+1)*(x+1) == y) { 
  t = 1; 
} 
if (x*x + 2*x + 1 != y) { 
  t = 2; 
} 
return t;

Semantic vs. syntactic

Semantically: one of the conditions will be true, so on 
every execution path t is redefined before it is returned.
The value assigned by the first instruction is never used.

t DEAD

Semantic vs. syntactic
      MUL t,x,y 
      ADD t32,x,#1 
      MUL t33,t32,t32 
      CMPNE t33,y,lab1 
      MOV t,#1 
lab1: MUL t34,x,x 
      MUL t35,x,#2 
      ADD t36,t34,t35 
      ADD t37,t36,#1 
      CMPEQ t37,y,lab2 
      MOV t,#2 
lab2: MOV res1,t

MOV t,#1

MOV t,#2

Semantic vs. syntactic
MUL  ,x,y 
ADD t32,x,#1 
MUL t33,t32,t32 
CMPNE t33,y

MUL t34,x,x 
MUL t35,x,#2 
ADD t36,t34,t35 
ADD t37,t36,#1 
CMPEQ t37,y

MOV res1,t

MOV t,#1

MOV t,#2

On this path through the 
flowgraph, t is not 

redefined before it’s used, 
so t is syntactically live at 

the first instruction.

Note that this path never 
actually occurs during 

execution.

t LIVE t

Semantic vs. syntactic

So, as we’ve seen before, syntactic liveness 
is a computable approximation of 

semantic liveness.

Semantic vs. syntactic

program variables

semantically
live at n

semantically
dead at n

Semantic vs. syntactic

syntactically live

imprecision

at n
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Semantic vs. syntactic

2 Live Variable Analysis—LVA

A variable x is semantically live at node n if there is some execution sequence starting at n
whose I/O behaviour can be a�ected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node
n� at which the current value of x may be used (i.e. a path from n to n� which contains no
definition of x and with n� containing a reference to x). Note that such a path may not
actually occur during any execution, e.g.

l1: ; /* is ’t’ live here? */

if ((x+1)*(x+1) == y) t = 1;

if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⇥ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and ⌅.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =

�
⇤ ⇧

s⇥succ(n)

live(s)

⇥
⌅ \ def (n) ⇤ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry
to node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ⇤ ref (n)

out-live(n) =
⇧

s⇥succ(n)

in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;

x = 1, y = 2, z = 3;

p = &y;

if (...) p = &y;

*p = 7;

if (...) p = &x;

t = *p;

print z+t;

8

Using syntactic methods, we
safely overestimate liveness.

Live variable analysis

int f(int x, int y) { 
  int z = x * y; 
  ⋮

int a = z*2;
print z;

if (z > 5) { 

LVA is a backwards data-flow analysis: usage information 
from future instructions must be propagated backwards 

through the program to discover which variables are live. 

Live variable analysis

Variable liveness flows (backwards) through 
the program in a continuous stream.

Each instruction has an effect on the 
liveness information as it flows past.

Live variable analysis

An instruction makes a variable live 
when it references (uses) it.

print f;

d = e + 1;

a = b * c;

Live variable analysis

a = b * c;

d = e + 1;

print f;

{ }

{ }

{ f }

{ e, f }

REFERENCE f

REFERENCE e

REFERENCE b, c

{ e, f }

{ f }

{ b, c, e, f }

Live variable analysis

An instruction makes a variable dead 
when it defines (assigns to) it.

{ a, b, c }{ a, b }

{ a }

{ a, b }

c = 13;

b = 11;

a = 7;

Live variable analysis

a = 7;

b = 11;

c = 13;

{ a, b, c }

{ a }

DEFINE c

DEFINE b

DEFINE a

{ }

Live variable analysis
We can devise functions ref(n) and def(n) 

which give the sets of variables referenced 
and defined by the instruction at node n.

def( x = x + y ) = { x }

ref( x = x + y ) = { x, y }

def( x = 3 ) = { x } def( print x ) = { }

ref( print x ) = { x }ref( x = 3 ) = { }
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Live variable analysis
As liveness flows backwards past an instruction, we 

want to modify the liveness information by adding any 
variables which it references (they become live) and 
removing any which it defines (they become dead).

def( x = 3 ) = { x }ref( print x ) = { x }

{ x, y }

{ y }

{ y }

{ x, y }

Live variable analysis

If an instruction both references and defines variables, 
we must remove the defined variables before adding 

the referenced ones.

x = x + y

{ x, z }

def( x = x + y ) = { x }
{ x, z }

ref( x = x + y ) = { x, y }

{ z }{ x, y, z }

Live variable analysis

So, if we consider in-live(n) and out-live(n), 
the sets of variables which are live 

immediately before and immediately after 
a node, the following equation must hold:

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

in-live(n) = (out-live(n) ∖ def(n)) ∪ ref(n)

Live variable analysis

out-live(n) = { x, z }

def(n) = { x }

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

x = x + yn:
= { x, y, z }

= ({ x, z } ∖ { x }) ∪ { x, y }
= { z } ∪ { x, y }

ref(n) = { x, y }

in-live(n) = (out-live(n) ∖ def(n)) ∪ ref(n)

Live variable analysis

So we know how to calculate in-live(n) from 
the values of def(n), ref(n) and out-live(n).

But how do we calculate out-live(n)?

out-live(n)

x = x + yn:

= ?

Live variable analysis

In straight-line code each node has a unique 
successor, and the variables live at the exit of a 

node are exactly those variables live at the 
entry of its successor.

in-live(m) = { s, t, x, y }

in-live(n) = { s, t, z }

Live variable analysis

z = x * y;m:

print s + t;n:
out-live(n) = { z }

out-live(m) = { s, t, z }

(out-live(n) ∖ def(n)) ∪ ref(n)

(out-live(m) ∖ def(m)) ∪ ref(m)

l:

o:
in-live(o) = { z }

out-live(l) = { s, t, x, y }

(out-live(o) ∖ def(o)) ∪ ref(o)

Live variable analysis

In general, however, each node has an arbitrary 
number of successors, and the variables live at 
the exit of a node are exactly those variables 

live at the entry of any of its successors.
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Live variable analysis

y = 19;n:

s = x * 2;o: t = y + 1;p:

x = 17;m:

{ s, z } { t, z }

{ x, y, z }

{ x, z } { y, z }

{ x, z }

{ x, z }

{ x, z } ∪ { y, z }
= { x, y, z }

{ s, z } { t, z }

?

Live variable analysis

So the following equation must also hold:

out-live(n) =
⋃

s∈succ(n)

in-live(s)

Data-flow equations

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

These are the data-flow equations for live variable 
analysis, and together they tell us everything we 
need to know about how to propagate liveness 

information through a program.

Data-flow equations

Each is expressed in terms of the other, so we can 
combine them to create one overall liveness equation.

live(n) =

⎛
⎝

⎛
⎝ ⋃

s∈succ(n)

live(s)

⎞
⎠ \ def (n)

⎞
⎠ ∪ ref (n)

Algorithm

We now have a formal description of liveness, but we 
need an actual algorithm in order to do the analysis.

Algorithm

“Doing the analysis” consists of computing a value 
live(n) for each node n in a flowgraph such that the 

liveness data-flow equations are satisfied.

A simple way to solve the data-flow equations is to 
adopt an iterative strategy.

{ }

{ }

{ }

{ }

{ x, y }

{ x, y, z }

{ y, z }

{ z }

Algorithm
{ }

ref z

ref y

ref x

def x, y

def z

✗
{ }

{ }

{ }

{ }

{ x, y }

{ x, y, z }

{ y, z }

{ z }

{ x, y, z }

Algorithm
{ }

ref z

ref y

ref x

def x, y

def z

✓ { x, y, z }
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Algorithm

for i = 1 to n do live[i] := {}
while (live[] changes) do
  for i = 1 to n do

    live[i] := 
⎛
⎝

⎛
⎝ ⋃

s∈succ(i)

live[s]

⎞
⎠ \ def (i)

⎞
⎠ ∪ ref (i)

Algorithm

This algorithm is guaranteed to terminate since there 
are a finite number of variables in each program and 

the effect of one iteration is monotonic.

Furthermore, although any solution to the data-flow 
equations is safe, this algorithm is guaranteed to give 
the smallest (and therefore most precise) solution.

(See the Knaster-Tarski theorem if you’re interested.)

Algorithm

• If the program has n variables, we can implement 
each element of live[] as an n-bit value, with 
each bit representing the liveness of one 
variable.

• We can store liveness once per basic block and 
recompute inside a block when necessary. In this 
case, given a basic block n of instructions i1, ..., ik:

Implementation notes:

Here we are unsure whether the assignment *p = 7; assigns to x or y. Similarly we are
uncertain whether the reference t = *p; references x or y (but we are certain that both
reference p). These are ambiguous definitions and references. For safety we treat (for LVA)
an ambiguous reference as referencing any address-taken variable (cf. label variable and pro-
cedure variables—an indirect reference is just a ‘variable’ variable). Similarly an ambiguous
definition is just ignored. Hence in the above, for *p = 7; we have ref = {p} and def = {}
whereas t = *p; has ref = {p, x, y} and def = {t}.

Algorithm (implement live as an array live[]):

for i=1 to N do live[i] := {}

while (live[] changes) do

for i=1 to N do

live[i] :=

�
⇤ ⌃

s�succ(i)

live[s]

⇥
⌅ \ def (i) ⌅ ref (i).

Clearly if the algorithm terminates then it results in a solution of the dataflow equation.
Actually the theory of complete partial orders (cpo’s) means that it always terminates with
the least solution, the one with as few variables as possible live consistent with safety. (The
powerset of the set of variables used in the program is a finite lattice and the map from
old-liveness to new-liveness in the loop is continuous.)

Notes:

• we can implement the live[] array as a bit vector using bit k being set to represent
that variable xk (according to a given numbering scheme) is live.

• we can speed execution and reduce store consumption by storing liveness information
only once per basic block and re-computing within a basic block if needed (typically
only during the use of LVA to validate a transformation). In this case the dataflow
equations become:

live(n) =

�
⇤ ⌃

s�succ(n)

live(s)

⇥
⌅ \ def (ik) ⌅ ref (ik) · · · \ def (i1) ⌅ ref (i1)

where (i1, . . . , ik) are the instructions in basic block n.

3 Available expressions

Available expressions analysis (AVAIL) has many similarities to LVA. An expression e (typ-
ically the RHS of a 3-address instruction) is available at node n if on every path leading to
n the expression e has been evaluated and not invalidated by an intervening assignment to a
variable occurring in e.

This leads to dataflow equations:

avail(n) =
⇧

p�pred(n) (avail(p) \ kill(p) ⌅ gen(p)) if pred(n) ⇤= {}
avail(n) = {} if pred(n) = {}.

Here gen(n) gives the expressions freshly computed at n: gen(x = y+z) = {y + z}, for exam-
ple; but gen(x = x+z) = {} because, although this instruction does compute x + z, it then

9

Safety of analysis
• Syntactic liveness safely overapproximates semantic 

liveness.

• The usual problem occurs in the presence of 
address-taken variables (cf. labels, procedures): 
ambiguous definitions and references. For safety we 
must 

• overestimate ambiguous references (assume all 
address-taken variables are referenced) and

• underestimate ambiguous definitions (assume no 
variables are defined); this increases the size of the 
smallest solution.

Safety of analysis
MOV x,#1 
MOV y,#2 
MOV z,#3 
MOV t32,#&x 
MOV t33,#&y 
MOV t34,#&z 
⋮ 
STI t35,#7 
⋮ 
LDI t36,t37

m:

n:

def(m) = { }
ref(m) = { t35 }

def(n) = { t36 }
ref(n) = { t37, x, y, z }

Summary
• Data-flow analysis collects information about how 

data moves through a program

• Variable liveness is a data-flow property

• Live variable analysis (LVA) is a backwards data-
flow analysis for determining variable liveness

• LVA may be expressed as a pair of complementary 
data-flow equations, which can be combined

• A simple iterative algorithm can be used to find 
the smallest solution to the LVA data-flow 
equations
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Lecture 4
Available expression 

analysis

Motivation

Programs may contain code whose result is 
needed, but in which some computation is 

simply a redundant repetition of earlier 
computation within the same program.

The concept of expression availability is useful 
in dealing with this situation. 

Expressions

Any given program contains a finite number of expressions 
(i.e. computations which potentially produce values),

so we may talk about the set of all expressions of a program.

int z = x * y; 
print s + t; 
int w = u / v; 
⋮

program contains expressions { x*y, s+t, u/v, ... }

Availability

Availability is a data-flow property of expressions: 
“Has the value of this expression already been computed?”

  ⋮  
  int z = x * y; 
}

? ??

Availability
At each instruction, each expression in the program

is either available or unavailable.

We therefore usually consider availability from an 
instruction’s perspective: each instruction (or node of the 
flowgraph) has an associated set of available expressions.

n: avail(n) = { x*y, s+t }

int z = x * y; 
print s + t; 
int w = u / v; 
⋮

Availability

So far, this is all familiar from live variable analysis.

Note that, while expression availability and variable 
liveness share many similarities (both are simple data-flow 

properties), they do differ in important ways.

By working through the low-level details of the availability 
property and its associated analysis we can see where the 

differences lie and get a feel for the capabilities of the 
general data-flow analysis framework.

Semantic vs. syntactic
For example, availability differs from earlier 

examples in a subtle but important way: we want 
to know which expressions are definitely available 

(i.e. have already been computed) at an instruction, 
not which ones may be available.

As before, we should consider the distinction 
between semantic and syntactic (or, alternatively, 

dynamic and static) availability of expressions, and 
the details of the approximation which we hope to 

discover by analysis.

int x = y * z; 
⋮ 
return y * z; 

Semantic vs. syntactic

An expression is semantically available at a node n if its 
value gets computed (and not subsequently invalidated) 

along every execution sequence ending at n.

y*z AVAILABLE
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int x = y * z; 
⋮ 
y = a + b; 
⋮ 
return y * z; y*z UNAVAILABLE

Semantic vs. syntactic

An expression is semantically available at a node n if its 
value gets computed (and not subsequently invalidated) 

along every execution sequence ending at n.

An expression is syntactically available at a node n 
if its value gets computed (and not subsequently 
invalidated) along every path from the entry of 

the flowgraph to n. 

As before, semantic availability is concerned with 
the execution behaviour of the program, whereas 

syntactic availability is concerned with the 
program’s syntactic structure.

And, as expected, only the latter is decidable.

Semantic vs. syntactic

if ((x+1)*(x+1) == y) { 
  s = x + y; 
} 
if (x*x + 2*x + 1 != y) { 
  t = x + y; 
} 
return x + y;

Semantic vs. syntactic

Semantically: one of the conditions will be true, so on 
every execution path x+y is computed twice.

The recomputation of x+y is redundant.

x+y AVAILABLE

      ADD t32,x,#1 
      MUL t33,t32,t32 
      CMPNE t33,y,lab1 
      ADD s,x,y 
lab1: MUL t34,x,x 
      MUL t35,x,#2 
      ADD t36,t34,t35 
      ADD t37,t36,#1 
      CMPEQ t37,y,lab2 
      ADD t,x,y 
lab2: ADD res1,x,y

Semantic vs. syntactic

ADD s,x,y

ADD t,x,y

ADD s,x,y

ADD t,x,y

Semantic vs. syntactic
ADD t32,x,#1 
MUL t33,t32,t32 
CMPNE t33,y

MUL t34,x,x 
MUL t35,x,#2 
ADD t36,t34,t35 
ADD t37,t36,#1 
CMPEQ t37,y

ADD res1,x,y

On this path through the 
flowgraph, x+y is only 

computed once, so x+y 
is syntactically unavailable 
at the last instruction.

Note that this path never 
actually occurs during 

execution.

x+y UNAVAILABLE

x,y

Semantic vs. syntactic

If an expression is deemed to be available, we 
may do something dangerous (e.g. remove an 

instruction which recomputes its value).

Whereas with live variable analysis we found 
safety in assuming that more variables were live, 

here we find safety in assuming that fewer 
expressions are available.

Semantic vs. syntactic

program expressions

semantically
available at n

semantically
unavailable at n

Semantic vs. syntactic

syntactically available at n

imprecision
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sem-avail(n) ⊇ syn-avail(n)

Semantic vs. syntactic

This time, we safely underestimate availability.

2 Live Variable Analysis—LVA

A variable x is semantically live at node n if there is some execution sequence starting at n
whose I/O behaviour can be a�ected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node
n� at which the current value of x may be used (i.e. a path from n to n� which contains no
definition of x and with n� containing a reference to x). Note that such a path may not
actually occur during any execution, e.g.

l1: ; /* is ’t’ live here? */

if ((x+1)*(x+1) == y) t = 1;

if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⇥ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and ⌅.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =

�
⇤ ⇧

s⇥succ(n)

live(s)

⇥
⌅ \ def (n) ⇤ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry
to node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ⇤ ref (n)

out-live(n) =
⇧

s⇥succ(n)

in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;

x = 1, y = 2, z = 3;

p = &y;

if (...) p = &y;

*p = 7;

if (...) p = &x;

t = *p;

print z+t;

8

(cf.                                      )

Warning

Danger: there is a standard presentation of 
available expression analysis (textbooks, notes 
for this course) which is formally satisfying but 

contains an easily-overlooked subtlety.

We’ll first look at an equivalent, more intuitive 
bottom-up presentation, then amend it slightly 
to match the version given in the literature.

Available expression analysis
Available expressions is a forwards data-flow analysis: 

information from past instructions must be propagated 
forwards through the program to discover which 

expressions are available.

  ⋮  
  int z = x * y; 
}

print x * y; if (x*y > 0)
t = x * y;

Available expression analysis

Unlike variable liveness, expression availability flows 
forwards through the program.

As in liveness, though, each instruction has an effect 
on the availability information as it flows past.

Available expression analysis

An instruction makes an expression available 
when it generates (computes) its current value.

e = f / g;

print a*b;

c = d + 1;

e = f / g;

print a*b;

c = d + 1;

{ a*b, d+1 }{ a*b, d+1, f/g }

{ a*b }{ a*b, d+1 }

Available expression analysis
{ }

{ }

GENERATE a*b

GENERATE d+1

GENERATE f/g

{ a*b }

Available expression analysis

An instruction makes an expression unavailable 
when it kills (invalidates) its current value.

