Quantum Computing (CST Part II)

Lecture 4: Important Concepts in Quantum Mechanics

The ‘paradox’ is only a conflict between reality and
your feeling of what reality ‘ought to be’.
Richard Feynman
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What are these “important concepts”?

How much (classical) information can we get out of a quantum state?

Some “no-go” theorems.
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and why should we care?

How much (classical) information can we get out of a quantum state?
@ What if we don't just want to distinguish orthogonal states?

@ Important for some applications e.g., security.

Some “no-go” theorems.
@ To get a physical grasp of the quantum world.

@ Often used in theoretical work, e.g., a constructive proof is used to
show that something is achievable, and the converse is related to a
known “no-go" theorem.

Important for building intuition of the nature of quantum information.
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Re-cap: measurement in the computational basis

If we have a state |¢)) which is either |0) or |1), then we can perfectly
distinguish which of these it is by measurement in the computational
basis:

1) =0]0) +1]1)
so we measure 1 with probability [1|> = 1 (and likewise for 0).

Essentially, this is just classical (binary) information.
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Distinguishing any pair of orthogonal states

If we now have a state [1)) which is either |¢pg) = «|0) + 5 |1) or

|¢1) = v]0) 4+ 0 |1), such that |¢»9) and [¢)1) are orthogonal, then we can
still perfectly distinguish which of these it is by first noting that the
following matrix is unitary (i.e., because the columns form an

orthonormal basis):
_|@ 7
v=3 3]

and observing that the transform UT sends [1)9) — |0) and [¢1) — |1),
which can thus be followed by a computational basis measurement to
discover the state.

In fact, physicists and mathematicians frequently speak not of doing a
transformation such that the states are aligned with the computational
basis, but rather performing the measurement in the basis (|1o) , [¢1)),
which amounts to the same thing.
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Measurement in the (|1g) , [11)) basis

Measurement in the (|ig),|¢1)) basis means measurement with the
following operators:

Miygy = [to) (Yol My,) = [1) (1]
Using the fact that projectors are self-adjoint, and for any |¢):

(1) ()* = [9) (W] [v) (@] = 1) (1) (¥l = [¥) x 1 x (¥] = ) (V]

we can see that measurement in the (|1g) , |11)) basis fulfils the
completeness equation:

_ gt i
Z ]\/[LMm - M|’¢U)le°> + M\¢1>Z\/jlw1>

= (Iv0) (¢ol)® + (1) (¥ ])?
= |vo) (Yol + [¢1) (¢
=Ul0)(0|UT+U 1) (1|UT
=U([0) (0] +[1) (1])UT
=UIUt

=1

(with U as defined on the previous slide). o/



Measurement in the (|1g) , [t/1)) basis (continued)

In the previous slide we showed that single-qubit measurement in any

orthogonal basis satisfies the completeness equation. We will now verify
that measurement in the (|¢g) , |t1)) basis perfectly distinguishes (|1g)
and |¢1)). Let [¢)) be some state that is either (|¢)g) or |1)1)), we have:

P(Miyoy| [10) = [20)) = (ol ([¢0) (wol)T [0) (ol tho) = ((toltbe))® =
P(Myyy [ 190) = [91)) = (@] (1) (a )T eb1) (oa] [hn) = (@ feon))® =

and also (to confirm):

p(Myoy| [¥) = \¢1>) P1| (J%o) (tol)T [¥o) (ol |1h1)

|
Y1lho) (Yolvbo) (Polt1)

O/\/\ o/\/\

ol ([1) (Wr )T 1) (1] [1bo)
0lt1) (1lb1) (¥1lvo)

p(My| 1) = Wo))

i.e., because |tg) and |t1) are orthogonal, so (¢|t1) = (¢1]1hg) = 0.
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It is not possible to perfectly distinguish non-orthogonal
quantum states

If we now have a state |¢)) which is either |1/,) or |1}) which are not
orthogonal, then there is no measurement that can perfectly tell us which

of these states [¢)) is.

... but we can perform a measurement that tells us something about the
likelihood of whether |¢)) = [1),) or |¢) = |¢).

