
Quantum Computing (CST Part II)
Lecture 15: Adiabatic Quantum Computing & Quantum Optimisation

For years experts questioned whether the [D-Wave] devices were
actually exploiting quantum mechanics and whether they worked

better than traditional computers.
The Economist

1 / 20

The quantum adiabatic theorem
Adiabatic quantum computing is founded upon the quantum adiabatic
theorem:

The quantum adiabatic theorem

If we have a time-varying Hamiltonian, H(t), which is initially HI at
t = 0, and subsequently HF at some later time, t = tF , then if the
system is initially in the ground-state of HI , and as long as the
time-evolution of the Hamiltonian is sufficiently slow, the state is likely to
remain in the ground-state throughout the evolution, therefore being in
the ground-state of HF at t = tF .

That is, if a quantum system starts in a ground-state, so long as we
evolve the state slowly, it is likely to remain in a ground-state.

Proof of the quantum adiabatic theorem, which includes exactly what is
meant by “evolving the state slowly” is rather complex and physicsy, and
thus beyond the scope of this course: for the purposes of appreciating
adiabatic quantum computing as a model of computation, it suffices to
simply know the existence of the quantum adiabatic theorem.

2 / 20

Adiabatic quantum computing
Unlike gate-based quantum computing which, by the quantum circuit
model, bears some resemblance to classical digital computing, adiabatic
quantum computing is a completely different approach to computation,
in which it is necessary to specify:

An initial Hamiltonian, HI , whose ground-state is easy to prepare.
A final Hamiltonian, HF , whose ground-state encodes the solution
to the problem of interest.
An adiabatic evolution path, s(t) where s(0) = 1 and s(tF) = 0,
which defines the Hamiltonian evolution:

H(t) = s(t)HI + (1− s(t))HF

i.e., such that H(0) = HI and H(tF) = HF . For example, the linear

path s(t) =
(
1− t

tF

)
, such that:

H(t) =

(
1− t

tF

)
HI +

t

tF
HF

Therefore, because of the quantum adiabatic theorem, the final state is
very likely to be the ground-state of HF , and so encodes the solution to
the problem in question.

3 / 20

Adiabatic quantum computing: a very simple example

Consider the (informally stated) mathematical problem: output two bits,
x1 and x2 such that x1 ̸= x2. We can associate this with the function:

f(x) =

{
0 if x1 ̸= x2

1 otherwise

which can be “encoded” in the Hamiltonian:

HF =
I + Z ⊗ Z

2
=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


where I is the identity, and Z is the Pauli-Z matrix. Note that the Pauli
matrices are both unitary and Hermitian – and it the latter property that
is significant here.

4 / 20

Adiabatic quantum computing: simple example continued
We have that the eigenstates of HF are:

HF |00⟩ = 1 |00⟩
HF |01⟩ = 0 |01⟩
HF |10⟩ = 0 |10⟩
HF |11⟩ = 1 |11⟩

So we have that the lowest eigenvalue (ground) states of HF are |01⟩
and |10⟩, and so if we adiabatically evolve to HF and measure we will
obtain an outcome where x1 ̸= x2, as desired.

For completeness, we must also specify a suitable initial Hamiltonian. We
know that the equal superposition of two-qubit computational basis
states, 1

2 (|00⟩+ |01⟩+ |10⟩+ |11⟩) is an easy state to prepare, and it can
be verified that this is a ground state of:

HI =
(I −X)⊗ I + I ⊗ (I −X)

2
=


1 −0.5 −0.5 0
−0.5 1 0 −0.5
−0.5 0 1 −0.5
0 −0.5 −0.5 1


5 / 20

Applications of adiabatic quantum computing

Adiabatic quantum computing is an alternative approach to the gate
model of quantum computing that we have studied in this lecture course.

Adiabatic quantum computing is a universal computational model, and in
terms of computational complexity is polynomially equivalent to
gate-based quantum computing. This means that any Turing-solvable
problem can be solved using adiabatic quantum computing, using only
“polynomially more time” (in the problem size) than computing the
solution on a gate-based quantum computer. Conversely, any adiabatic
quantum algorithm can be discretised and computed on a gate-based
quantum computer (again with a polynomial-time overhead at worst).

Nevertheless, adiabatic quantum computing has received significantly less
attention than its gate-based counterpart, with the following notable
exceptions:

Adiabatic state preparation as a subroutine in quantum chemistry
algorithms.

Optimisation using quantum annealing – in particular, D-Wave.

6 / 20

Adiabatic state preparation in quantum chemistry

Although adiabatic quantum computing requires a continuous state
evolution, we previously saw that continuous evolution can be
simulated on a gate-based quantum computer, by discretising the
evolution into sufficiently short-duration intervals.