{ d/e, d-1 }{ }

{ c+1, d/e, d-1 }{ d/e, d-1 }

{ a*b, c+1, d/e, d-1 }{ c+1, d/e, d-1 }

d = 13;d = 13;

c = 11;c = 11;

a = 7;a = 7;

Available expression analysis
{ a*b, c+1, d/e, d-1 }

KILL a*b

KILL c+1

KILL d/e, d-1
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Available expression analysis

As in LVA, we can devise functions gen(n) and kill(n) 
which give the sets of expressions generated and killed 

by the instruction at node n.

The situation is slightly more complicated this time: an 
assignment to a variable x kills all expressions in the 

program which contain occurrences of x. 

Available expression analysis

gen( print x+1 ) = { x+1 }gen( x = 3 ) = { }

So, in the following, Ex is the set of expressions in the 
program which contain occurrences of x.

kill( x = 3 ) = Ex kill( print x+1 ) = { }

gen( x = x + y ) = { x+y }

kill( x = x + y ) = Ex

Available expression analysis
As availability flows forwards past an instruction, we 

want to modify the availability information by adding any 
expressions which it generates (they become available) 

and removing any which it kills (they become unavailable).

kill( x = 3 ) = Exgen( print x+1 ) = { x+1 }

{ x+1, y+1 }

{ y+1 }

{ y+1 }

{ x+1, y+1 } { x+1, y+1 }{ x+1, x+y, y+1 }{ x+1, x+y, y+1 }{ y+1 }

gen( x = x + y ) = { x+y }

Available expression analysis

If an instruction both generates and kills expressions, 
we must remove the killed expressions after adding the 
generated ones (cf. removing def(n) before adding ref(n)).

x = x + y

{ x+1, y+1 }

kill( x = x + y ) = Ex

out-avail(n) =
(
in-avail(n) ∪ gen(n)

)
\ kill(n)

Available expression analysis

So, if we consider in-avail(n) and out-avail(n), 
the sets of expressions which are available 
immediately before and immediately after a 
node, the following equation must hold:

= ({ x+1, y+1 } ∪ { x+y }) ∖ { x+1, x+y }
= { y+1 }= { x+1, x+y, y+1 } ∖ { x+1, x+y }

out-avail(n) =
(
in-avail(n) ∪ gen(n)

)
\ kill(n)

out-avail(n) = (in-avail(n) ∪ gen(n)) ∖ kill(n)

Available expression analysis

in-avail(n) = { x+1, y+1 }

gen(n) = { x+y }

x = x + yn:

kill(n) = { x+1, x+y }

out-avail(n) = (in-avail(n) ∪ gen(n)) ∖ kill(n)

in-avail(n) = ?

Available expression analysis

As in LVA, we have devised one equation for calculating 
out-avail(n) from the values of gen(n), kill(n) and in-avail(n), 

and now need another for calculating in-avail(n).

x = x + yn:

Available expression analysis

When a node n has a single predecessor m, the 
information propagates along the control-flow edge as 

you would expect: in-avail(n) = out-avail(m).

When a node has multiple predecessors, the expressions 
available at the entry of that node are exactly those 

expressions available at the exit of all of its predecessors
(cf. “any of its successors” in LVA).
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Available expression analysis

x = 11;o:

z = x * y;m: print x*y;n:

y = 13;p:

{ x+5 } { y-7 }

{ x*y }

{ x+5, x*y } { x*y, y-7 }

{ }

{ }

{ x+5, x*y } ∩ { 
x*y, y-7 }
= { x*y }

{ x+5 } { y-7 }

Available expression analysis

So the following equation must also hold:

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

Data-flow equations

These are the data-flow equations for available expression 
analysis, and together they tell us everything we need to 
know about how to propagate availability information 

through a program.

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(
in-avail(n) ∪ gen(n)

)
\ kill(n)

Data-flow equations

Each is expressed in terms of the other, so we can 
combine them to create one overall availability equation.

avail(n) =
⋂

p∈pred(n)

(
(avail(p) ∪ gen(p)) \ kill(p)

)

Data-flow equations
Danger: we have overlooked one important detail.

x = 42;n:

avail(n) =        ((avail(p) ∪ gen(p)) ∖ kill(p)) ∩
p ∈ pred(n)

=        { }∩
= U

Clearly there should be no expressions available here, 
so we must stipulate explicitly that

avail(n) = { }  if  pred(n) = { }.

(i.e. all expressions
in the program)

pred(n) = { }

Data-flow equations

With this correction, our data-flow equation for 
expression availability is

avail(n) =

{ ⋂
p∈pred(n) ((avail(p) ∪ gen(p)) \ kill(p)) if pred(n) ≠ { }

{ } if pred(n) = { }

Data-flow equations

The functions and equations presented so far are 
correct, and their definitions are fairly intuitive.

However, we may wish to have our data-flow 
equations in a form which more closely matches 
that of the LVA equations, since this emphasises 

the similarity between the two analyses and 
hence is how they are most often presented.

A few modifications are necessary to achieve this.

Data-flow equations

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(
in-avail(n) ∪ gen(n)

)
\ kill(n)

These differences are inherent in the analyses.
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These differences are an arbitrary result of our definitions.

Data-flow equations

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(
in-avail(n) ∪ gen(n)

)
\ kill(n)

Data-flow equations

We might instead have decided to define gen(n) and kill(n) 
to coincide with the following (standard) definitions:

• A node generates an expression e if it must 
compute the value of e and does not 
subsequently redefine any of the variables 
occuring in e.

• A node kills an expression e if it may redefine 
some of the variables occurring in e and does 
not subsequently recompute the value of e.

Data-flow equations
By the old definition:

gen( x = x + y ) = { x+y }

kill( x = x + y ) = Ex

By the new definition:
gen( x = x + y ) = { }

kill( x = x + y ) = Ex

(The new kill(n) may visibly differ when n is a basic block.)

out-avail(n) =
(
in-avail(n) ∪ gen(n)

)
\ kill(n)

Data-flow equations

Since these new definitions take account of which 
expressions are generated overall by a node (and exclude 

those which are generated only to be immediately 
killed), we may propagate availability information through 
a node by removing the killed expressions before adding 

the generated ones, exactly as in LVA.

out-avail(n) =
(
in-avail(n) \ kill(n)

)
∪ gen(n)out-avail(n) =

(
in-avail(n) \ kill(n)

)
∪ gen(n)

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

Data-flow equations

From this new equation for out-avail(n) we may produce 
our final data-flow equation for expression availability:

This is the equation you will find in the course 
notes and standard textbooks on program 

analysis; remember that it depends on these 
more subtle definitions of gen(n) and kill(n).

avail(n) =

{ ⋂
p∈pred(n) ((avail(p) \ kill(p)) ∪ gen(p)) if pred(n) ≠ { }

{ } if pred(n) = { }

Algorithm

• We again use an array, avail[], to store the 
available expressions for each node.

• We initialise avail[] such that each node has all 
expressions available (cf. LVA: no variables live).

• We again iterate application of the data-flow 
equation at each node until avail[] no longer 
changes.

Algorithm

for i = 1 to n do avail[i] := U
while (avail[] changes) do
  for i = 1 to n do
    avail[i] := 

⋂

p∈pred(i)

((avail[p] \ kill(p)) ∪ gen(p))

Algorithm

We can do better if we assume that the flowgraph 
has a single entry node (the first node in avail[]).

Then avail[1] may instead be initialised to the 
empty set, and we need not bother recalculating 
availability at the first node during each iteration.
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Algorithm

avail[1] := {}
for i = 2 to n do avail[i] := U
while (avail[] changes) do
  for i = 2 to n do
    avail[i] := 

⋂

p∈pred(i)

((avail[p] \ kill(p)) ∪ gen(p))

Algorithm

As with LVA, this algorithm is guaranteed to terminate 
since the effect of one iteration is monotonic (it only 
removes expressions from availability sets) and an 

empty availability set cannot get any smaller.

Any solution to the data-flow equations is safe, but 
this algorithm is guaranteed to give the largest (and 

therefore most precise) solution.

Algorithm

• If we arrange our programs such that each 
assignment assigns to a distinct temporary variable, 
we may number these temporaries and hence 
number the expressions whose values are assigned 
to them.

• If the program has n such expressions, we can 
implement each element of avail[] as an n-bit 
value, with the mth bit representing the availability of 
expression number m.

Implementation notes:

Algorithm

• Again, we can store availability once per basic 
block and recompute inside a block when 
necessary. Given each basic block n has kn 
instructions n[1], ..., n[kn]:

Implementation notes:

avail(n) =
⋂

p∈pred(n)

(avail(p) \ kill(p[1]) ∪ gen(p[1]) · · · \ kill(p[kp]) ∪ gen(p[kp]))

Safety of analysis
• Syntactic availability safely underapproximates 

semantic availability.

• Address-taken variables are again a problem. For 
safety we must 

• underestimate ambiguous generation (assume no 
expressions are generated) and

• overestimate ambiguous killing (assume all 
expressions containing address-taken variables are 
killed); this decreases the size of the largest 
solution.

Analysis framework

The two data-flow analyses we’ve seen, LVA and AVAIL, 
clearly share many similarities.

In fact, they are both instances of the same simple data-
flow analysis framework: some program property is 

computed by iteratively finding the most precise solution 
to data-flow equations, which express the relationships 
between values of that property immediately before and 

immediately after each node of a flowgraph.

Analysis framework

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(
out-live(n) \ def (n)

)
∪ ref (n)

in-avail(n) =
⋂

p∈pred(n)

out-avail(p)

out-avail(n) =
(
in-avail(n) \ kill(n)

)
∪ gen(n)

Analysis framework

AVAIL’s data-flow equations have the form

out(n) = (in(n) ∖ ...) ∪ ... in(n) =       out(p)∩
p ∈ pred(n)

in(n) = (out(n) ∖ ...) ∪ ...

LVA’s data-flow equations have the form

out(n) =       in(s)∪
s ∈ succ(n)

union over successors

intersection over predecessors
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Analysis framework

∩ ∪
pred AVAIL

succ LVA

RD

VBE

...and others

Analysis framework

So, given a single algorithm for iterative 
solution of data-flow equations of this form, 
we may compute all these analyses and any 

others which fit into the framework.

Summary
• Expression availability is a data-flow property

• Available expression analysis (AVAIL) is a forwards 
data-flow analysis for determining expression 
availability

• AVAIL may be expressed as two complementary 
data-flow equations, which may be combined

• A simple iterative algorithm can be used to find 
the largest solution to the data-flow equations

• AVAIL and LVA are both instances (among others) 
of the same data-flow analysis framework
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Lecture 5
Data-flow anomalies 

and clash graphs

Motivation

Both human- and computer-generated programs 
sometimes contain data-flow anomalies.

These anomalies result in the program being 
worse, in some sense, than it was intended to be.

Data-flow analysis is useful in locating, and 
sometimes correcting, these code anomalies.

Optimisation vs. debugging

Data-flow anomalies may manifest themselves in 
different ways: some may actually “break” the program 
(make it crash or exhibit undefined behaviour), others 
may just make the program “worse” (make it larger or 

slower than necessary).

Any compiler needs to be able to report when a 
program is broken (i.e. “compiler warnings”), so the 
identification of data-flow anomalies has applications 

in both optimisation and bug elimination.

Dead code

Dead code is a simple example of a data-flow 
anomaly, and LVA allows us to identify it.

Recall that code is dead when its result goes 
unused; if the variable x is not live on exit 

from an instruction which assigns some value 
to x, then the whole instruction is dead.

{ a, b, z }

Dead code
⋮ 

a = x + 11; 

b = y + 13; 

c = a * b; 

⋮ 

print z; { z }

{ a, y, z }

{ x, y, z }

{ z }
⋮

c DEAD

⋮

{ }

Dead code

For this kind of anomaly, an automatic remedy is not 
only feasible but also straightforward: dead code with 

no live side effects is useless and may be removed.

{ a, b, z }

Dead code
⋮ 

a = x + 11; 

b = y + 13; 

c = a * b; 

⋮ 

print z; { z }

{ a, y, z }

{ x, y, z }

{ z }
⋮

Successive iterations may yield further improvements.

{ a, y, z }{ y, z }

⋮

{ }

Dead code

The program resulting from this transformation 
will remain correct and will be both smaller and 
faster than before (cf. just smaller in unreachable 

code elimination), and no programmer 
intervention is required.
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Uninitialised variables

In some languages, for example C and our 3-address 
intermediate code, it is syntactically legitimate for a 

program to read from a variable before it has 
definitely been initialised with a value.

If this situation occurs during execution, the effect of 
the read is usually undefined and depends upon 

unpredictable details of implementation and 
environment.

Uninitialised variables

This kind of behaviour is often undesirable, so we 
would like a compiler to be able to detect and warn 

of the situation.

Happily, the liveness information collected by LVA 
allows a compiler to see easily when a read from an 

undefined variable is possible.

Uninitialised variables

In a “healthy” program, variable liveness produced by 
later instructions is consumed by earlier ones; if an 
instruction demands the value of a variable (hence 

making it live), it is expected that an earlier instruction 
will define that variable (hence making it dead again).

x = 11; 

y = 13; 

z = 17; 

⋮ 

print x; 

print y;

{ }{ }

⋮
{ x, y }

Uninitialised variables

{ y }

{ x, y }

{ x }

{ x, y }

{ }

✓
Uninitialised variables

If any variables are still live at the beginning of a 
program, they represent uses which are potentially 
unmatched by corresponding definitions, and hence 
indicate a program with potentially undefined (and 

therefore incorrect) behaviour.

x = 11; 

y = 13; 

⋮ 

print x; 

print y; 

print z;

{ z }{ z }

{ x, y, z }

Uninitialised variables

{ z }

{ x, y, z }

{ x, z }

{ y, z }

z LIVE

{ }

⋮✗

Uninitialised variables

In this situation, the compiler can issue a warning: 
“variable z may be used before it is initialised”.

However, because LVA computes a safe (syntactic) 
overapproximation of variable liveness, some of these 

compiler warnings may be (semantically) spurious.

{ } ∪ { x }{ x }{ x }

{ x } ∪ { }

Uninitialised variables

{ x }
⋮

if (p) { 

  x = 42; 

} 

⋮ 

if (p) { 

  print x; 

}

{ }

{ }

{ x }

{ x }

{ x }

{ }

x LIVE

✗
Note: 
intentionally 
ignoring p!
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Uninitialised variables

Here the analysis is being too safe, and the warning is 
unnecessary, but this imprecision is the nature of our 

computable approximation to semantic liveness.

So the compiler must either risk giving unnecessary 
warnings about correct code (“false positives”) or 
failing to give warnings about incorrect code (“false 

negatives”). Which is worse?

Opinions differ.

Uninitialised variables

Although dead code may easily be remedied by the 
compiler, it’s not generally possible to automatically 

fix the problem of uninitialised variables.

As just demonstrated, even the decision as to 
whether a warning indicates a genuine problem 

must often be made by the programmer, who must 
also fix any such problems by hand.

Uninitialised variables

Note that higher-level languages have the concept of 
(possibly nested) scope, and our expectations for 
variable initialisation in“healthy” programs can be 

extended to these.

In general we expect the set of live variables at the 
beginning of any scope to not contain any of the 

variables local to that scope.

int x = 5; 
int y = 7; 
if (p) { 
  int z; 
  ⋮ 
  print z; 
} 
print x+y;

{ x, y, z }{ x, y, z }

Uninitialised variables

✗ z LIVE

Write-write anomalies
While LVA is useful in these cases, some similar data-flow 
anomalies can only be spotted with a different analysis.

Write-write anomalies are an example of this. They occur 
when a variable may be written twice with no intervening 
read; the first write may then be considered unnecessary 

in some sense.

x = 11; 
x = 13; 
print x;

Write-write anomalies

A simple data-flow analysis can be used to track 
which variables may have been written but not 

yet read at each node.

In a sense, this involves doing LVA in reverse (i.e. 
forwards!): at each node we should remove all 

variables which are referenced, then add all 
variables which are defined.

Write-write anomalies

in-wnr(n) =
⋃

p∈pred(n)

out-wnr(p)

out-wnr(n) =
(
in-wnr(n) \ ref (n)

)
∪ def (n)

wnr(n) =
⋃

p∈pred(n)

(
(wnr(p) \ ref (p)) ∪ def (p)

)

x = 11; 

y = 13; 

z = 17; 

⋮ 

print x; 

y = 19; 

⋮

{ }

⋮
{ x, y, z }

Write-write anomalies

{ y, z }

{ x, y }

{ x }

{ x, y, z }

{ y, z }
⋮

{ y, z }

y is also 
dead here. y

y is rewritten 
here without 
ever having 
been read.
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Write-write anomalies

But, although the second write to a variable 
may turn an earlier write into dead code, the 
presence of a write-write anomaly doesn’t 
necessarily mean that a variable is dead — 

hence the need for a different analysis.

Write-write anomalies

x = 11; 
if (p) { 
  x = 13; 
} 
print x;

x is live throughout this code, but if p is true during 
execution, x will be written twice before it is read.
In most cases, the programmer can remedy this.

Write-write anomalies

if (p) { 
  x = 13; 
} else { 
  x = 11; 
} 
print x;

This code does the same job, but avoids writing to x 
twice in succession on any control-flow path.

if (p) { 
  x = 13; 
} 
if (!p) { 
  x = 11; 
} 
print x;

Write-write anomalies

Again, the analysis may be too approximate to notice 
that a particular write-write anomaly may never occur 
during any execution, so warnings may be inaccurate.

Write-write anomalies

As with uninitialised variable anomalies, the 
programmer must be relied upon to investigate 

the compiler’s warnings and fix any genuine 
problems which they indicate.

Clash graphs

The ability to detect data-flow anomalies is a 
nice compiler feature, but LVA’s main utility is in 
deriving a data structure known as a clash graph 

(aka interference graph).

Clash graphs

When generating intermediate code it is 
convenient to simply invent as many variables as 
necessary to hold the results of computations; 

the extreme of this is “normal form”, in which a 
new temporary variable is used on each occasion 

that one is required, with none being reused.

Clash graphs

x = (a*b) + c; 
y = (a*b) + d;

MUL t1,a,b 
ADD x,t1,c 
MUL t2,a,b 
ADD y,t2,d

lex, parse, translate

Lecture 5: Data-flow anomalies and clash graphs

71



Clash graphs

This makes generating 3-address code as straightforward 
as possible, and assumes an imaginary target machine 
with an unlimited supply of “virtual registers”, one to 
hold each variable (and temporary) in the program.