Intuitively:
o If we just guess, we will be correct with probability equal to one half,
so we expect to be able to do better than this.

@ The “closer together” |¢,) and |i) are, the harder they will be to
distinguish (i.e., the lower the probability of correctly inferring |¢))
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The Helstrom-Holevo Bound

The intuition in the previous slide turns out to be correct, and is captured
by the Helstrom-Holevo bound:

If |1) is either |1g) or [1y), where | (g |thy) | = cos 8, then the probability
of correctly inferring the state |1)) is less than or equal to 1(1 + sin6).

Furthermore, the bound is tight, it can always be achieved by choosing
the measurement basis as the eigenvectors of:

¥} (Pal = [ts) (]

This can be visualised:

[¥a) )

So we can see that, if [1),) and |1}) are orthogonal (i.e., § = 7/2), then
sin@® = 1 and so they can be perfectly distinguished if the correct
measurement basis is selected (i.e., because (1 +sinf) = 1).
Conversely, if |¢,) and |¢},) are nearly aligned, so 6 ~ 0, then sinf ~ 0
and 1(1+sinf) ~ 1: so we cannot do better than guessing.
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Example: distinguishing |0) and |+)

First, we note that |0) and |+) are not orthogonal:

1
ol
1 0}[&51 ﬁﬂ)

therefore we cannot perfectly infer the state of |¢) if we know it is either
|0) or |[4+). So instead, we must decide a basis to measure in:

2

o) 01— 14+ = [ 3, 3]

which has eigenvectors [0.38 0.92]7 and [—0.92 0.38]7. Finally, we can
calculate the probability of correctly inferring the state:

%(1 + sin(arccos(1/v/2))) = 0.85
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Distinguishing |0) and |+) by measuring in the
computational basis

Again we have that [¢) is either |0) or |[+), each with 50% probability.
We can tabulate the quantum states and measurement outcomes when
measuring in the computational basis:

1 of the time we will measure 1, which means [¢) = [+).
% of the time we will measure 0, which we should guess means
1) = [0), but of these % will be wrong, and actually |¢)) = |+).

@ So we have success probability 1 — % X % = %, which is less than the

theoretically achievable 0.85, but if we measure 1 then we know
[¢)) = |+) with certainty.
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Depicting different state discrimination strategies

The longer black arrows show the orthogonal measurement basis; the
shorter blue arrows show the non-orthogonal states that we wish to

distinguish.
[Y¥qa) [¥p) [Ya) V) "
6 (G
The optimal strategy is to choose But if one of the measurement
the measurement basis spread basis vectors aligns with one the
equally each side of the states we states being distinguished,
want to distinguish. sometimes we get a measurement

that we are 100% sure about.

In the right-hand plot, if we measure the outcome corresponding to the
right-hand black arrow (marked m), then we know the state is |i),
because [¢,) is orthogonal to this measurement basis vector.
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The no-signalling principle: why it matters

We have met the concept of entanglement, for example the Bell state
% (|00) + |11)) is an entangled state (sometimes termed a Bell pair or
EPR pair). This has the property that if we measure the first qubit (in
the computational basis) then we either get measurement outcome 0, in
which case the state collapses to |00); or measurement outcome 1, in
which case the state collapses to |11).

Notably, even though the second qubit hasn't been touched, its state has
still be collapsed by virtue of the measurement on the first qubit. There
is no physical requirement that the two entangled qubits are in close
proximity to each other (Jocal in physics parlance), but this collapse
happens to both qubits instantaneously upon the measurement of the
first qubit. This then implies some non-local action on the second qubit:
its state has instantly changed as a result of a distant action. This is
what Einstein referred to as “spooky action at a distance”, but what is
really important is whether this can be used to transfer information faster
than the speed-of-light, which would violate the theory of relativity.

In fact, collapsing entanglement in this way cannot be used to transfer
information, as proven by the no-signalling principle.
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The no-signalling principle: set-up

2 S

|00)+|11))_/

@ Alice and Bob are at different ends of the universe, but each have
one half of a Bell pair: — (|00) +[11)).

@ Alice can measure her qubit whenever she wants, and this will
collapse Bob's to the same state.