Moreover, even though we previously only looked at state evolution
according to a time-invariant Hamiltonian, the same principle applies
to state evolution according to a time-varying Hamiltonian – again
with the caveat that the duration of the discretised time-intervals
must be sufficiently short.

We also previously saw that in quantum chemistry, for both
quantum phase estimation and the variational quantum eigensolver
algorithm, it is necessary to prepare the state of the second register
in the ground-state of the system of interest.

So it follows that one way to do this is to use adiabatic state
evolution, approximated by discretised evolution on a gate-based
quantum computer, from the ground-state of a Hamiltonian that is
easy to prepare, to the ground-state of the Hamiltonian of interest.

7 / 20

Optimisation
Mathematical optimisation is the process of finding x such that f(x) is
minimised, for some f : Rn → R of interest. The optimisation can be
constrained by inequality and/or equality constraints, i.e., finding x in the
range 0 ≤ x ≤ 10 such that some f(x) is minimised. Optimisation
problems broadly fall into three categories:

1. Algebraically solvable optimisation, for example finding x which
minimises f(x) = x2 − 2x− 5.

2. Convex optimisation, which concerns the optimisation of a class of
functions which have a single “global” minimum, and for which
efficient optimisation algorithms exist.

3. General optimisation, which concerns optimisation of any function,
which may therefore have multiple “local” minima:

𝑥

𝑓(𝑥)
Global minimum

Local minima

8 / 20

Metaheuristics

Metaheuristics are used to find “good” approximate solutions to general
optimisation problems. In plain terms, a metaheuristic is a search policy
that explores the optimisation function, f(x), by evaluating it at certain
values of x.

There are myriad metaheuristic algorithms which decide where next (at
which value of x) to evaluate f(x) given the history of function
evaluations, but all are based on the same essential principle that good
solutions are likely to be near other good solutions, or in other words that
the optimisation surface has some smoothness. This in turn reveals the
exploration versus exploitation trade-off that all metaheuristics must
make.

9 / 20

Exploration versus exploitation

𝑥
Explore

𝑥
Exploit

A metaheuristic can exploit its “current” position, by descending
incrementally. The risk is that this returns a (possibly not very
good) local minimum.
Alternatively a metaheuristic can explore the optimisation surface by
making “large movements” to discover whether another part of
optimisation surface returns smaller values of f(x). In this case, the
global minimum may be found, but the value of x returned may only
be a fairly poor approximation of the actual global minimum x.

Metaheuristic optimisation algorithms are typically set-up to search for a
minimum in such a way that exploration is favoured at the start and
exploitation at the end. Different metaheuristics do this in different ways,
and so are well-suited to different types of optimisation problems.

10 / 20

Simulated annealing

Simulated annealing is a metaheuristic inspired by the physical process of
thermal annealing. Simulated annealing applies to either combinatorial
optimisation, or a continuous optimisation problem whose optimisation
surface has a defined notion of neighbourhood. An initial x is chosen,
and the algorithm proceeds as follows:

1. Evaluate f(x)

2. At random choose a neighbour, x′ of x

3. Evaluate f(x′).

4. If f(x′) < f(x) then set x← x′

Else (i.e., f(x′) ≥ f(x)) randomly decide whether to set x← x′ or
just keep x as it is

5. Repeat a specified number of times

11 / 20

Simulated annealing (cont.)

Naturally, the random decision in step 4 is such that the more that f(x′)
exceeds f(x) by the less likely it is that x← x′. Additionally, this
random process varies throughout the repeated iterations of the
algorithm, such that “uphill” moves are more likely to be accepted at the
start of the optimisation, and less likely towards the end. In this way the
exploration versus exploitation trade-off is made such that exploration
dominates initially, and exploitation dominates at the end.

Taking inspiration from the physical process of thermal annealing, the
acceptance probability is usually determined by:

p(accept) = exp

(
−f(x′)− f(x)

T

)
where T is the “temperature”, which is “cooled” as the algorithm
progresses, such that uphill moves become less likely.

12 / 20

Quantum annealing

Quantum annealing is set-up in the following way:

We have an optimisation problem which is specified in terms of a
Hamiltonian whose ground-state is the optimal solution. This
constitutes a perfectly natural way to define optimisation problems in
general, and we denote this the “final” Hamiltonian, HF , as the goal
of the quantum annealing is to converge on a ground-state thereof.

We have a transverse field Hamiltonian, HD, that does not
commute with HF .

Starting in an arbitrary initial state (conventionally a uniform
superposition), we evolve a system according to:

H(t) = HF + Γ(t)HD

where Γ(t) is the transverse field coefficient, which is initially very
high, and reduces to zero over time.