Such a naïve strategy is obviously wasteful, however, and 
won’t generate good code for a real target machine.

Clash graphs

Before we can work on improving the situation, we 
must collect information about which variables actually 
need to be allocated to different registers on the target 
machine, as opposed to having been incidentally placed 

in different registers by our translation to normal form.

LVA is useful here because it can tell us which variables 
are simultaneously live, and hence must be kept in 

separate virtual registers for later retrieval.

Clash graphs

x = 11; 
y = 13; 
z = (x+y) * 2; 
a = 17; 
b = 19; 
z = z + (a*b);

Clash graphs

MOV x,#11    { } 
MOV y,#13    { x } 
ADD t1,x,y   { x, y } 
MUL z,t1,#2  { t1 } 
MOV a,#17    { z } 
MOV b,#19    { a, z } 
MUL t2,a,b   { a, b, z } 
ADD z,z,t2   { t2, z }

Clash graphs

             { } 
             { x } 
             { x, y } 
             { t1 } 
             { z } 
             { a, z } 
             { a, b, z } 
             { t2, z }

In a program’s clash graph there is 
one vertex for each virtual register 
and an edge between vertices when 

their two registers are ever 
simultaneously live.

             { } 
             { x } 
             { x, y } 
             { t1 } 
             { z } 
             { a, z } 
             { a, b, z } 
             { t2, z }

Clash graphs

x y t1

ba

z

t2

This graph shows us, 
for example, that a, b 
and z must all be kept 
in separate registers, 

but that we may reuse 
those registers for the 

other variables.

Clash graphs

z

x y t1

t2

x y t1

t2 ba

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV a,#11 
MOV b,#13 
ADD a ,a,b 
MUL z,a ,#2 
MOV a,#17 
MOV b,#19 
MUL a ,a,b 
ADD z,z,a

Summary

• Data-flow analysis is helpful in locating (and 
sometimes correcting) data-flow anomalies

• LVA allows us to identify dead code and possible 
uses of uninitialised variables

• Write-write anomalies can be identified with a 
similar analysis

• Imprecision may lead to overzealous warnings

• LVA allows us to construct a clash graph
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Lecture 6
Register allocation

Motivation
Normal form is convenient for intermediate code.

However, it’s extremely wasteful.

Real machines only have a small finite number of registers, 
so at some stage we need to analyse and transform the 
intermediate representation of a program so that it only 
requires as many (architectural) registers as are really 

available.

This task is called register allocation.

Graph colouring

Register allocation depends upon the solution of a 
closely related problem known as graph colouring.

Graph colouring Graph colouring

For general (non-planar) graphs, however, 
four colours are not sufficient; there is no 

bound on how many may be required.

✗

Graph colouring

?

red

green

blue

yellow ✓
Graph colouring

red

green

blue

yellow

purple

brown
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Allocation by colouring

This is essentially the same problem that 
we wish to solve for clash graphs.

• How many colours (i.e. architectural registers) are 
necessary to colour a clash graph such that no 
two connected vertices have the same colour 
(i.e. such that no two simultaneously live virtual 
registers are stored in the same arch. register)?

• What colour should each vertex be?

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV x,#11 
MOV y,#13 
ADD t1,x,y 
MUL z,t1,#2 
MOV a,#17 
MOV b,#19 
MUL t2,a,b 
ADD z,z,t2

MOV r0,#11 
MOV r1,#13 
ADD r0,r0,r1 
MUL r2,r0,#2 
MOV r0,#17 
MOV r1,#19 
MUL r0,r0,r1 
ADD r2,r2,r0

Allocation by colouring

z

x y t1

t2 ba

x t1

t2 a

y

b

z

Algorithm

Finding the minimal colouring for a graph is NP-hard, and 
therefore difficult to do efficiently. 

However, we may use a simple heuristic algorithm which 
chooses a sensible order in which to colour vertices and 

usually yields satisfactory results on real clash graphs.

Algorithm

• Choose a vertex (i.e. virtual register) which has 
the least number of incident edges (i.e. clashes).

• Remove the vertex and its edges from the 
graph, and push the vertex onto a LIFO stack.

• Repeat until the graph is empty.

• Pop each vertex from the stack and colour it in 
the most conservative way which avoids the 
colours of its (already-coloured) neighbours.

Algorithm

z

a

x

z

yw

b

c d

x

y

w

a

b

c

d

Algorithm

a

x

z

yw

b

c ddc

a b

w

x

y

z

r0 
r1 
r2 
r3

Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b c

x

y z

Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b c

x

y z

A better (more minimal) colouring may exist.

a

b
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Spilling

This algorithm tries to find an approximately minimal 
colouring of the clash graph, but it assumes new 

colours are always available when required.

In reality we will usually have a finite number of 
colours (i.e. architectural registers) available; how 

should the algorithm cope when it runs out of colours?

Spilling

The quantity of architectural registers is strictly 
limited, but it is usually reasonable to assume that 
fresh memory locations will always be available.

So, when the number of simultaneously live values 
exceeds the number of architectural registers, we 

may spill the excess values into memory.

Operating on values in memory is of course much 
slower, but it gets the job done.

Spilling

ADD a,b,c

LDR t1,#0xFFA4 
LDR t2,#0xFFA8 
ADD t3,t1,t2 
STR t3,#0xFFA0

vs.

Algorithm
• Choose a vertex with the least number of edges.

• If it has fewer edges than there are colours,

• remove the vertex and push it onto a stack,

• otherwise choose a register to spill — e.g. the 
least-accessed one — and remove its vertex.

• Repeat until the graph is empty.

• Pop each vertex from the stack and colour it.

• Any uncoloured vertices must be spilled.

Algorithm

a

x

z

y

a: 3, b: 5, c: 7, d: 11, w: 13, x: 17, y: 19, z: 23

b

c d

w

b

d

Algorithm

z

a

x

z

yw

b

c d

x

y

c

d

w

Algorithm

a

x

z

yw

b

c ddc

x

y

z

a: 3, b: 5, c: 7, d: 11, w: 13, x: 17, y: 19, z: 23

r0 
r1
a and b

spilled to memory

w

Algorithm
Choosing the right virtual register to spill will 

result in a faster, smaller program.

The static count of “how many accesses?” is a 
good start, but doesn’t take account of more 
complex issues like loops and simultaneous 

liveness with other spilled values.

One easy heuristic is to treat one static access 
inside a loop as (say) 4 accesses; this generalises 
to 4n accesses inside a loop nested to level n.
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Algorithm
“Slight lie”: when spilling to memory, we (normally) need 
one free register to use as temporary storage for values 

loaded from and stored back into memory.

If any instructions operate on two spilled values 
simultaneously, we may need two such temporary 

registers to store both values.

So, in practise, when a spill is detected we may need to 
restart register allocation with one (or two) fewer 
architectural registers available so that these can be 
kept free for temporary storage of spilled values.

Algorithm
When we are popping vertices from the stack and 

assigning colours to them, we sometimes have more 
than one colour to choose from.

If the program contains an instruction “MOV a,b” then 
storing a and b in the same arch. register (as long as 

they don’t clash) will allow us to delete that instruction.

We can construct a preference graph to show which 
pairs of registers appear together in MOV instructions, 

and use it to guide colouring decisions.

Non-orthogonal instructions
We have assumed that we are free to choose 

architectural registers however we want to, but this is 
simply not the case on some architectures.

• The x86 MUL instruction expects one of its 
arguments in the AL register and stores its result into 
AX.

• The VAX MOVC3 instruction zeroes r0, r2, r4 and 
r5, storing its results into r1 and r3.

We must be able to cope with such irregularities.

Non-orthogonal instructions

We can handle the situation tidily by pre-allocating a 
virtual register to each of the target machine’s arch. 

registers, e.g. keep v0 in r0, v1 in r1, ..., v31 in r31.

When generating intermediate code in normal form, we 
avoid this set of registers, and use new ones (e.g. v32, 

v33, ...) for temporaries and user variables.

In this way, each architectural register is explicitly 
represented by a unique virtual register.

Non-orthogonal instructions
We must now do extra work when generating 

intermediate code:

• When an instruction requires an operand in a 
specific arch. register (e.g. x86 MUL), we generate a 
preceding MOV to put the right value into the 
corresponding virtual register.

• When an instruction produces a result in a specific 
arch. register (e.g. x86 MUL), we generate a trailing 
MOV to transfer the result into a new virtual register.

Non-orthogonal instructions

x = 19; 
y = 23; 
z = x + y;

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

If (hypothetically) ADD on the target architecture 
can only perform r0 = r1 + r2:

preference graph

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

v32 v33v34

v0 v1 v2

clash graph

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

v32 v33v34

v0 v1 v2

v32 v33v34

preference graph

v34 v32 v33

v0 v1 v2
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clash graph

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

MOV v32,#19 
MOV v33,#23 
MOV v1,v32 
MOV v2,v33 
ADD v0,v1,v2 
MOV v34,v0

MOV r1,#19 
MOV r2,#23 
MOV r1,r1 
MOV r2,r2 
ADD r0,r1,r2 
MOV r0,r0

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

v34 v32 v33

v0 v1 v2

Non-orthogonal instructions

And finally, 

• When we know an instruction is going to corrupt 
the contents of an architectural register, we insert 
an edge on the clash graph between the 
corresponding virtual register and all other virtual 
registers live at that instruction — this prevents 
the register allocator from trying to store any live 
values in the corrupted register.

MOV v32,#6 
MOV v33,#7 
MUL v34,v32,v33 
⋮

MOV v32,#6 
MOV v33,#7 
MUL v34,v32,v33 
⋮

MOV r1,#6 
MOV r2,#7 
MUL r0,r1,r2 
⋮

clash graph

Non-orthogonal instructions

If (hypothetically) MUL on the target architecture 
corrupts the contents of r0:

v32 v33 v34v34v32 v33

v1v0 v2

Procedure calling standards

This final technique of synthesising edges on the clash 
graph in order to avoid corrupted registers is helpful 
for dealing with the procedure calling standard of the 

target architecture.

Such a standard will usually dictate that procedure calls 
(e.g. CALL and CALLI instructions in our 3-address 
code) should use certain registers for arguments and 
results, should preserve certain registers over a call, 

and may corrupt any other registers if necessary.

Procedure calling standards

• Arguments should be placed in r0-r3 before a 
procedure is called.

• Results should be returned in r0 and r1.

• r4-r8, r10 and r11 should be preserved 
over procedure calls, and r9 might be 
depending on the platform.

• r12-r15 are special registers, including the 
stack pointer and program counter.

On the ARM, for example:

Procedure calling standards
Since a procedure call instruction may corrupt some 

of the registers (r0-r3 and possibly r9 on the 
ARM), we can synthesise edges on the clash graph 

between the corrupted registers and all other 
virtual registers live at the call instruction.

As before, we may also synthesise MOV instructions 
to ensure that arguments and results end up in the 
correct registers, and use the preference graph to 

guide colouring such that most of these MOVs can be 
deleted again.

Procedure calling standards

x = 7; 
y = 11; 
z = 13; 
a = f(x,y)+z;

MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

v34

Procedure calling standards

v32 v33

v0 v1 v2 v3 v9

v36v35

v4 ...v5
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MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

MOV v32,#7 
MOV v33,#11 
MOV v34,#13 
MOV v0,v32 
MOV v1,v33 
CALL f 
MOV v35,v0 
ADD v36,v34,v35

MOV r0,#7 
MOV r1,#11 
MOV r4,#13 
MOV r0,r0 
MOV r1,r1 
CALL f 
MOV r0,r0 
ADD r0,r4,r0

v34

Procedure calling standards

v32 v33

v0 v1 v2 v3 v9

v36v35v34v32 v33 v36v35

v4 ...v5

Summary
• A register allocation phase is required to assign 

each virtual register to an architectural one during 
compilation

• Registers may be allocated by colouring the 
vertices of a clash graph

• When the number of arch. registers is limited, 
some virtual registers may be spilled to memory

• Non-orthogonal instructions may be handled with 
additional MOVs and new edges on the clash graph

• Procedure calling standards also handled this way
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Lecture 7
Redundancy elimination

Motivation

Some expressions in a program may cause redundant 
recomputation of values.

If such recomputation is safely eliminated, the program 
will usually become faster.

There exist several redundancy elimination optimisations 
which attempt to perform this task in different ways 
(and for different specific meanings of “redundancy”).

Common subexpressions

Common-subexpression elimination is a transformation 
which is enabled by available-expression analysis (AVAIL), 
in the same way as LVA enables dead-code elimination.

Since AVAIL discovers which expressions will have been 
computed by the time control arrives at an instruction in 

the program, we can use this information to spot and 
remove redundant computations.

Common subexpressions

Recall that an expression is available at an instruction if its 
value has definitely already been computed and not been 

subsequently invalidated by assignments to any of the 
variables occurring in the expression.

If the expression e is available on entry to an instruction 
which computes e, the instruction is performing a 

redundant computation and can be modified or removed.

Common subexpressions

We consider this redundantly-computed expression 
to be a common subexpression: it is common to more 
than one instruction in the program, and in each of 
its occurrences it may appear as a subcomponent of 

some larger expression.

x = (a*b)+c; 
⋮  
print a * b; a*b AVAILABLE

Common subexpressions

We can eliminate a common subexpression by 
storing its value into a new temporary variable 

when it is first computed, and reusing that variable 
later when the same value is required.

Algorithm

• Find a node n which computes an already-
available expression e

• Replace the occurrence of e with a new 
temporary variable t

• On each control path backwards from n, find 
the first instruction calculating e and add a 
new instruction to store its value into t

• Repeat until no more redundancy is found

Algorithm

x = y * z

a = y * z b = y * z c = y * z

y*z AVAILABLE
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Algorithm

a = y * z b = y * z c = y * zt = y * z 
a = t

t = y * z 
b = t

t = y * z 
c = t

x = t

Common subexpressions

Our transformed program performs (statically) 
fewer arithmetic operations: y*z is now 

computed in three places rather than four.

However, three register copy instructions have 
also been generated; the program is now larger, 

and whether it is faster depends upon 
characteristics of the target architecture.

Common subexpressions

The program might have “got worse” as a result of 
performing common-subexpression elimination.

In particular, introducing a new variable increases 
register pressure, and might cause spilling.

Memory loads and stores are much more expensive 
than multiplication of registers!

Copy propagation

This simple formulation of CSE is fairly careless, and 
assumes that other compiler phases are going to tidy 

up afterwards.

In addition to register allocation, a transformation 
called copy propagation is often helpful here.

In copy propagation, we scan forwards from an x=y 
instruction and replace x with y wherever it appears 

(as long as neither x nor y have been modified).

Copy propagation

c = y * z

d = y * z

b = y * z

a = y * z

Copy propagation

c = y * z

b = y * z

a = y * zt3 = y * z 
a = t3

d = t1

t1 = t2 
c = t1

t2 = t3 
b = t2

t3 = y * z 
a = t3

Copy propagation

t2 = t3 
b = t3

t1 = t3 
c = t3

d = t3

Code motion

Transformations such as CSE are known collectively 
as code motion transformations: they operate by 
moving instructions and computations around 
programs to take advantage of opportunities 
identified by control- and data-flow analysis.

Code motion is particularly useful in eliminating 
different kinds of redundancy.

It’s worth looking at other kinds of code motion.
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Code hoisting

Code hoisting reduces the size of a program by moving 
duplicated expression computations to the same place, 
where they can be combined into a single instruction.

Hoisting relies on a data-flow analysis called very busy 
expressions (a backwards version of AVAIL) which finds 

expressions that are definitely going to be evaluated later in 
the program; these can be moved earlier and possibly 

combined with each other.

b = x + ya = x + y

x = 19 
y = 23

Code hoisting

x+y VERY BUSY

x = 19 
y = 23 
t1 = x + y

Code hoisting

b = t1a = t1

Code hoisting

Hoisting may have a different effect on execution 
time depending on the exact nature of the code. 

The resulting program may be slower, faster, or just 
the same speed as before.

Loop-invariant code motion

Some expressions inside loops are redundant in the 
sense that they get recomputed on every iteration even 

though their value never changes within the loop.

Loop-invariant code motion recognises these redundant 
computations and moves such expressions outside of 

loop bodies so that they are only evaluated once.

Loop-invariant code motion

a = ...; 
b = ...; 
while (...) { 
  x = a + b; 
  ... 
} 
print x;

Loop-invariant code motion

a = ...; 
b = ...; 
while (...) { 
  x = a + b; 
  ... 
} 
print x;

a = ...; 
b = ...; 
x = a + b; 
while (...) { 
  ... 
} 
print x;

Note: the loop must iterate at least once.

Loop-invariant code motion

This transformation depends upon a data-flow analysis 
to discover which assignments may affect the value of a 

variable (“reaching definitions”).

If none of the variables in the expression are redefined 
inside the loop body (or are only redefined by 

computations involving other invariant values), the 
expression is invariant between loop iterations and may 

safely be relocated before the beginning of the loop.
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Partial redundancy

Partial redundancy elimination combines common-
subexpression elimination and loop-invariant 

code motion into one optimisation which 
improves the performance of code.

An expression is partially redundant when it is 
computed more than once on some (vs. all) paths 

through a flowgraph; this is often the case for 
code inside loops, for example.

Partial redundancy

a = ...; 
b = ...; 
while (...) { 
  ... = a + b; 
  a = ...; 
  ... = a + b; 
}

Partial redundancy

a = ...; 
b = ...; 
while (...) { 
  ... = a + b; 
  a = ...; 
  ... = a + b; 
}

a = ...; 
b = ...; 
... = a + b; 
while (...) { 
  ... = a + b; 
  a = ...; 
  ... = a + b; 
}

Partial redundancy

This example gives a faster program of the same size.

Partial redundancy elimination can be achieved in its 
own right using a complex combination of several 

forwards and backwards data-flow analyses in order to 
locate partially redundant computations and discover 

the best places to add and delete instructions.