@ We are interested in whether Bob can infer whether or not Alice has
measured her qubit.

@ But all that Bob can do to infer whether Alice has measured her
qubit is to measure his own qubit — therefore, the question reduces
to whether the measurement probabilities that Bob sees are altered
by virtue of Alice having performed her measurement.
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The no-signalling principle: set-up (continued)
If Bob can infer from measurement of his qubit whether or not Alice has
measured hers, then this does enable super-luminal (faster than the
speed-of-light) information transfer. Consider the following set-up.

@ Alice and Bob are spatially separated by a distance that takes light
At seconds to traverse.

@ Bob is interested in whether some event that Alice witnesses has
occurred before time t5.

@ When Alice witnesses the event she will signal to notify Bob.

So we have two alternatives:

1. If Alice uses classical signalling, then if the event occurs less than At
seconds before t, then there is no way she can send a signal to Bob
that he will receive before tg3.

2. However, if Alice can send a signal solely by measuring her qubit,
then she can signal instantly, and hence notify Bob of the event any
time up to t.

tp — At tp time

[——
time during which classical
signalling is not possible
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The no-signalling principle: proof

If Alice hasn't measured her qubit, then the state is % (]00) + [11)), and

2
so Bob has a (%) = 3 probability of measuring each of 0 and 1.

If Alice has measured her qubit, then Bob’s qubit has collapsed — it is
either in state 0, or state 1 (each with probability 1/2). However, in the
absence of signalling, Bob has no knowledge of which of these
measurement outcomes Alice observed, and so all he knows is that he will
measure each of |0) and |1) with probability 1/2. So the no-signalling
principle is proved.

@ Crucially, in the absence of signalling, Bob's measurement statistics
when measuring the uncollapsed quantum state are identical to his
lack of knowledge (expressed probabilistically) when measuring the
state already collapsed by Alice.

@ The no-signalling principle also holds for any type of entanglement,
and also any scheme Alice and Bob may come up with involving
transformations of their qubits, and measurements in arbitrary bases.
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The no-cloning principle: why it matters

@ A plethora of physics reasons.
@ That we cannot clone makes quantum error-correction harder.

@ The possibility of cloning would enable the violation of the
no-signalling principle (see exercise sheet).

@ Cloning would enable an infinite amount of classical information to
be compressed into a single qubit and then recovered afterwards:
1. Map a classical bit-string to a unique qubit state.
2. Communicate the single qubit.
3. Receive the qubit, make an arbitrary number of copies by cloning,
and perform quantum state tomography to recover the original
classical information.
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The no-cloning principle: set-up

We have a quantum state [¢) and a register initially set to |0), and we
wish to find a cloning unitary, U such that:

U(19)10)) = [¢) [¥)

We will now prove that no such U exists.
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The no-cloning principle: proof

Consider that U must clone all quantum states, so as well as

U([9)10)) = [¥) [¥)

from the previous slide, we have that

U(19)10)) = |9} [#)

Taking the inner products of the left- and right-hand sides of the above
equations, we have that:

@ O1UTU () [0) =((&| (])(|6) )
= (¥9) (0[0) =((¥¢))”
= (¥l¢) =((¥l9))”
which is only true if ) = ¢ or 1) and ¢ are orthogonal (so their

inner-product is 0). So we have proven that there exists no unitary U
that can clone arbitrary quantum states.
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The no-deleting principle

Time-reversal of the no-cloning principle yields the no-deleting principle:
there does not exist a unitary U that can delete one of two copies of a
quantum state, that is:

U (|4} [4)) = [v) |0)

It is less obvious why this is useful, but the no-deleting principle does
arise in quantum information, and so it is worth being aware of.

More generally, quantum computing is reversible (except for
measurement), and therefore the (im)possibility of some computation
implies the (im)possibility of its reverse.
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Summary

In this lecture we have looked at:

(]

Distinguishing orthogonal and non-orthogonal states.

Perfectly distinguishing non-orthogonal states, but with probability
less than one.

The no-signalling principle.

The no-cloning principle.

The no-deleting principle.
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