13 / 20

Quantum annealing and adiabatic quantum computing
Quantum annealing essentially performs an adiabatic evolution to
optimise some function, however there is a clear distinction:

In adiabatic quantum computing, a system is initialised in an easy to
prepare ground-state, and the Hamiltonian is evolved slowly, so that
the system remains in a ground-state. The ground-state of the final
Hamiltonian encodes the solution of the problem of interest.

Quantum annealing is a metaheuristic, which starts in an arbitrary
initial state. The transverse Hamiltonian explores the optimisation
surface, eventually converging upon the ground-state of the final
Hamiltonian. The system does not necessarily start in a
ground-state, and isn’t required to remain in a ground-state
throughout the evolution, however results from adiabatic quantum
computing can be used to theoretically bound the performance of
quantum annealing.

It follows that quantum annealing can readily be implemented on an
adiabatic quantum computer, but it is also possible to construct
purpose-built quantum annealers, but these are not universal quantum
computers.

14 / 20

Quantum tunnelling
Simulated annealing performs poorly on optimisation surfaces with “high,
narrow peaks”, because simulated annealing can be visualised as exploring
the surface by “walking over the top of it” and such a steep hill-climb is
needed to escape a local minimum, that it is unlikely to be accepted.

By contrast, quantum annealing is better analogised as “tunnelling
through peaks”, and it is therefore the width not height of peaks which
hinder its ability to escape local minima, and “high, narrow peaks” do
not cause a problem.

Simulated annealing Quantum annealing

It follows that quantum annealing can perform much better when
optimising certain functions, to which simulated annealing would
otherwise be well-suited.

15 / 20

D-Wave

D-Wave Systems is a
company that builds quantum
annealers.

In 2011, they announced
D-Wave one, which they
claimed to be the world’s first
commercially available
quantum computer.

They have shipped systems
with 2048 qubits, and recently
unveiled a 5640 qubit
quantum annealer.

www.theverge.com

16 / 20

Overview of how D-Wave works
D-Wave uses quantum annealing to solve a single “native” optimisation
problem. The problem in question is the optimisation of an instance of
the Ising model, that is the minimisation of

f(x) =
∑
i

hixi +
∑
i<j

Jijxixj

by adjusting {x}, where xi = ±1 for all i. Note that hi and Jij are fixed
parameters that define the instance of the Ising model that D-Wave
solves natively.

Use of the Ising model is commonplace in statistical mechanics, and
optimisation thereof is (the optimisation problem equivalent of) NP-hard,
therefore to solve an arbitrary optimisation problem using D-Wave it is
necessary to perform the following two (typically efficient) steps:

1. Map the optimisation problem of interest to the optimisation of
some instance of the Ising model.

2. Map this instance of the Ising model to the instance that runs
natively on D-Wave.

17 / 20

Quantum annealing and machine learning

Even though many experts were initially skeptical about the claims of
D-Wave, as quantum computing in general matures as a field, increasing
numbers of researchers are engaging with D-Wave, and one promising
line of inquiry is quantum annealing for machine learning.

Optimisation is a crucial sub-routine common to almost all machine
learning tasks. It remains to be seen whether quantum annealing is
especially well suited to some machine learning optimisation tasks,
but if it were then this would potentially be a very significant
application of quantum annealing, given the general importance of
machine learning in contemporary computer science.

Training of classifiers in one of the fundamental applications of
supervised learning, and various researchers have run classifier
training algorithms directly on D-Wave, with promising results.

18 / 20

Optimisation on gate-based quantum computers

Optimisation is ubiquitous in engineering and operations research, and
there exist gate-based quantum algorithms for optimisation. The most
famous of these is the Quantum Approximate Optimisation Algorithm
(QAOA). After VQE it is arguably the most promising candidate for a
quantum algorithm to show quantum advantage on some useful
application in the NISQ era.

Just as adiabatic quantum evolution can be discretised to allow
adiabatic quantum algorithms to be run on gate-based quantum
computers, so can quantum annealing: at its heart QAOA is a
Trotterised version of quantum annealing.

However, a full Trotterisation may mean that we incur an infeasibly
deep circuit (because of the high noise present in near-term
hardware), therefore QAOA is a variational algorithm which aims to
learn the best Trotterised Hamiltonian evolution for a maximum
number of steps.

19 / 20

Summary

In this lecture we have looked at:

The adiabatic quantum theory.

Adiabatic quantum computing as a universal computing model that
is polynomially equivalent to gate-based quantum computing.

Quantum annealing.

QAOA

D-Wave.

20 / 20