Putting it all together
a = x + y; 
b = x + y; 
r = z; 
if (a == 42) { 
  r = a + b; 
  s = x + y; 
} else { 
  s = a + b; 
} 
t = b + r; 
u = x + y; 
⋮ 
return r+s+t+u;

ADD a,x,y 
ADD b,x,y 
MOV r,z

ADD r,a,b 
ADD s,x,y

ADD s,a,b

ADD t,b,r 
ADD u,x,y

Putting it all together

ADD a,x,y 
ADD b,x,y 
MOV r,z 

ADD r,a,b 
ADD s,x,y

ADD s,a,b

ADD t,b,r 
ADD u,x,y

x+y COMMON

ADD t1,x,y 
MOV a,t1 
MOV b,t1 
MOV r,z

Putting it all together

ADD r,a,b 
ADD s,x,y

ADD s,a,b

ADD t,b,r 
ADD u,x,y x+y COMMON

x+y COMMON

COPIES OF t3 

ADD t3,x,y 
MOV t2,t3 
MOV t1,t2 
MOV a,t1 
MOV b,t1 
MOV r,z

Putting it all together

ADD r,a,b 
MOV s,t2

ADD s,a,b

ADD t,b,r 
MOV u,t3
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Putting it all together
ADD t3,x,y 
MOV t2,t3 
MOV t1,t3 
MOV a,t3 
MOV b,t3 
MOV r,z

ADD r,a,b 
MOV s,t2

ADD s,a,b

ADD t,b,r 
MOV u,t3

COPIES OF t3 

Putting it all together
ADD t3,x,y 
MOV t2,t3 
MOV t1,t3 
MOV a,t3 
MOV b,t3 
MOV r,z

ADD r,t3,t3 
MOV s,t3

ADD s,t3,t3

ADD t,t3,r 
MOV u,t3

t1, t2 DEAD

Putting it all together

ADD t3,x,y 
MOV a,t3 
MOV b,t3 
MOV r,z

ADD r,t3,t3 
MOV s,t3

ADD s,t3,t3

ADD t,t3,r 
MOV u,t3

t3+t3 VERY BUSY
a, b DEAD

Putting it all together

MOV r,t4 
MOV s,t3

MOV s,t4

ADD t,t3,r 
MOV u,t3

ADD t3,x,y 
MOV a,t3 
MOV b,t3 
MOV r,z 
ADD t4,t3,t3

Putting it all together

MOV r,t4 
MOV s,t3

MOV s,t4

ADD t,t3,r 
MOV u,t3

ADD t3,x,y 
MOV r,z 
ADD t4,t3,t3

Summary
• Some optimisations exist to reduce or remove 

redundancy in programs

• One such optimisation, common-subexpression 
elimination, is enabled by AVAIL

• Copy propagation makes CSE practical

• Other code motion optimisations can also help to 
reduce redundancy

• These optimisations work together to improve 
code
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Lecture 8
Static single assignment 
and strength reduction

Motivation

Intermediate code in normal form permits maximum 
flexibility in allocating temporary variables to 

architectural registers.

This flexibility is not extended to user variables, and 
sometimes more registers than necessary will be used.

Register allocation can do a better job with user 
variables if we first translate code into SSA form.

Live ranges

User variables are often reassigned and reused 
many times over the course of a program, so that 

they become live in many different places.

Our intermediate code generation scheme assumes 
that each user variable is kept in a single virtual 

register throughout the entire program.

This results in each virtual register having a large 
live range, which is likely to cause clashes. 

Live ranges

extern int f(int); 
extern void h(int,int); 
void g() 
{ 
  int a,b,c; 
  a = f(1); b = f(2); h(a,b); 
  b = f(3); c = f(4); h(b,c); 
  c = f(5); a = f(6); h(c,a); 
}

Live ranges
a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a, b CLASH

b, c CLASH

c, a CLASH

Live ranges
a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a = f(1); 
b = f(2); 
h(a,b); 

b = f(3); 
c = f(4); 
h(b,c); 

c = f(5); 
a = f(6); 
h(c,a);

a

b c

3 registers needed

Live ranges

We may remedy this situation by performing a 
transformation called live range splitting, in which live 
ranges are made smaller by using a different virtual 
register to store a variable’s value at different times, 

thus reducing the potential for clashes.

extern int f(int); 
extern void h(int,int); 
void g() 
{ 
  int a,b,c; 
  a = f(1); b = f(2); h(a,b); 
  b = f(3); c = f(4); h(b,c); 
  c = f(5); a = f(6); h(c,a); 
}

extern int f(int); 
extern void h(int,int); 
void g() 
{ 
  int a1,a2, b1,b2, c1,c2; 
  a1 = f(1); b2 = f(2); h(a1,b2); 
  b1 = f(3); c2 = f(4); h(b1,c2); 
  c1 = f(5); a2 = f(6); h(c1,a2); 
}

Live ranges
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Live ranges
a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1, b2 CLASH

b1, c2 CLASH

c1, a2 CLASH

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

Live ranges
a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2); 2 registers needed

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

a1 = f(1); 
b2 = f(2); 
h(a1,b2); 

b1 = f(3); 
c2 = f(4); 
h(b1,c2); 

c1 = f(5); 
a2 = f(6); 
h(c1,a2);

c1 a2

b1 c2

a1 b2

Static single-assignment

Live range splitting is a useful transformation: it gives the 
same benefits for user variables as normal form gives 

for temporary variables.

However, if each virtual register is only ever assigned to 
once (statically), we needn’t perform live range splitting, 

since the live ranges are already as small as possible.

Code in static single-assignment (SSA) form has this 
important property.

Static single-assignment
It is straightforward to transform straight-line 

code into SSA form: each variable is renamed by 
being given a subscript, which is incremented 

every time that variable is assigned to.

v = 3; 
v = v + 1; 
v = v + w; 
w = v + 2;

1

2 1

3 2 1

2 3

Static single-assignment

When the program’s control flow is more 
complex, extra effort is required to retain the 

original data-flow behaviour.

Where control-flow edges meet, two (or 
more) differently-named variables must now 

be merged together.

Static single-assignment

v = v + 1; 
v = v + w;

v = v - 1;

w = v * 2;

v = 3;1

12
23

14

?

Static single-assignment

v = v + 1; 
v = v + w;

v = v - 1;

v = ϕ(v ,v ); 
w = v * 2;

v = 3;1

12
23

14

5 3 4

5

1

2

Static single-assignment

The ϕ-functions in SSA keep track of which 
variables are merged at control-flow join points.

They are not executable since they do not record 
which variable to choose (cf. gated SSA form).
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Static single-assignment

“Slight lie”: SSA is useful for much more than register 
allocation!

In fact, the main advantage of SSA form is that, by 
representing data dependencies as precisely as 

possible, it makes many optimising transformations 
simpler and more effective, e.g. constant propagation, 

loop-invariant code motion, partial-redundancy 
elimination, and strength reduction.

Phase ordering
We now have many optimisations which we can 

perform on intermediate code.

It is generally a difficult problem to decide in which 
order to perform these optimisations; different orders 

may be more appropriate for different programs.

Certain optimisations are antagonistic: for example, 
CSE may superficially improve a program at the 
expense of making the register allocation phase 

more difficult (resulting in spills to memory).

Part B
Higher-level optimisations

Higher-level optimisations

intermediate code

parse tree

token stream

character stream

target code

optimisation

optimisation

optimisation

decompilation

Higher-level optimisations

• More modern optimisations than those in Part A

• Part A was mostly imperative

• Part B is mostly functional

• Now operating on syntax of source language vs. an 
intermediate representation

• Functional languages make the presentation clearer, 
but many optimisations will also be applicable to 
imperative programs

Algebraic identities

The idea behind peephole optimisation of intermediate 
code can also be applied to abstract syntax trees.

There are many trivial examples where one piece of 
syntax is always (algebraically) equivalent to another 
piece of syntax which may be smaller or otherwise 
“better”; simple rewriting of syntax trees with these 

rules may yield a smaller or faster program.

Algebraic identities
... e + 0 ...

... e ...

... (e + n) + m ...

... e + (n + m) ...

Algebraic identities

These optimisations are boring, however, since they are 
always applicable to any syntax tree.

We’re interested in more powerful transformations 
which may only be applied when some analysis has 

confirmed that they are safe.
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if e′ then let x = e in ... x ... else e′′

Algebraic identities

let x = e in if e′ then ... x ... else e′′

provided e′ and e′′ do not contain x.

In a lazy functional language,

This is still quite boring.

Strength reduction

More interesting analyses (i.e. ones that aren’t purely 
syntactic) enable more interesting transformations.

Strength reduction is an optimisation which replaces 
expensive operations (e.g. multiplication and division) 

with less expensive ones (e.g. addition and subtraction).

It is most interesting and useful when done inside loops.

Strength reduction

For example, it may be advantageous to 
replace multiplication (2*e) with addition 

(let x = e in x + x) as before.

Multiplication may happen a lot inside loops 
(e.g. using the loop variable as an index into 

an array), so if we can spot a recurring 
multiplication and replace it with an addition 

we should get a faster program.

int i;
for (i = 0; i < 100; i++)
{
  v[i] = 0;
}

Strength reduction

Strength reduction

int i; char *p;
for (i = 0; i < 100; i++)
{
  p = (char *)v + 4*i;
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
}

Strength reduction

int i; char *p;
for (i = 0; i < 100; i++)
{
  p = (char *)v + 4*i;
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
}

Strength reduction

int i; char *p;
p = (char *)v;
for (i = 0; i < 100; i++)
{
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
  p += 4;
}

Strength reduction

int i; char *p;
p = (char *)v;
for (i = 0; p < (char *)v + 400; i++)
{
  p[0] = 0; p[1] = 0;
  p[2] = 0; p[3] = 0;
  p += 4;
}
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Strength reduction

int i; int *p;
p = v;
for (i = 0; p < v + 100; i++)
{
  *p = 0;
  p++;
}

Strength reduction

int i; int *p;
p = v;
for (i = 0; p < v + 100; i++)
{
  *p = 0;
  p++;
}

Strength reduction

int *p;
for (p = v; p < v + 100; p++)
{
  *p = 0;
}

Multiplication has been replaced with addition.

Strength reduction

Note that, while this code is now almost optimal, it 
has obfuscated the intent of the original program.

Don’t be tempted to write code like this!

For example, when targeting a 64-bit architecture, 
the compiler may be able to transform the original 
loop into fifty 64-bit stores, but will have trouble 

with our more efficient version.

Strength reduction

for some operations ⊕ and ⊗ such that
x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

• induction variable: i = i ⊕ c

• another variable: j = c2 ⊕ (c1 ⊗ i)

We are not restricted to replacing multiplication 
with addition, as long as we have

Strength reduction

It might be easier to perform strength reduction on the 
intermediate code, but only if annotations have been 
placed on the flowchart to indicate loop structure.

At the syntax tree level, all loop structure is apparent.

Summary
• Live range splitting reduces register pressure

• In SSA form, each variable is assigned to only once

• SSA uses ϕ-functions to handle control-flow 
merges

• SSA aids register allocation and many 
optimisations

• Optimal ordering of compiler phases is difficult

• Algebraic identities enable code improvements

• Strength reduction uses them to improve loops
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Lecture 9
Abstract interpretation

Motivation

We reason about programs statically, but we are really 
trying to make predictions about their dynamic behaviour.

Why not examine this behaviour directly?

It isn’t generally feasible (e.g. termination, inputs) to run 
an entire computation at compile-time, but we can find 

things out about it by running a simplified version.

This is the basic idea of abstract interpretation.

Abstract interpretation

Warning: this will be a heavily simplified view 
of abstract interpretation; there is only time to 

give a brief introduction to the ideas, not 
explore them with depth or rigour.

Abstract interpretation

The key idea is to use an abstraction: a model of 
(otherwise unmanageable) reality, which

• discards enough detail that the model becomes 
manageable (e.g. small enough, computable 
enough), but

• retains enough detail to provide useful insight 
into the real world.

Abstract interpretation
For example, to plan a trip, you might use a map.

• A road map sacrifices a lot of detail —

• trees, road conditions, individual buildings;

• an entire dimension —

• but it retains most of the information which 
is important for planning a journey:

• place names;

• roads and how they are interconnected.

Abstract interpretation
Crucially, a road map is a useful abstraction because the 

route you plan is probably still valid back in reality.

• A cartographer creates an abstraction of 
reality (a map),

• you perform some computation on that 
abstraction (plan a route),

• and then you transfer the result of that 
computation back into the real world (drive to 
your destination).

Abstract interpretation

Trying to plan a journey by exploring the concrete world 
instead of the abstraction (i.e. driving around aimlessly) is 

either very expensive or virtually impossible.

A trustworthy map makes it possible — even easy.

This is a real application of abstract interpretation, but in 
this course we’re more interested in computer programs.

Multiplying integers
A canonical example is the multiplication of integers.

If we want to know whether −1515 × 37 is positive 
or negative, there are two ways to find out:

• Compute in the concrete world (arithmetic), 
using the standard interpretation of 
multiplication. −1515 × 37 = −56055, which is 
negative.

• Compute in an abstract world, using an 
abstract interpretation of multiplication: call it ⊗.
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(−) = { z ∈ ℤ | z < 0 }

(+) = { z ∈ ℤ | z > 0 }

Multiplying integers
In this example the magnitudes of the numbers are 

insignificant; we care only about their sign, so we can 
use this information to design our abstraction.

(0) = { 0 }

In the concrete world we have all the integers; in the 
abstract world we have only the values (−), (0) and (+).

Multiplying integers
We need to define the abstract operator ⊗.

Luckily, we have been to primary school.

⊗ (−) (0) (+)

(−)

(0)

(+)

(+)

(+)

(0)

(0)

(0)

(0) (0)

(−)

(−)

Multiplying integers

Armed with our abstraction, we can now tackle the 
original problem.

abs(−1515) = (−)

abs(37) = (+)

(−) ⊗ (+) = (−)

So, without doing any concrete computation, we have 
discovered that −1515 × 37 has a negative result.

Multiplying integers

This is just a toy example, but it demonstrates the 
methodology: state a problem, devise an abstraction that 

retains the characteristics of that problem, solve the 
problem in the abstract world, and then interpret the 

solution back in the concrete world.

This abstraction has avoided doing arithmetic; in 
compilers, we will mostly be interested in avoiding 

expensive computation, nontermination or undecidability.

Safety

As always, there are important safety issues.

Because an abstraction discards detail, a computation in 
the abstract world will necessarily produce less precise 

results than its concrete counterpart.

It is important to ensure that this imprecision is safe.

Safety
We consider a particular abstraction to be safe if, 
whenever a property is true in the abstract world, 

it must also be true in the concrete world.

Our multiplication example is actually quite precise, 
and therefore trivially safe: the magnitudes of the 

original integers are irrelevant, so when the 
abstraction says that the result of a multiplication 

will be negative, it definitely will be.

In general, however, abstractions will be more 
approximate than this.

Adding integers
A good example is the addition of integers.

How do we define the abstract operator ⊕?

⊕ (−) (0) (+)

(−)

(0)

(+)

(−)

(+)

(−)

(0)

(+)

(−) (+)

(?)

(?)

Adding integers
When adding integers, their (relative) magnitudes are 
important in determining the sign of the result, but 

our abstraction has discarded this information.

As a result, we need a new abstract value: (?).

(−) = { z ∈ ℤ | z < 0 }

(+) = { z ∈ ℤ | z > 0 }

(0) = { 0 }

(?) = ℤ
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Adding integers

(?) is less precise than (–), (0) and (+); it means 
“I don’t know”, or “it could be anything”.

Because we want the abstraction to be safe, we 
must put up with this weakness. 

= (+)

= (+)

Adding integers

☺
19, 23

(+), (+)

42

(+)

+

abs

⊕

abs

abs(19 + 23) = abs(42)

abs(19) ⊕ abs(23) = (+) ⊕ (+)

(–)

= (?)

= (–)

Adding integers

☹
–1515, 37

(–), (+)

–1478+

abs

⊕

abs

abs(–1515 + 37) = abs(–1478)

abs(–1515) ⊕ abs(37) = (–) ⊕ (+)

(?)

Safety

Here, safety is represented by the fact that (–) ⊆ (?):

{ z ∈ ℤ | z < 0 } ⊆ ℤ

The result of doing the abstract computation is less 
precise, but crucially includes the result of doing the 
concrete computation (and then abstracting), so the 

abstraction is safe and hasn’t missed anything.

Abstraction
Formally, an abstraction of some concrete domain D 

(e.g. ℘(ℤ)) consists of

• an abstract domain D# (e.g. { (–), (0), (+), (?) }),

• an abstraction function α : D → D# (e.g. abs), 
and

• a concretisation function γ : D# → D, e.g.:

• (–) ↦ { z ∈ ℤ | z < 0 },

• (0) ↦ { 0 }, etc.

Abstraction

concrete abstract

γ

α

Abstraction

+({ 2, 5 }, { –3, –7 }) = { –1, –5, 2, –2 } ^

⊕((+), (–)) = (?)

Given a function f from one concrete domain to 
another (e.g. + : ℘(ℤ) × ℘(ℤ) → ℘(ℤ)), we 

require an abstract function f # (e.g. ⊕) between

^

the corresponding abstract domains.

Abstraction

ℤ × ℤ ℤ+

+̂

⊕

DD × D

α1 γ1

D# × D# D#

α2 γ2

So, for D = ℘(ℤ) and D# = { (–), (0), (+), (?) }, we have:

where α1,2 and γ1,2 are the appropriate 
abstraction and concretisation functions.
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Abstraction
These mathematical details are formally important, but 

are not examinable on this course.

Abstract interpretation can get very theoretical, but 
what’s significant is the idea of using an abstraction to 

safely model reality.

Recognise that this is what we were doing in data-
flow analysis: interpreting 3-address instructions as 

operations on abstract values — e.g. live variable sets 
— and then “executing” this abstract program.

Summary
• Abstractions are manageably simple models of 

unmanageably complex reality

• Abstract interpretation is a general technique for 
executing simplified versions of computations

• For example, the sign of an arithmetic result can be 
sometimes determined without doing any 
arithmetic

• Abstractions are approximate, but must be safe

• Data-flow analysis is a form of abstract 
interpretation
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Lecture 10
Strictness analysis

Motivation
The operations and control structures of imperative 
languages are strongly influenced by the way most 

real computer hardware works.

This makes imperative languages relatively easy to 
compile, but (arguably) less expressive; many people 

use functional languages, but these are harder to 
compile into efficient imperative machine code.

Strictness optimisation can help to improve the 
efficiency of compiled functional code.

Call-by-value evaluation

e2 ⇓ v2 e1[v2/x] ⇓ v1

(λx.e1) e2 ⇓ v1

Strict (“eager”) functional languages (e.g. ML) 
use a call-by-value evaluation strategy:

• Efficient in space and time, but

• might evaluate more arguments than necessary.

Call-by-name evaluation

e1[e2/x] ⇓ v

(λx.e1) e2 ⇓ v

Non-strict (“lazy”) functional languages (e.g. Haskell) 
use a call-by-name evaluation strategy:

• Only evaluates arguments when necessary, but

• copies (and redundantly re-evaluates) arguments.

Call-by-need evaluation

One simple optimisation is to use call-by-need 
evaluation instead of call-by-name.

If the language has no side-effects, duplicated 
instances of an argument can be shared, evaluated 
once if required, and the resulting value reused.

This avoids recomputation and is better than call-by-
name, but is still more expensive than call-by-value.

Call-by-need evaluation

Using call-by-value:

plus(x,y) = if x=0 then y else plus(x-1,y+1)

plus(3,4) ↦ if 3=0 then 4 else plus(3-1,4+1) 
↦ plus(2,5) 
↦ plus(1,6) 
↦ plus(0,7) 
↦ 7

Call-by-need evaluation

Using call-by-need:

plus(x,y) = if x=0 then y else plus(x-1,y+1)

plus(3,4) ↦ if 3=0 then 4 else plus(3-1,4+1) 
↦ plus(3-1,4+1) 
↦ plus(2-1,4+1+1) 
↦ plus(1-1,4+1+1+1) 
↦ 4+1+1+1 
↦ 5+1+1 
↦ 6+1 
↦ 7

Replacing CBN with CBV

So why not just replace call-by-name with call-by-value?

Because, while replacing call-by-name with call-by-need 
never changes the semantics of the original program (in 
the absence of side-effects), replacing CBN with CBV 

does.

In particular, the program’s termination behaviour changes.
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Replacing CBN with CBV
Assume we have some nonterminating expression, Ω.

• Using CBN, the expression (λx. 42) Ω will 
evaluate to 42.

• But using CBV, evaluation of (λx. 42) Ω will 
not terminate: Ω gets evaluated first, even 
though its value is not needed here.

We should therefore try to use call-by-value wherever 
possible, but not when it will affect the termination 

behaviour of a program.

Neededness

Intuitively, it will be safe to use CBV in place of CBN 
whenever an argument is definitely going to be evaluated.

We say that an argument is needed by a function if the 
function will always evaluate it.

• λx,y. x+y needs both its arguments.

• λx,y. x+1 needs only its first argument.

• λx,y. 42 needs neither of its arguments.

Neededness

These needed arguments can safely be passed by value: 
if their evaluation causes nontermination, this will just 

happen sooner rather than later.

Neededness
In fact, neededness is too conservative:

λx,y,z. if x then y else Ω
This function might not evaluate y, so only x is needed.

But actually it’s still safe to pass y by value: if y doesn’t 
get evaluated then the function doesn’t terminate 
anyway, so it doesn’t matter if eagerly evaluating y 

causes nontermination.

Strictness
What we really want is a more refined notion:

It is safe to pass an argument by value when 
the function fails to terminate whenever the 

argument fails to terminate.

When this more general statement holds, we 
say the function is strict in that argument.

λx,y,z. if x then y else Ω
is strict in x and strict in y.

Strictness

If we can develop an analysis that discovers which 
functions are strict in which arguments, we can 
use that information to selectively replace CBN 
with CBV and obtain a more efficient program.

Strictness analysis

We can perform strictness analysis by 
abstract interpretation.

First, we must define a concrete world of 
programs and values.

We will use the simple language of recursion 
equations, and only consider integer values.

Recursion equations

F1(x1, . . . , xk1) = e1

· · · = · · ·
Fn(x1, . . . , xkn) = en

e ::= xi | Ai(e1, . . . , eri) | Fi(e1, . . . eki)

where each Ai is a symbol representing a built-in 
(predefined) function of arity ri.
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Recursion equations
For our earlier example,

plus(x,y) = if x=0 then y else plus(x-1,y+1)

we can write the recursion equation

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

where cond, eq, 0, sub1 and add1 are built-in functions.

Standard interpretation

We must have some representation of 
nontermination in our concrete domain.

As values we will consider the integer results of 
terminating computations, ℤ, and a single extra value 

to represent nonterminating computations: ⊥.

Our concrete domain D is therefore ℤ⊥ = ℤ ∪ { ⊥ }.

Standard interpretation
Each built-in function needs a standard interpretation.

We will interpret each Ai as a function ai on values in D:

cond(⊥, x, y) = ⊥
cond(0, x, y) = y

cond(p, x, y) = x otherwise

eq(⊥, y) = ⊥
eq(x,⊥) = ⊥
eq(x, y) = x =Z y otherwise

Standard interpretation

The standard interpretation fi of a user-defined function Fi 
is constructed from the built-in functions by composition 

and recursion according to its defining equation. 

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

Abstract interpretation

Our abstraction must capture the properties we’re 
interested in, while discarding enough detail to make 

analysis computationally feasible.

Strictness is all about termination behaviour, and in 
fact this is all we care about: does evaluation of an 
expression definitely not terminate (as with Ω), or 
may it eventually terminate and return a result?

Our abstract domain D# is therefore { 0, 1 }.

Abstract interpretation

For each built-in function Ai we need a corresponding 
strictness function ai# — this provides the strictness 

interpretation for Ai.

Whereas the standard interpretation of each built-in is 
a function on concrete values from D, the strictness 
interpretation of each will be a function on abstract 

values from D# (i.e. 0 and 1).

Abstract interpretation

A formal relationship exists between the standard and 
abstract interpretations of each built-in function; the 

mathematical details are in the lecture notes.

Informally, we use the same technique as for 
multiplication and addition of integers in the last lecture: 
we define the abstract operations using what we know 

about the behaviour of the concrete operations.

Abstract interpretation

x y eq#(x,y)

0 0 0

0 1 0

1 0 0

1 1 1
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Abstract interpretation
p x y cond#(p,x,y)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Abstract interpretation

These functions may be expressed more compactly as 
boolean expressions, treating 0 and 1 from D# as false 

and true respectively.

We can use Karnaugh maps (from IA DigElec) to turn 
each truth table into a simple boolean expression.

Abstract interpretation

cond# 0, 0 0, 1 1, 1 1, 0

0 0 0 0 0

1 0 1 1 1

x, y

p

p ∧ y p ∧ x
cond#(p, x, y) = (p ∧ y) ∨ (p ∧ x)

x ∧ y

Abstract interpretation

eq#(x, y) = x ∧ y

eq# 0 1

0 0 0

1 0 1
x

y

Strictness analysis

So far, we have set up

• a concrete domain, D, equipped with

• a standard interpretation ai of each built-in Ai, and

• a standard interpretation fi of each user-defined Fi;

• and an abstract domain, D#, equipped with

• an abstract interpretation ai# of each built-in Ai.

Strictness analysis

The point of this analysis is to discover the 
missing piece: what is the strictness function fi# 

corresponding to each user-defined Fi?

These strictness functions will show us exactly 
how each Fi is strict with respect to each of its 

arguments — and that’s the information that tells 
us where we can replace lazy, CBN-style 

parameter passing with eager CBV.

Strictness analysis

But recall that the recursion equations show us how 
to build up each user-defined function, by composition 

and recursion, from all the built-in functions:

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

So we can build up the fi# from the ai# in the same way:

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

Strictness analysis

We already know all the other strictness functions:

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

cond ♯(p, x, y) = p ∧ (x ∨ y)

eq♯(x, y) = x ∧ y

0♯ = 1

sub1 ♯(x) = x

add1 ♯(x) = x

So we can use these to simplify the expression for plus#.
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Strictness analysis

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

plus♯(x, y) = cond ♯(eq♯(x, 0♯), y, plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 0♯) ∧ (y ∨ plus♯(sub1 ♯(x), add1 ♯(y)))

= eq♯(x, 1) ∧ (y ∨ plus♯(x, y))

= x ∧ 1 ∧ (y ∨ plus♯(x, y))

= x ∧ (y ∨ plus♯(x, y))

Strictness analysis

plus♯(x, y) = x ∧ (y ∨ plus♯(x, y))

This is a recursive definition, and so unfortunately 
doesn’t provide us with the strictness function directly.

We want a definition of plus# which satisfies this 
equation — actually we want the least fixed point of this 
equation, which (as ever!) we can compute iteratively.

Algorithm

for i = 1 to n do f#[i] := λx.0
while (f#[] changes) do
  for i = 1 to n do
    f#[i] := λx.ei#

ei# means “ei (from the recursion equations) with each Aj 
replaced with aj# and each Fj replaced with f#[j]”.

Algorithm

We have only one user-defined function, plus, and so 
only one recursion equation:

plus(x, y) = cond(eq(x, 0), y, plus(sub1 (x), add1 (y)))

We initialise the corresponding element of our f#[] 
array to contain the always-0 strictness function of 

the appropriate arity:

f#[1] := λx,y. 0

Algorithm

On the first iteration, we calculate e1#:

• The recursion equations say                                 
e1 = cond(eq(x, 0), y, plus(sub1(x), add1(y)))

• The current contents of f#[] say f1# is λx,y. 0

• So:

e1# = cond#(eq#(x, 0#), y, (λx,y. 0) (sub1#(x), add1#(y)))

Algorithm
e1# = cond#(eq#(x, 0#), y, (λx,y. 0) (sub1#(x), add1#(y)))

e1# = cond#(eq#(x, 0#), y, 0)
Simplifying:

Using definitions of cond#, eq# and 0#:
e1# = (x ∧ 1) ∧ (y ∨ 0)

Simplifying again:
e1# = x ∧ y

Algorithm

So, at the end of the first iteration,

f#[1] := λx,y. x ∧ y

Algorithm

On the second iteration, we recalculate e1#:

• The recursion equations still say                                 
e1 = cond(eq(x, 0), y, plus(sub1(x), add1(y)))

• The current contents of f#[] say f1# is λx,y. x ∧ y

• So:

e1# = cond#(eq#(x, 0#), y, (λx,y. x ∧ y) (sub1#(x), add1#(y)))
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Algorithm
e1# = cond#(eq#(x, 0#), y, (λx,y. x ∧ y) (sub1#(x), add1#(y)))

e1# = cond#(eq#(x, 0#), y, sub1#(x) ∧ add1#(y))
Simplifying:

Using definitions of cond#, eq#, 0#, sub1# and add1#:
e1# = (x ∧ 1) ∧ (y ∨ (x ∧ y))

Simplifying again:
e1# = x ∧ y

Algorithm

So, at the end of the second iteration,

f#[1] := λx,y. x ∧ y

This is the same result as last time, so we stop.

Algorithm

plus#(x, y) = x ∧ y

Optimisation

So now, finally, we can see that

plus#(1, 0) = 1 ∧ 0 = 0

plus#(0, 1) = 0 ∧ 1 = 0

and

which means our concrete plus function is strict in 
its first argument and strict in its second argument: 
we may always safely use CBV when passing either.

Summary
• Functional languages can use CBV or CBN 

evaluation

• CBV is more efficient but can only be used in place 
of CBN if termination behaviour is unaffected

• Strictness shows dependencies of termination

• Abstract interpretation may be used to perform 
strictness analysis of user-defined functions

• The resulting strictness functions tell us when it is 
safe to use CBV in place of CBN

Lecture 10: Strictness analysis

98



Lecture 11
Constraint-based 

analysis

Motivation

Intra-procedural analysis depends upon accurate 
control-flow information.

In the presence of certain language features (e.g. 
indirect calls) it is nontrivial to predict accurately 

how control may flow at execution time — the naïve 
strategy is very imprecise.

A constraint-based analysis called 0CFA can compute a 
more precise estimate of this information.

ENTRY g 
⋮ 
EXIT

Imprecise control flow

ENTRY h 
⋮ 
EXIT

ENTRY f 
⋮ 
EXIT

ENTRY main 
⋮ 
MOV t33,#&f 
MOV t34,#&g 
MOV t35,#&h 
⋮ 
CALLI t32 
⋮ 
EXIT

?

?

?

Constraint-based analysis
Many of the analyses in this course can be thought of 

in terms of solving systems of constraints.

For example, in LVA, we generate equality constraints 
from each instruction in the program:

in-live(m) = (out-live(m) ∖ def(m)) ∪ ref(m)
out-live(m) = in-live(n) ∪ in-live(o)

in-live(n) = (out-live(n) ∖ def(n)) ∪ ref(n)
⋮

and then iteratively compute their minimal solution.

0CFA

0CFA — “zeroth-order control-flow analysis” — is a 
constraint-based analysis for discovering which values 

may reach different places in a program.

When functions (or pointers to functions) are 
present, this provides information about which 

functions may potentially be called at each call site.

We can then build a more precise call graph.

Specimen language

e ::= x | c | λx.e | e1e2 | let x = e1 in e2

Functional languages are a good candidate for this 
kind of analysis; they have functions as first-class 

values, so control flow may be complex.

We will use a minimal syntax for expressions:

A program in this language is a closed expression.

Specimen program

let id = λx. x in id id 7

let id = λx. x in id id 7

Program points

let

id λ

x x

@

@ 7

id id
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let id = λx. x in id id 7(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Program points

let

id λ

x x

@

@ 7

id id

1

2 3

4 5

6

7

8 9

10

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Program points

Each program point i has an associated flow variable αi.

Each αi represents the set of flow values which may be 
yielded at program point i during execution.

For this language the flow values are integers and 
function closures; in this particular program, the only 

values available are 710 and (λx4. x5)3.

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Program points

The precise value of each αi is undecidable in 
general, so our analysis will compute a safe 

overapproximation.

From the structure of the program we can 
generate a set of constraints on the flow variables, 
which we can then treat as data-flow inequations 

and iteratively compute their least solution.

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

ca αa ⊇ { ca }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

710 α10 ⊇ { 710 }

α10 ⊇ { 710 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(λxa. eb)c αc ⊇ { (λxa. eb)c }

α10 ⊇ { 710 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(λx4. x5)3 α3 ⊇ { (λx4. x5)3 }

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }
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let xb = ...      ...
λxb. ...      ...

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

αa ⊇ αb
xa

xa

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

α5 ⊇ α4

let id2 = ... id8 ...

λx4. ... x5 ...

let id2 = ... id9 ...

α8 ⊇ α2

α9 ⊇ α2

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(let _a = _b in _c)d

αd ⊇ αc

αa ⊇ αb

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(let _2 = _3 in _6)1

α1 ⊇ α6

α2 ⊇ α3

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(_a _b)c (αb ↦ αc) ⊇ αa

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(_7 _10)6 (α10 ↦ α6) ⊇ α7

(_8 _9)7 (α9 ↦ α7) ⊇ α8

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Generating constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α2 = { }

α3 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α10 = { }
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Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α2 = { }

α3 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α10 = { }α10 = { 710 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α2 = { }

α3 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α10 = { }α10 = { 710 }

α3 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α2 = { }

α3 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α10 = { }α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α8 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α1 = { }

α4 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { }

α9 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5

α4 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }α4 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5

α5 = { (λx4. x5)3 }
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α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }α4 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }α4 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }α4 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α4 ⊇ α10 α6 ⊇ α5

α4 = { (λx4. x5)3, 710 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α5 = { }

α6 = { }

α7 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }α4 = { (λx4. x5)3 }

Solving constraints

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α4 ⊇ α10 α6 ⊇ α5

α4 = { (λx4. x5)3, 710 }

α6 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α4 = { (λx4. x5)3, 710 }

α6 = { (λx4. x5)3 }

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

Solving constraints

α4 ⊇ α9 α7 ⊇ α5 α4 ⊇ α10 α6 ⊇ α5

α5 = { (λx4. x5)3, 710 } α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α4 = { (λx4. x5)3, 710 }

α6 = { (λx4. x5)3 }

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

Solving constraints

α4 ⊇ α9 α7 ⊇ α5 α4 ⊇ α10 α6 ⊇ α5

α5 = { (λx4. x5)3, 710 }

α7 = { (λx4. x5)3, 710 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α4 = { (λx4. x5)3, 710 }

α6 = { (λx4. x5)3 }

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

Solving constraints

α4 ⊇ α9 α7 ⊇ α5 α4 ⊇ α10 α6 ⊇ α5

α5 = { (λx4. x5)3, 710 }

α7 = { (λx4. x5)3, 710 }

α1 = { (λx4. x5)3 }

α10 = { 710 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α1 = { }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }

α5 = { (λx4. x5)3 }

α7 = { (λx4. x5)3 }

α4 = { (λx4. x5)3, 710 }

α6 = { (λx4. x5)3 }

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

Solving constraints

α4 ⊇ α9 α7 ⊇ α5 α4 ⊇ α10 α6 ⊇ α5

α5 = { (λx4. x5)3, 710 }

α7 = { (λx4. x5)3, 710 }

α1 = { (λx4. x5)3 } α6 = { (λx4. x5)3, 710 }
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α10 = { 710 }

α7 ⊇ α5 α6 ⊇ α5

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α3 = { (λx4. x5)3 }

α2 = { (λx4. x5)3 }

α8 = { (λx4. x5)3 }

α9 = { (λx4. x5)3 }α4 = { (λx4. x5)3, 710 }

α5 = { (λx4. x5)3, 710 }

α7 = { (λx4. x5)3, 710 }

α1 = { (λx4. x5)3 } α6 = { (λx4. x5)3, 710 }

Solving constraints

α4 ⊇ α9 α4 ⊇ α10

α1 = { (λx4. x5)3, 710 }

α10 = { 710 }

α1, α4, α5, α6, α7 = { (λx4. x5)3, 710 }

Using solutions

α2, α3, α8, α9 = { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

Limitations

0CFA is still imprecise because it is monovariant: each 
expression has only one flow variable associated with it, so 

multiple calls to the same function allow multiple values 
into the single flow variable for the function body, and 

these values “leak out” at all potential call sites.

α7 = { (λx4. x5)3 }

Limitations

(α10 ↦ α6) ⊇ α7

(α9 ↦ α7) ⊇ α8

α1 ⊇ α6

α2 ⊇ α3

α5 ⊇ α4

α8 ⊇ α2

α9 ⊇ α2

α10 ⊇ { 710 }
α3 ⊇ { (λx4. x5)3 }

α4 ⊇ α9 α7 ⊇ α5 α4 ⊇ α10 α6 ⊇ α5

α8 = { (λx4. x5)3 }

(let id2 = (λx4. x5)3 in ((id8 id9)7 710)6)1

α9 = { (λx4. x5)3 } α10 = { 710 }

1CFA

0CFA is still imprecise because it is monovariant: each 
expression has only one flow variable associated with it, so 

multiple calls to the same function allow multiple values 
into the single flow variable for the function body, and 

these values “leak out” at all potential call sites.

A better approximation is given by 1CFA (“first-order...”), 
in which a function has a separate flow variable for each 
call site in the program; this isolates separate calls to the 
same function, and so produces a more precise result.

1CFA

1CFA is a polyvariant approach.

Another alternative is to use a polymorphic approach, 
in which the values themselves are enriched to 

support specialisation at different call sites (cf. ML 
polymorphic types).

It’s unclear which approach is “best”.

Summary

• Many analyses can be formulated using constraints

• 0CFA is a constraint-based analysis

• Inequality constraints are generated from the 
syntax of a program

• A minimal solution to the constraints provides a 
safe approximation to dynamic control-flow 
behaviour

• Polyvariant (as in 1CFA) and polymorphic 
approaches may improve precision
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Lecture 12
Inference-based analysis

Motivation

In this part of the course we’re examining several 
methods of higher-level program analysis.

We have so far seen abstract interpretation and constraint-
based analysis, two general frameworks for formally 
specifying (and performing) analyses of programs.

Another alternative framework is inference-based analysis.

Inference-based analysis

Inference systems consist of sets of rules for 
determining program properties.

Typically such a property of an entire program 
depends recursively upon the properties of the 
program’s subexpressions; inference systems can 
directly express this relationship, and show how 

to recursively compute the property.

Inference-based analysis

Γ ⊢ e : φ
• e is an expression (e.g. a complete program)

• Γ is a set of assumptions about free variables of e

• ϕ is a program property

An inference system specifies judgements:

Type systems

Consider the ML type system, for example.

This particular inference system specifies 
judgements about a well-typedness property:

Γ ⊢ e : t
means “under the assumptions in Γ, the 

expression e has type t”.

Type systems
We will avoid the more complicated ML typing 
issues (see Types course for details) and just 

consider the expressions in the lambda calculus:

e ::= x | λx. e | e1 e2

Our program properties are types t:

t ::= α | int | t1 → t2

Type systems
Γ is a set of type assumptions of the form

{ x1 : t1, ..., xn : tn }
where each identifier xi is assumed to have type ti.

Γ[x : t]
We write

to mean Γ with the additional assumption that x has type t 
(overriding any other assumption about x).

Type systems

In all inference systems, we use a set of rules to 
inductively define which judgements are valid.

In a type system, these are the typing rules.
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Type systems

Γ[x : t] ⊢ x : t
(Var)

Γ[x : t] ⊢ e : t′

Γ ⊢ λx.e : t → t′
(Lam)

Γ ⊢ e1 : t → t′ Γ ⊢ e2 : t

Γ ⊢ e1e2 : t′
(App)

t = ?t = int → int → int

e = λx. λy. add (multiply 2 x) y

Γ[x : int ][y : int ] ⊢ add : int → int → int

...

Γ[x : int ][y : int ] ⊢ multiply 2 x : int

Γ[x : int ][y : int ] ⊢ add (multiply 2 x) : int → int Γ[x : int ][y : int ] ⊢ y : int

Γ[x : int ][y : int ] ⊢ add (multiply 2 x) y : int

Γ[x : int ] ⊢ λy. add (multiply 2 x) y : int → int

Γ ⊢ λx. λy. add (multiply 2 x) y : int → int → int

Type systems

Γ = { 2 : int, add : int → int → int, multiply : int → int → int }

Optimisation
In the absence of a compile-time type checker, all values 

must be tagged with their types and run-time checks must 
be performed to ensure types match appropriately.

If a type system has shown that the program is well-typed, 
execution can proceed safely without these tags and 

checks; if necessary, the final result of evaluation can be 
tagged with its inferred type.

Hence the final result of evaluation is identical, but less 
run-time computation is required to produce it.

Safety

({} ⊢ e : t) ⇒ ([[e]] ∈ [[t]])

The safety condition for this inference system is

where   e   and   t   are the denotations of e and t 
respectively:   e   is the value obtained by evaluating e, 

and   t   is the set of all values of type t.

This condition asserts that the run-time behaviour of 
the program will agree with the type system’s prediction.

[  ][   ] [  ][   ]
[  ][   ]

[  ][   ]

Odds and evens

Type-checking is just one application of 
inference-based program analysis.

The properties do not have to be types; in 
particular, they can carry more (or completely 

different!) information than traditional types do.

We’ll consider a more program-analysis–related 
example: detecting odd and even numbers.

Odds and evens

This time, the program property ϕ has the form

ϕ ::= odd | even | ϕ1 → ϕ2

Odds and evens

Γ[x : φ] ⊢ x : φ
(Var)

Γ[x : φ] ⊢ e : φ′

Γ ⊢ λx.e : φ → φ′ (Lam)

Γ ⊢ e1 : φ → φ′ Γ ⊢ e2 : φ

Γ ⊢ e1e2 : φ′ (App)

ϕ = ?ϕ = odd → even → even

Γ[x : odd ][y : even] ⊢ add : even → even → even

...

Γ[x : odd ][y : even] ⊢ multiply 2 x : even

Γ[x : odd ][y : even] ⊢ add (multiply 2 x) : even → even Γ[x : odd ][y : even] ⊢ y : even

Γ[x : odd ][y : even] ⊢ add (multiply 2 x) y : even

Γ[x : odd ] ⊢ λy. add (multiply 2 x) y : even → even

Γ ⊢ λx. λy. add (multiply 2 x) y : odd → even → even

e = λx. λy. add (multiply 2 x) y

Odds and evens
Γ = { 2 : even, add : even → even → even,
                    multiply : even → odd → even }
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({} ⊢ e : φ) ⇒ ([[e]] ∈ [[φ]])

Safety

The safety condition for this inference system is

  odd   = { z ∈ ℤ | z is odd },[      ][     ]

where   ϕ   is the denotation of ϕ:[  ][   ]

  ϕ1 → ϕ2   =   ϕ1   →   ϕ2  [     ][    ][     ][    ][               ][              ]

  even   = { z ∈ ℤ | z is even },[       ][      ]

Richer properties

Note that if we want to show a judgement like

Γ ⊢ λx. λy. add (multiply 2 x) (multiply 3 y) : even → even → even

we need more than one assumption about multiply:

Γ = { ..., multiply : even → even → even,
            multiply : odd → even → even, ... }

Richer properties
This might be undesirable, and one alternative is 
to enrich our properties instead; in this case we 
could allow conjunction inside properties, so that 
our single assumption about multiply looks like:

multiply : even → even → even ∧
             even → odd → even ∧
             odd → even → even ∧
             odd → odd → odd

We would need to modify the inference system 
to handle these richer properties.

Summary

• Inference-based analysis is another useful 
framework

• Inference rules are used to produce judgements 
about programs and their properties

• Type systems are the best-known example

• Richer properties give more detailed information

• An inference system used for analysis has an 
associated safety condition
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Lecture 13
Effect systems

Motivation

We have so far seen many analyses which deal with 
control- and data-flow properties of pure languages.

However, many languages contain operations with side-
effects, so we must also be able to analyse and safely 

transform these impure programs.

Effect systems, a form of inference-based analysis, are 
often used for this purpose.

Side-effects

A side-effect is some event — typically a change of state 
— which occurs as a result of evaluating an expression.

• “x++” changes the value of variable x.

• “malloc(42)” allocates some memory.

• “print 42” outputs a value to a stream.

Side-effects

e ::= x | λx.e | e1 e2 | ξ?x.e | ξ!e1.e2

As an example language, we will use the lambda calculus 
extended with read and write operations on “channels”.

• ξ represents some channel name.

• ξ?x.e reads an integer from the channel named ξ, 
binds it to x, and returns the result of evaluating e.

• ξ!e1.e2 evaluates e1, writes the resulting integer to 
channel ξ, and returns the result of evaluating e2.

Side-effects

ξ?x. x
ξ!x. y

ξ?x. ζ!x. x

Some example expressions:

read an integer from 
channel ξ and return it

write the (integer) value 
of x to channel ξ and 
return the value of y

read an integer from 
channel ξ, write it to 

channel ζ and return it

Side-effects

Ignoring their side-effects, the typing rules for 
these new operations are straightforward.

Γ[x : int ] ⊢ e : t

Γ ⊢ ξ?x.e : t
(Read)

Γ ⊢ e1 : int Γ ⊢ e2 : t

Γ ⊢ ξ!e1.e2 : t
(Write)

Side-effects Effect systems

However, in order to perform any transformations on 
a program in this language it would be necessary to 

pay attention to its potential side-effects.

For example, we might need to devise an analysis to 
tell us which channels may be read or written during 

evaluation of an expression.

We can do this by modifying our existing type system 
to create an effect system (or “type and effect system”).
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Effect systems
First we must formally define our effects:

An expression has effects F.
F is a set containing elements of the form

Rξ
Wξ

read from channel ξ

write to channel ξ

Effect systems

ξ?x. x
ξ!x. y

ξ?x. ζ!x. x

For example:

F = { Rξ }

F = { Wξ }

F = { Rξ, Wζ }

Effect systems

But we also need to be able to handle expressions like

λx. ξ!x. x
whose evaluation doesn’t have any immediate effects.

In this case, the effect Wξ may occur later, whenever 
this newly-created function is applied.

Effect systems

To handle these latent effects we extend the syntax of 
types so that function types are annotated with the 
effects that may occur when a function is applied:

t ::= int | t1 → t2
F

Effect systems
So, although it has no immediate effects, the type of

λx. ξ!x. x
is

int → int
{ Wξ }

Effect systems

Γ ⊢ e : t, F

We can now modify the existing type system 
to make an effect system — an inference 
system which produces judgements about 

the type and effects of an expression:

Γ[x : int ] ⊢ e : t

Γ ⊢ ξ?x.e : t
(Read)

Γ ⊢ e1 : int Γ ⊢ e2 : t

Γ ⊢ ξ!e1.e2 : t
(Write)

Effect systems

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′

Γ ⊢ ξ!e1.e2 : t, F ∪ {Wξ} ∪ F ′ (Write)

Γ[x : int ] ⊢ e : t, F

Γ ⊢ ξ?x.e : t, {Rξ} ∪ F
(Read)

Effect systems
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Γ[x : t] ⊢ x : t, {} (Var)

Γ ⊢ e1 : t
F ′′
→ t′, F Γ ⊢ e2 : t, F ′

Γ ⊢ e1e2 : t′, F ∪ F ′ ∪ F ′′ (App)

Γ[x : t] ⊢ e : t′, F

Γ ⊢ λx.e : t
F→ t′, {}

(Lam)

Effect systems Effect systems

{x : int , y : int} ⊢ x : int , {}
{x : int , y : int} ⊢ ξ!x. x : int, {Wξ}

{y : int} ⊢ λx. ξ!x. x : int
{Wξ}→ int , {} {y : int} ⊢ y : int , {}

{y : int} ⊢ (λx. ξ!x. x) y : int , {Wξ}

Effect subtyping

We would probably want more expressive 
control structure in a real programming language.

For example, we could add if-then-else:

e ::= x | λx.e | e1 e2 | ξ?x.e | ξ!e1.e2 | if e1 then e2 else e3

Effect subtyping

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′ Γ ⊢ e3 : t, F ′′

Γ ⊢ if e1 then e2 else e3 : t, F ∪ F ′ ∪ F ′′ (Cond)

Effect subtyping

However, there are some valid uses of if-then-else 
which this rule cannot handle by itself.

Effect subtyping

if x then λx. ξ!3. x + 1 else λx. x + 2
int → int

{ Wξ }
int → int

{ }

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′ Γ ⊢ e3 : t, F ′′

Γ ⊢ if e1 then e2 else e3 : t, F ∪ F ′ ∪ F ′′ (Cond)

Effect subtyping

if x then λx. ξ!3. x + 1 else λx. x + 2
int → int

{ Wξ }
int → int

{ }
✗

Effect subtyping

We can solve this problem by adding a new 
rule to handle subtyping.
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Effect subtyping

Γ ⊢ e : t
F ′
→ t′, F F ′ ⊆ F ′′

Γ ⊢ e : t
F ′′→ t′, F

(Sub)

Effect subtyping

int → int
{ Wξ }

int → int
{ }

int → int
{ Wξ }

int → int
{ }

if x then λx. ξ!3. x + 1 else λx. x + 2

(SUB)

Effect subtyping

int → int
{ Wξ }

int → int
{ }

int → int
{ Wξ }

int → int
{ }

if x then λx. ξ!3. x + 1 else λx. x + 2

✓
Optimisation

The information discovered by the effect system is 
useful when deciding whether particular 

transformations are safe.

An expression with no immediate side-effects is 
referentially transparent: it can safely be replaced with 
another expression (with the same value and type) 
with no change to the semantics of the program.

For example, referentially transparent expressions 
may safely be removed if LVA says they are dead.

Safety

({} ⊢ e : t, F ) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])
({} ⊢ e : t, F ) ⇒ (v ∈ [[t]] ∧ f ⊆ F where (v, f) = [[e]])

Extra structure
In this analysis we are using sets of effects.

As a result, we aren’t collecting any information 
about how many times each effect may occur, 

or the order in which they may happen.

ξ?x. ζ!x. x F = { Rξ, Wζ }

ζ!y. ξ?x. x F = { Rξ, Wζ }

ζ!y. ξ?x. ζ!x. x F = { Rξ, Wζ }

Extra structure

If we use a different representation of effects, 
and use different operations on them, we can 

keep track of more information.

One option is to use sequences of effects and 
use an append operation when combining them.

Extra structure

Γ[x : int ] ⊢ e : t, F

Γ ⊢ ξ?x.e : t, ⟨Rξ⟩ @ F
(Read)

Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′

Γ ⊢ ξ!e1.e2 : t, F ∪ {Wξ} ∪ F ′ (Write)
Γ ⊢ e1 : int , F Γ ⊢ e2 : t, F ′

Γ ⊢ ξ!e1.e2 : t, F @ ⟨Wξ⟩ @ F ′ (Write)
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Extra structure

In the new system, these expressions 
all have different effects:

ξ?x. ζ!x. x F =〈 Rξ; Wζ 〉

ζ!y. ξ?x. x F =〈 Wζ; Rξ 〉

ζ!y. ξ?x. ζ!x. x F =〈 Wζ; Rξ; Wζ 〉

Extra structure
Whether we use sequences instead of sets depends 
upon whether we care about the order and number 
of effects. In the channel example, we probably don’t.

But if we were tracking file accesses, it would be 
important to ensure that no further read or write 

effects occurred after a file had been closed.

And if we were tracking memory allocation, we 
would want to ensure that no block of memory got 

deallocated twice.

Summary

• Effect systems are a form of inference-based analysis

• Side-effects occur when expressions are evaluated

• Function types must be annotated to account for 
latent effects

• A type system can be modified to produce 
judgements about both types and effects

• Subtyping may be required to handle annotated types

• Different effect structures may give more information
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Lecture 13a
Alias and points-to 

analysis

Motivation
We’ve seen a number of different analyses that are 

affected by ambiguity in variables accessed (e.g. in LVA 
we assume all address-taken variables are referenced).

Alongside this, in modern machines we would like to 
exploit parallelism where possible, either by running 

code in separate threads on a multi-core, or in separate 
lanes using short vector (SIMD) instructions.

Our ability to do this depends on us being able to tell 
whether memory-access instructions alias (i.e. access 

the same memory location).

Example
As a simple example, consider some MP3 player code:

for (channel = 0; channel < 2; channel++) 
  process_audio(channel);

Or even

process_audio_left(); 
process_audio_right();

Can we run these two calls in parallel?
In other words, when is it safe to do so?

Memory accessed

In general we can parallelise if neither call writes to a 
memory location read or written by the other.

We therefore want to know, at compile time, what 
memory locations a procedure might read from and 

write to at run time.

Essentially, we’re asking what locations the procedure’s 
instructions access at run time.

Memory accessed

We can reduce this problem to finding locations 
accessed by each instruction, then combining for all 

instructions within a procedure.

So, given a pointer value, we are interested in finding a 
finite description of the locations it might point to.

If two such descriptions have an empty intersection 
then we can parallelise / reorder the instructions / …

Andersen’s analysis
Andersen’s points-to analysis is an O(n3) analysis—the 

underlying problem is the same as 0-CFA.

We’ll only look at the intra-procedural case.

We won’t consider pointer arithmetic or functions 
returning pointers.

All object fields are conflated, although a ‘field-sensitive’ 
analysis is possible too.

Andersen’s analysis
Assume the program has been re-written so that all 

pointer-typed operations are of the form:

is a program point
optional, a variant of 
C-like languages, also like
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Andersen’s points-to analysis

An O(n3) analysis – underlying problem same as 0-CFA.
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First assume program has been re-written so that all pointer-typed

operations are of the form

x := new! ! is a program point (label)

x := null optional, can see as variant of new
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∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).
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x := ∗y field access of object

∗x := y field access of object

Note: no pointer arithmetic (or pointer-returning functions here).

Also fields conflated (but ‘field-sensitive’ is possible too).
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copy
field access of an object
field access of an object

Andersen’s analysis
We first define a set of abstract values:

18.1 Andersen’s analysis in detail

Define a set of abstract values

V = Var [ {new` | ` 2 Prog} [ {null}

As said before, we treat all allocations at a given program point as indistinguishable.
Now consider the points-to relation. Here we see this a function pt(x) : V ! P(V ). As said

before, we keep one pt per procedure (intra-procedural analysis).
Each line in the program generates zero of more constraints on pt :

` x := &y : y 2 pt(x) ` x := null : null 2 pt(x)

` x := new` : new` 2 pt(x) ` x := y : pt(y) ✓ pt(x)

z 2 pt(y)

` x := ⇤y : pt(z) ✓ pt(x)

z 2 pt(x)

` ⇤x := y : pt(y) ✓ pt(z)

Note that the first three rules are essentially identical.
The above rules all deal with atomic assignments. The next question to consider is control-

flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

x = 1; y =2 ; print x; print y

di↵erently (as required when allocating registers to x and y). However, Andersen’s algorithm is
flow-insensitive, we simply look at the set of statements in the program and not at their order
or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive means
property inference rules are essentially of the form (here C is a command, and S is a set of
constraints):

(ASS)` e := e0 : has abovei (SEQ)
` C : S ` C 0 : S0

` C; C 0 : S [ S0

(COND)
` C : S ` C 0 : S0

` if e then C else C 0 : S [ S0

(WHILE)
` C : S

` while e do C : S

The safety property A program analysis on its own never useful—we want to be able to use
it for transformations, and hence need to know what the analysis guarantees about run-time
execution.
Given pt solving the constraints generated by Andersen’s algorithm then we have that

• at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for new` this means that x points to a
memory cell allocated there.
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Note that all allocations at program point    are 
conflated, which makes things finite but loses precision.
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We create the points-to relation as a function:

Some analyses have a different     at each program point 
(like LVA);  Andersen keeps one per function.
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Andersen’s points-to analysis (2)

Get set of abstract values V = Var ∪ {new! | ! ∈ Prog} ∪ {null}.

Note that this means that all new allocations at program point ! are

conflated – makes things finite but loses precision.

The points-to relation is seen as a function pt : V → P(V ). While we

might imagine having a different pt at each program point (like

liveness) Andersen keeps one per function.

Have type-like constraints (one per source-level assignment)

$ x := &y : y ∈ pt(x) $ x := y : pt(y) ⊆ pt(x)

z ∈ pt(y)

$ x := ∗y : pt(z) ⊆ pt(x)

z ∈ pt(x)

$ ∗x := y : pt(y) ⊆ pt(z)

x := new! and x := null are treated identically to x := &y.
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Andersen’s analysis
We could use type-like constraints (one per 

source-level assignment):

18.1 Andersen’s analysis in detail

Define a set of abstract values

V = Var [ {new` | ` 2 Prog} [ {null}

As said before, we treat all allocations at a given program point as indistinguishable.
Now consider the points-to relation. Here we see this a function pt(x) : V ! P(V ). As said

before, we keep one pt per procedure (intra-procedural analysis).
Each line in the program generates zero of more constraints on pt :

` x := &y : y 2 pt(x) ` x := null : null 2 pt(x)

` x := new` : new` 2 pt(x) ` x := y : pt(y) ✓ pt(x)

z 2 pt(y)

` x := ⇤y : pt(z) ✓ pt(x)

z 2 pt(x)

` ⇤x := y : pt(y) ✓ pt(z)

Note that the first three rules are essentially identical.
The above rules all deal with atomic assignments. The next question to consider is control-

flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

x = 1; y =2 ; print x; print y

di↵erently (as required when allocating registers to x and y). However, Andersen’s algorithm is
flow-insensitive, we simply look at the set of statements in the program and not at their order
or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive means
property inference rules are essentially of the form (here C is a command, and S is a set of
constraints):

(ASS)` e := e0 : has abovei (SEQ)
` C : S ` C 0 : S0

` C; C 0 : S [ S0

(COND)
` C : S ` C 0 : S0

` if e then C else C 0 : S [ S0

(WHILE)
` C : S

` while e do C : S

The safety property A program analysis on its own never useful—we want to be able to use
it for transformations, and hence need to know what the analysis guarantees about run-time
execution.
Given pt solving the constraints generated by Andersen’s algorithm then we have that

• at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for new` this means that x points to a
memory cell allocated there.
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Andersen’s analysis
Or use the style of 0-CFA:

x := &y

pt(x) ⊇ { y }

Andersen’s analysis
Or use the style of 0-CFA:

x := y

pt(x) ⊇ pt(y)

Andersen’s analysis
Or use the style of 0-CFA:

x := *y

pt(y) ⊇ { z }  ⟹  pt(x) ⊇ pt(z)

Andersen’s analysis
Or use the style of 0-CFA:

*x := y

pt(x) ⊇ { z }  ⟹  pt(z) ⊇ pt(y)

Note that this is just stylistic, it’s the same 
constraint system but no obvious deep connections 
between 0-CFA and Andersen’s points-to analysis.

Andersen’s analysis
The algorithm is flow-insensitive—it only considers 

the statements and not the order in which they occur.  
This is faster but less precise.

Property inference rules are then essentially:
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Andersen’s points-to analysis (4)

Flow-insensitive – we only look at the assignments, not in which

order they occur. Faster but less precise – syntax-directed rules all

use the same set-like combination of constraints (∪ here).

Flow-insensitive means property inference rules are essentially of the

form:

(ASS)" x := e : . . .
(SEQ)

" C : S " C ′ : S′

" C; C ′ : S ∪ S′

(COND)
" C : S " C ′ : S′

" if e then C else C ′ : S ∪ S′

(WHILE)
" C : S

" while e do C : S

Alias and Points-to Analysis 10 Lecture 13a

Andersen example
Consider the following code:

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

Andersen example

pt(a) = {}
pt(b) = {}

pt(c) = {}
pt(d) = {}

pt(e) = {}

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;
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Andersen example

pt(a) ⊇ { b }

pt(a) = {}
pt(b) = {}

pt(c) = {}
pt(d) = {}

pt(e) = {}

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(a) = { b }

Andersen example

pt(c) ⊇ { d }

pt(a) = { b }
pt(b) = {}

pt(c) = {}
pt(d) = {}

pt(e) = {}

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(c) = { d }

Andersen example

pt(d) ⊇ { a }

pt(a) = { b }
pt(b) = {}

pt(c) = { d }
pt(d) = {}

pt(e) = {}

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(d) = { a }

Andersen example

pt(e) ⊇ pt(c)

pt(a) = { b }
pt(b) = {}

pt(c) = { d }
pt(d) = { a }

pt(e) = {}

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(e) = { d }

Andersen example

pt(e) ⊇ { d }
  ⟹ pt(c) ⊇ pt(d)

pt(a) = { b }
pt(b) = {}

pt(c) = { d }
pt(d) = { a }

pt(e) = { d }

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(c) = { a, d }

Andersen example
a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(a) = { b }
pt(b) = {}

pt(c) = { a, d }
pt(d) = { a }

pt(e) = { d }
pt(b) = { a }

pt(a) ⊇ { b }
  ⟹ pt(b) ⊇ pt(d)

Andersen example

pt(e) ⊇ pt(c)

pt(a) = { b }
pt(b) = { a }

pt(c) = { a, d }
pt(d) = { a }

pt(e) = { d }

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(e) = { a, d }

Andersen example

pt(e) ⊇ { a, d }
  ⟹ pt(c) ⊇ pt(a)
  ⟹ pt(c) ⊇ pt(d)

pt(a) = { b }
pt(b) = { a }

pt(c) = { a, d }
pt(d) = { a }

pt(e) = { a, d }

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(c) = { a, b, d }
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Andersen example

pt(e) ⊇ pt(c)

pt(a) = { b }
pt(b) = { a }

pt(c) = { a, b, d }
pt(d) = { a }

pt(e) = { a, d }

a = &b; 
c = &d; 
d = &a; 
e = c; 
c = *e; 
*a = d;

pt(e) = { a, b, d }

Andersen example

pt(a) = { b }

pt(b) = { a }

pt(c) = { a, b, d }

pt(d) = { a }

pt(e) = { a, b, d }

Note that a flow-sensitive algorithm would give
pt(c) = { a, d }  and  pt(e) = { d }

assuming the statements appear in the given 
order in a single basic block that is not in a loop.

Other approaches
Steensgaard’s algorithm merges a and b if any pointer 
can reference both.  This is less accurate but runs in 

almost linear time.

Shape analysis (Sagiv, Wilhelm, Reps) models abstract 
heap nodes and edges between them representing must 
or may point-to.  More accurate but the abstract heaps 

can get very large.

In general, coarse techniques give poor results whereas 
more sophisticated techniques are expensive. 

Summary

• Points-to analysis identifies which memory 
locations variables (and other memory locations) 
point to

• We can use this information to improve data-
dependence analysis

• This allows us to reorder loads and stores, or 
parallelise / vectorise parts of the code

• Andersen’s analysis is a flow-insensitive algorithm 
that works in O(n3)
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Lecture 14
Instruction scheduling

Part C
Instruction scheduling

Instruction scheduling

intermediate code

parse tree

token stream

character stream

target code

optimisation

optimisation

optimisation

decompilation

Motivation

We have seen optimisation techniques which involve 
removing and reordering code at both the source- and 
intermediate-language levels in an attempt to achieve 

the smallest and fastest correct program.

These techniques are platform-independent, and pay 
little attention to the details of the target architecture.

We can improve target code if we consider the 
architectural characteristics of the target processor.

Single-cycle implementation
In single-cycle processor designs, an entire instruction 

is executed in a single clock cycle.

Each instruction will use some of the processor’s 
processing stages:

Instruction 
fetch
(IF)

Register 
fetch
(RF)

Execute
(EX)

Memory 
access
(MEM)

Register 
write-back

(WB)

For example, a load instruction uses all five.

Single-cycle implementation

IF RF EX MEM WB IF RF EX MEM WB IF RF EX MEM WB

lw $1,0($0) lw $2,4($0) lw $3,8($0)

Single-cycle implementation

On these processors, the order of instructions doesn’t 
make any difference to execution time: each instruction 
takes one clock cycle, so n instructions will take n cycles 

and can be executed in any (correct) order.

In this case we can naïvely translate our optimised 3-
address code by expanding each intermediate instruction 

into the appropriate sequence of target instructions; 
clever reordering is unlikely to yield any benefits.

Pipelined implementation

In pipelined processor designs (e.g. MIPS R2000), each 
processing stage works independently and does its 
job in a single clock cycle, so different stages can be 

handling different instructions simultaneously.

These stages are arranged in a pipeline, and the 
result from each unit is passed to the next one via a 

pipeline register before the next clock cycle.

Lecture 14: Instruction scheduling

117



Pipelined implementation

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $1,0($0)

lw $2,4($0)

lw $3,8($0)

Pipelined implementation

In this multicycle design the clock cycle is much 
shorter (one pipeline stage vs. one complete 

instruction) and ideally we can still execute one 
instruction per cycle when the pipeline is full.

Programs will therefore execute more quickly.

Pipeline hazards
However, it is not always possible to run the 

pipeline at full capacity.

Some situations prevent the next instruction 
from executing in the next clock cycle: this is a 

pipeline hazard.

On interlocked hardware (e.g. SPARC) a hazard 
will cause a pipeline stall; on non-interlocked 

hardware (e.g. MIPS) the compiler must 
generate explicit NOPs to avoid errors.

add $3,$1,$2
add $5,$3,$4

Pipeline hazards

Consider data hazards: these occur when an instruction 
depends upon the result of an earlier one.

The pipeline must stall until the result of the first add 
has been written back into register $3.

Pipeline hazards

IF RF EX MEM WB

IF RF EX

add $3,$1,$2

add $5,$3,$4 STALL

Pipeline hazards

The severity of this effect can be reduced by using 
bypassing: extra paths are added between 

functional units, allowing data to be used before it 
has been written back into registers.

Pipeline hazards

IF RF EX MEM WBadd $3,$1,$2

add $5,$3,$4 IF RF EX MEM WB

Pipeline hazards

But even when bypassing is used, some 
combinations of instructions will always 

result in a stall.
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Pipeline hazards

IF RF EX MEM WBlw $1,0($0)

add $3,$1,$2 IF RF EX MEM WBSTALL

Instruction order

lw $1,0($0)
add $2,$2,$1
lw $3,4($0)
add $4,$4,$3

Since particular combinations of instructions cause this 
problem on pipelined architectures, we can achieve better 
performance by reordering instructions where possible. 

Instruction order

IF RF EX MEM WBlw $1,0($0)

add $2,$2,$1 IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $3,4($0)

add $4,$4,$3

STALL

STALL

10 cycles

lw $1,0($0)
add $2,$2,$1
lw $3,4($0)
add $4,$4,$3

lw $1,0($0)
lw $3,4($0)
add $2,$2,$1
add $4,$4,$3

Instruction order

STALL FOR $1

STALL FOR $3

lw $3,4($0)

add $2,$2,$1

Instruction order

IF RF EX MEM WBlw $1,0($0)

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WBadd $4,$4,$3

8 cycles

Instruction dependencies

We can only reorder target-code instructions if 
the meaning of the program is preserved.

We must therefore identify and respect the data 
dependencies which exist between instructions.

In particular, whenever an instruction is 
dependent upon an earlier one, the order of 
these two instructions must not be reversed.

Instruction dependencies

There are three kinds of data dependency:

• Read after write

• Write after read

• Write after write

Whenever one of these dependencies exists between 
two instructions, we cannot safely permute them.

Instruction dependencies

Read after write:
An instruction reads from a location

after an earlier instruction has written to it.

add $3,$1,$2
⋮
add $4,$4,$3

add $4,$4,$3
⋮
add $3,$1,$2

✗Reads old value
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Instruction dependencies

Write after read:
An instruction writes to a location

after an earlier instruction has read from it.

add $4,$4,$3
⋮
add $3,$1,$2

add $3,$1,$2
⋮
add $4,$4,$3

✗Reads new value

Instruction dependencies

Write after write: 
An instruction writes to a location

after an earlier instruction has written to it.

add $3,$1,$2
⋮
add $3,$4,$5

add $3,$4,$5
⋮
add $3,$1,$2

✗Writes old value

Instruction scheduling
We would like to reorder the instructions 

within each basic block in a way which

• preserves the dependencies between those 
instructions (and hence the correctness of 
the program), and

• achieves the minimum possible number of 
pipeline stalls.

We can address these two goals separately.

Preserving dependencies

Firstly, we can construct a directed acyclic graph (DAG) 
to represent the dependencies between instructions:

• For each instruction in the basic block, create 
a corresponding vertex in the graph.

• For each dependency between two 
instructions, create a corresponding edge in 
the graph.

‣ This edge is directed: it goes from the earlier 
instruction to the later one.

Preserving dependencies

lw $1,0($0)
lw $2,4($0)
add $3,$1,$2
sw $3,12($0)
lw $4,8($0)
add $3,$1,$4
sw $3,16($0)

1
2
3
4
5
6
7

1 2

3 4

5 6

7

Preserving dependencies

Any topological sort of this DAG (i.e. any linear 
ordering of the vertices which keeps all the edges 

“pointing forwards”) will maintain the dependencies 
and hence preserve the correctness of the program.

Preserving dependencies
1 2

3 4

5 6

7

1, 2, 3, 4, 5, 6, 7
2, 1, 3, 4, 5, 6, 7

1, 2, 3, 5, 4, 6, 7
1, 2, 5, 3, 4, 6, 7
1, 5, 2, 3, 4, 6, 7
5, 1, 2, 3, 4, 6, 7

2, 1, 3, 5, 4, 6, 7
2, 1, 5, 3, 4, 6, 7
2, 5, 1, 3, 4, 6, 7
5, 2, 1, 3, 4, 6, 7

Minimising stalls
Secondly, we want to choose an instruction order 
which causes the fewest possible pipeline stalls.

Unfortunately, this problem is (as usual) NP-complete 
and hence difficult to solve in a reasonable amount of 

time for realistic quantities of instructions.

However, we can devise some static scheduling 
heuristics to help guide us; we will hence choose a 

sensible and reasonably optimal instruction order, if 
not necessarily the absolute best one possible.
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Minimising stalls

• does not conflict with the previous emitted 
instruction

• is most likely to conflict if first of a pair (e.g. prefer 
lw to add)

• is as far away as possible (along paths in the DAG) 
from an instruction which can validly be scheduled 
last

Each time we’re emitting the next instruction, 
we should try to choose one which:

Algorithm

Armed with the scheduling DAG and the static 
scheduling heuristics, we can now devise an 
algorithm to perform instruction scheduling.

Algorithm

• Construct the scheduling DAG.

‣We can do this in O(n2) by scanning backwards 
through the basic block and adding edges as 
dependencies arise.

• Initialise the candidate list to contain the minimal 
elements of the DAG.

Algorithm

• While the candidate list is non-empty:

• If possible, emit a candidate instruction satisfying 
all three of the static scheduling heuristics;

• if no instruction satisfies all the heuristics, either 
emit NOP (on MIPS) or an instruction satisfying 
only the last two heuristics (on SPARC).

• Remove the instruction from the DAG and insert 
the newly minimal elements into the candidate list.

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 1, 2, 5 }

lw $1,0($0)1

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 2, 5 }

lw $1,0($0)
lw $2,4($0)

1
2

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 3, 5 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)

1
2
5

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 3 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2

1
2
5
3
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Algorithm
1 2

3 4

5 6

7

Candidates:
{ 4 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)

1
2
5
3
4

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 6 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4

1
2
5
3
4
6

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 7 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4
sw $3,16($0)

1
2
5
3
4
6
7

Algorithm

lw $1,0($0)
lw $2,4($0)
add $3,$1,$2
sw $3,12($0)
lw $4,8($0)
add $3,$1,$4
sw $3,16($0)

1
2
3
4
5
6
7

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4
sw $3,16($0)

1
2
5
3
4
6
7

2 stalls
13 cycles

no stalls
11 cycles

Original code: Scheduled code:

Dynamic scheduling

Instruction scheduling is important for getting the best 
performance out of a processor; if the compiler does a 
bad job (or doesn’t even try), performance will suffer.

As a result, modern processors have dedicated 
hardware for performing instruction scheduling 

dynamically as the code is executing.

This may appear to render compile-time scheduling 
rather redundant.

Dynamic scheduling

• This is still compiler technology, just increasingly 
being implemented in hardware.

• Somebody — now hardware designers — must 
still understand the principles.

• Embedded processors may not do dynamic 
scheduling, or may have the option to turn the 
feature off completely to save power, so it’s still 
worth doing at compile-time.

But:

Summary
• Instruction pipelines allow a processor to work on 

executing several instructions at once

• Pipeline hazards cause stalls and impede optimal 
throughput, even when bypassing is used

• Instructions may be reordered to avoid stalls

• Dependencies between instructions limit 
reordering

• Static scheduling heuristics may be used to achieve 
near-optimal scheduling with an O(n2) algorithm
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Lecture 15
Register allocation vs 
instruction scheduling,

reverse engineering

Allocation vs. scheduling

We have seen why register allocation is a useful 
compilation phase: when done well, it can make 

the best use of available registers and hence 
reduce the number of spills to memory.

Unfortunately, by maximising the utilisation of 
architectural registers, register allocation makes 
instruction scheduling significantly more difficult.

Allocation vs. scheduling

*x := *a;
*y := *b;

LDR v36,v32
STR v36,v33
LDR v37,v34
STR v37,v35

LDR v5,v1
STR v5,v2
LDR v5,v3
STR v5,v4

lw $5,0($1)
sw $5,0($2)
lw $5,0($3)
sw $5,0($4)

lexing, 
parsing, 

translation

code
generation

register allocation
compilation

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $5,0($3)
sw $5,0($4)

IF RF EX MEM WBlw $5,0($1)

sw $5,0($2) IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $5,0($3)

sw $5,0($4)

STALL

STALL

This schedule of instructions 
produces two pipeline stalls 

(or requires two NOPs).

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $5,0($3)
sw $5,0($4)

1
2
3
4

2

3 4

1, 2, 3, 4

No: this is the only 
correct schedule for 
these instructions.

1

Can we reorder them 
to avoid stalls?

Allocation vs. scheduling

We might have done better if 
register $5 wasn’t so heavily used.

If only our register allocation had 
been less aggressive!

Allocation vs. scheduling

*x := *a;
*y := *b;

LDR v36,v32
STR v36,v33
LDR v37,v34
STR v37,v35

LDR v5,v1
STR v5,v2
LDR v6,v3
STR v6,v4

lw $5,0($1)
sw $5,0($2)
lw $6,0($3)
sw $6,0($4)

lexing, 
parsing, 

translation

code
generation

register allocation

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $6,0($3)
sw $6,0($4)

1
2
3
4

2

3 4

1, 2, 3, 4
1, 3, 2, 4
3, 1, 2, 4
1, 3, 4, 2
3, 1, 4, 2
3, 4, 1, 2

1
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2

3 4

1 2

3 4

1

Allocation vs. scheduling

lw $5,0($1)
sw $5,0($2)
lw $6,0($3)
sw $6,0($4)

1
2
3
4

lw $5,0($1)
lw $6,0($3)
sw $5,0($2)
sw $6,0($4)

1
3
2
4

Allocation vs. scheduling

lw $5,0($1)
lw $6,0($3)
sw $5,0($2)
sw $6,0($4)

IF RF EX MEM WBlw $5,0($1)

lw $6,0($3)

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

sw $5,0($2)

sw $6,0($4)

This schedule of the 
new instructions 

produces no stalls.

Allocation vs. scheduling
There is clearly antagonism between register 

allocation and instruction scheduling: one reduces 
spills by using fewer registers, but the other can better 

reduce stalls when more registers are used.

This is related to the phase-order problem discussed 
earlier in the course, in which we would like to defer 
optimisation decisions until we know how they will 

affect later phases in the compiler.

It’s not clear how best to resolve the problem.

Allocation vs. scheduling

One option is to try to allocate architectural 
registers cyclically rather than re-using them at 

the earliest opportunity.

It is this eager re-use of registers that causes 
stalls, so if we can avoid it — and still not spill any 

virtual registers to memory — we will have a 
better chance of producing an efficient program.

Allocation vs. scheduling
In practise this means that, when doing register 

allocation by colouring for a basic block, we should

• satisfy all of the important constraints as usual 
(i.e. clash graph, preference graph),

• see how many spare architectural registers we 
still have left over, and then

• for each unallocated virtual register, try to 
choose an architectural register distinct from 
all others allocated in the same basic block.

Allocation vs. scheduling

So, if we are less zealous about reusing registers, this 
should hopefully result in a better instruction schedule 

while not incurring any extra spills.

In general, however, it is rather difficult to predict 
exactly how our allocation and scheduling phases will 
interact, and this particular solution is quite ad hoc.

Some (fairly old) research (e.g. CRAIG system in 1995, 
Touati’s PhD thesis in 2002) has improved the situation.

Allocation vs. scheduling
The same problem also shows up in dynamic 

scheduling done by hardware.

Executable x86 code, for example, has lots of 
register reuse because of the small number of 

architectural registers available.

Modern machines cope by actually having more 
registers than advertised; it does dynamic 

recolouring using this larger register set, which 
then enables more effective scheduling.

Part D
Decompilation and 
reverse engineering
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Decompilation

intermediate code

parse tree

token stream

character stream

target code

optimisation

optimisation

optimisation

decompilation

Motivation
The job of an optimising compiler is to turn human-
readable source code into efficient, executable target 

code.

Although executable code is useful, software is most 
valuable in source code form, where it can be easily 

read and modified.

The source code corresponding to an executable is not 
always available — it may be lost, missing or secret — so 

we might want to use decompilation to recover it.

Reverse engineering

In general terms, engineering is a process which 
decreases the level of abstraction of some system.

Reverse engineering

Requirements
Ideas

Design

Source codeTarget code

compiler

Reverse engineering

In contrast, reverse engineering is the process of 
increasing the level of abstraction of some system, 

making it less suitable for implementation but more 
suitable for comprehension and modification.

Reverse engineering

Requirements
Ideas

Design

Source codeTarget code

decompiler

It is quite feasible to decompile and otherwise reverse-
engineer most software.

So if reverse-engineering software is technologically 
possible, is there any ethical barrier to doing it?

In particular, when is it legal to do so?

Legality and ethics Legality and ethics
Companies and individuals responsible for creating 
software generally consider source code to be their 

confidential intellectual property; they will not make it 
available, and they do not want you to reconstruct it.

(There are some well-known exceptions.)

Usually this desire is expressed via an end-user 
license agreement, either as part of a shrink-wrapped 
software package or as an agreement to be made at 

installation time (“click-wrap”).
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Legality and ethics
However, the European Union Software 

Directive of 1991 (91/250/EC) says:

Article 4 Restricted Acts

Subject to the provisions of Articles 5 and 6, the exclusive rights of the rightholder 
within the meaning of Article 2, shall include the right to do or to authorize:

(a) the permanent or temporary reproduction of a computer program by any means 
and in any form, in part or in whole. Insofar as loading, displaying, running, 
transmission or storage of the computer program necessitate such reproduction, 
such acts shall be subject to authorization by the rightholder;

(b) the translation, adaptation, arrangement and any other alteration of a computer 
program and the reproduction of the results thereof, without prejudice to the rights of 
the person who alters the program;

(c) any form of distribution to the public, including the rental, of the original computer 
program or of copies thereof. The first sale in the Community of a copy of a program 
by the rightholder or with his consent shall exhaust the distribution right within the 
Community of that copy, with the exception of the right to control further rental of the 
program or a copy thereof.

Article 5 Exceptions to the restricted acts

1. In the absence of specific contractual provisions, the acts referred to in Article 4 
(a) and (b) shall not require authorization by the rightholder where they are 
necessary for the use of the computer program by the lawful acquirer in accordance 
with its intended purpose, including for error correction.

2. The making of a back-up copy by a person having a right to use the computer 
program may not be prevented by contract insofar as it is necessary for that use.

3. The person having a right to use a copy of a computer program shall be entitled, 
without the authorization of the rightholder, to observe, study or test the functioning 
of the program in order to determine the ideas and principles which underlie any 
element of the program if he does so while performing any of the acts of loading, 
displaying, running, transmitting or storing the program which he is entitled to do. 

Article 6 Decompilation

1. The authorization of the rightholder shall not be required where reproduction of the 
code and translation of its form within the meaning of Article 4 (a) and (b) are 
indispensable to obtain the information necessary to achieve the interoperability of 
an independently created computer program with other programs, provided that the 
following conditions are met:

(a) these acts are performed by the licensee or by another person having a right to 
use a copy of a program, or on their behalf by a person authorized to to so;

(b) the information necessary to achieve interoperability has not previously been 
readily available to the persons referred to in subparagraph (a); and (c) these acts 
are confined to the parts of the original program which are necessary to achieve 
interoperability.

2. The provisions of paragraph 1 shall not permit the information obtained through its 
application:

(a) to be used for goals other than to achieve the interoperability of the independently 
created computer program;

(b) to be given to others, except when necessary for the interoperability of the 
independently created computer program; or (c) to be used for the development, 
production or marketing of a computer program substantially similar in its expression, 
or for any other act which infringes copyright.

Legality and ethics

“The authorization of the rightholder shall not be 
required where [...] translation [of a program is] 
necessary to achieve the interoperability of [that 

program] with other programs, provided [...] 
these acts are performed by [a] person having a 

right to use a copy of the program”

Legality and ethics
European Union Directive 2009/24/EC

“on the legal protection of computer programs” 
supersedes this and says:

“The authorisation of the rightholder shall not be 
required where reproduction of the code and 

translation of its form [...] are indispensable [...] to 
achieve the interoperability of an independently 

created computer program with other programs, 
provided that [...] those acts are performed by the 

licensee [or others with similar rights]”

Legality and ethics
The European Union Copyright Directive of 2001 

(2001/29/EC, aka “EUCD”) is the EU’s implementation of 
the 1996 WIPO Copyright Treaty.

It is again concerned with the ownership rights of 
technological IP, but Recital 50 states that:

“[this] legal protection does not affect the specific 
provisions [of the EUSD]. In particular, it should not 

apply to [...] computer programs [and shouldn’t] prevent 
[...] the use of any means of circumventing a 

technological measure [allowed by the EUSD].”

Legality and ethics

And the USA has its own implementation of the 
WIPO Copyright Treaty: the Digital Millennium 

Copyright Act of 1998 (DMCA), which contains a 
similar exception for reverse engineering:

“This exception permits circumvention [...] for the 
sole purpose of identifying and analyzing elements of 

the program necessary to achieve interoperability 
with other programs, to the extent that such acts 

are permitted under copyright law.”

Legality and ethics

Predictably enough, the interaction between the 
EUSD, EUCD and DMCA is complex and unclear, 
particularly at the increasingly-blurred interfaces 
between geographical jurisdictions (cf. Dmitry 

Sklyarov), and between software and other forms 
of technology (cf. Jon Johansen).

Get a lawyer.

Clean room design

Despite the complexity of legislation, it is possible to 
do useful reverse-engineering without breaking the law.

In 1982, Compaq produced the first fully IBM-
compatible personal computer by using clean room 
design (aka “Chinese wall technique”) to reverse-

engineer the proprietary IBM BIOS.

This technique is effective in legally circumventing 
copyrights and trade secrets, although not patents.

Summary

• Register allocation makes scheduling harder by 
creating extra dependencies between instructions

• Less aggressive register allocation may be desirable

• Some processors allocate and schedule dynamically

• Reverse engineering is used to extract source code 
and specifications from executable code

• Existing copyright legislation may permit limited 
reverse engineering for interoperability purposes
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Lecture 16
Decompilation

Why decompilation?

This course is ostensibly about Optimising Compilers.

It is really about program analysis and transformation.

Decompilation is achieved through analysis and 
transformation of target code; the transformations 

just work in the opposite direction.

The decompilation problem

Even simple compilation discards a lot of information:

• Comments

• Function and variable names

• Structured control flow

• Type information

The decompilation problem
Optimising compilation is even worse:

• Dead code and common subexpressions are 
eliminated

• Algebraic expressions are rewritten

• Code and data are inlined; loops are unrolled

• Unrelated local variables are allocated to the 
same architectural register

• Instructions are reordered by code motion 
optimisations and instruction scheduling

The decompilation problem

Some of this information is never going to be 
automatically recoverable (e.g. comments, variable 

names); some of it we may be able to partially 
recover if our techniques are sophisticated enough.

Compilation is not injective. Many different source 
programs may result in the same compiled code, so 

the best we can do is to pick a reasonable 
representative source program.

Intermediate code

It is relatively straightforward to extract a 
flowgraph from an assembler program.

Basic blocks are located in the same way as during 
forward compilation; we must simply deal with the 
semantics of the target instructions rather than our 

intermediate 3-address code.

Intermediate code

For many purposes (e.g. simplicity, retargetability) it might 
be beneficial to convert the target instructions back into 

3-address code when storing it into the flowgraph.

This presents its own problems: for example, many 
architectures include instructions which test or set 

condition flags in a status register, so it may be necessary 
to laboriously reconstruct this behaviour with extra 

virtual registers and then use dead-code elimination to 
remove all unnecessary instructions thus generated.

Control reconstruction

A compiler apparently destroys the high-level control 
structure which is evident in a program’s source code.

After building a flowgraph during decompilation, we can 
recover some of this structure by attempting to match 

intervals of the flowgraph against some fixed set of 
familiar syntactic forms from our high-level language.
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Finding loops

Any structured loops from the original program will 
have been compiled into tests and branches; they 
will look like arbitrary (“spaghetti”) control flow.

In order to recover the high-level structure of these 
loops, we must use dominance.

Dominance

In a flowgraph, we say a node m dominates 
another node n if control must go through m 

before it can reach n.

A node m strictly dominates another node n if m 
dominates n and m ≠ n.

The immediate dominator of a node n is the unique 
node that strictly dominates n but doesn’t 
dominate any other strict dominator of n.

Dominance

A node n is in the dominance frontier of a node 
m if m does not strictly dominate n but does 

dominate an immediate predecessor of n.

Intuitively this is the set of nodes where m’s 
dominance stops.

We can represent this dominance relation with 
a dominance tree in which each edge connects a 

node with its immediate dominator.

Dominance

a

b

ENTRY f

d

c

e

EXIT

Dominance

ENTRY f

a

b c

d

e

EXIT

Back edges

We can now define the concept of a back edge.

In a flowgraph, a back edge is one whose head 
dominates its tail.

Back edges

a

b

ENTRY f

d

c

e

EXIT

ENTRY f

a

b c

d

e

EXIT

Finding loops

Each back edge has an associated loop.

The head of a back edge points to the loop header, 
and the loop body consists of all the nodes from 
which the tail of the back edge can be reached 

without passing through the loop header.
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Finding loops

a

b

ENTRY f

d

c

e

EXIT

Finding loops

Once each loop has been identified, we can examine 
its structure to determine what kind of loop it is, 

and hence how best to represent it in source code.

Finding loops

b

d

Here, the loop header contains a conditional which 
determines whether the loop body is executed, and 
the last node of the body unconditionally transfers 

control back to the header.

This structure corresponds 
to source-level

while (...) {...}
syntax.

Finding loops

a

e

Here, the loop header unconditionally allows the 
body to execute, and the last node of the body 
tests whether the loop should execute again.

This structure corresponds 
to source-level

do {...} while (...)
syntax.

Finding conditionals

A similar principle applies when trying to 
reconstruct conditionals: we look for structures 
in the flowgraph which may be represented by 
particular forms of high-level language syntax.

Finding conditionals

a

b

c

d

The first node in this interval 
transfers control to one node if 

some condition is true, otherwise it 
transfers control to another node 

(which control also eventually 
reaches along the first branch).

This structure corresponds to 
source-level                                      

if (...) then {...}                        
syntax.

Finding conditionals

a

b c

d

This structure corresponds 
to source-level

if (...) then {...} 
else {...}

syntax.

The first node in this interval transfers control to one 
node if some condition is true, and another node if the 

condition is false; control always reaches some later node.

Control reconstruction

We can keep doing this for whatever other control-
flow constructs are available in our source language.

Once an interval of the flowgraph has been 
matched against a higher-level control structure in 
this way, its entire subgraph can be replaced with a 
single node which represents that structure and 

contains all of the information necessary to 
generate the appropriate source code.
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Type reconstruction
Many source languages also contain rich information 
about the types of variables: integers, booleans, arrays, 

pointers, and more elaborate data-structure types 
such as unions and structs.

At the target code level there are no variables, only 
registers and memory locations.

Types barely exist here: memory contains arbitrary 
bytes, and registers contain integers of various bit-

widths (possibly floating-point values too).

Type reconstruction

Reconstruction of the types of source-level 
variables is made more difficult by the 

combination of SSA and register allocation 
performed by an optimising compiler.

SSA splits one user variable into many variables 
— one for each static assignment — and any of 
these variables with disjoint live ranges may be 

allocated to the same architectural register.

Type reconstruction
So each user variable may be spread between several 
registers — and each register may hold the value of 

different variables at different times.

It’s therefore a bit hopeless to try to give a type to each 
architectural register; the notional type of the value held 

by any given register will change during execution.

int x = 42;
⋮
char *y = “42”;

MOV r3,#42
⋮
MOV r3,#0xFF34

Type reconstruction

Happily, we can undo the damage by once again 
converting to SSA form: this will split a single 

register into many registers, each of which can 
be assigned a different type if necessary.

MOV r3,#42
⋮
MOV r3,#0xFF34

MOV r3a,#42
⋮
MOV r3b,#0xFF34

Type reconstruction

int foo (int *x) {
  return x[1] + 2;
}

C

f: ldr r0,[r0,#4]
   add r0,r0,#2
   mov r15,r14

ARM

compile

f: ldr r0,[r0,#4]
   add r0,r0,#2
   mov r15,r14

ARM

Type reconstruction
int f (int r0) {
  r0 = *(int *)(r0 + 4);
  r0 = r0 + 2;
  return r0;
}

C

decompile

Type reconstruction
int f (int r0) {
  r0 = *(int *)(r0 + 4);
  r0 = r0 + 2;
  return r0;
}

SSA

int f (int r0a) {
  int r0b = *(int *)(r0a + 4);
  int r0c = r0b + 2;
  return r0c;
}

Type reconstruction

reconstruct types

int f (int r0a) {
  int r0b = *(int *)(r0a + 4);
  int r0c = r0b + 2;
  return r0c;
}

int f (int *r0a) {
  int r0b = *(r0a + 1);
  int r0c = r0b + 2;
  return r0c;
}
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Type reconstruction

reconstruct syntax

int f (int *r0a) {
  int r0b = r0a[1];
  int r0c = r0b + 2;
  return r0c;
}

int f (int *r0a) {
  int r0b = *(r0a + 1);
  int r0c = r0b + 2;
  return r0c;
}

Type reconstruction

propagate copies

int f (int *r0a) {
  int r0b = r0a[1];
  int r0c = r0b + 2;
  return r0c;
}

int f (int *r0a) {
  return r0a[1] + 2;
}

Type reconstruction

int f (int *r0a) {
  return r0a[1] + 2;
}

T f (T *r0a) {
  return r0a[1] + 2;
}

In fact, the return type could be 
anything, so more generally:

Type reconstruction

This is all achieved using constraint-based analysis: 
each target instruction generates constraints on the 

types of the registers, and we then solve these 
constraints in order to assign types at the source level.

Typing information is often incomplete 
intraprocedurally (as in the example); constraints 

generated at call sites help to fill in the gaps.

We can also infer unions, structs, etc.

Summary

• Decompilation is another application of program 
analysis and transformation

• Compilation discards lots of information about 
programs, some of which can be recovered

• Loops can be identified by using dominator trees

• Other control structure can also be recovered

• Types can be partially reconstructed with 
constraint-based analysis
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