Quantum Computing: Exercise Sheet 3

Steven Herbert and Anuj Dawar

. Express controlled-R,, and controlled—RL, as defined in lecture 9, in matrix form — and show
that the latter is indeed the inverse of the former.

. (a) What is the state after the controlled-unitary stage of the QPE algorithm estimating the

1 -1
phase of unitary % [1 1 ], with three qubits in the first register, and the second register

0
(b) What will the measurement, outcomes be after the inverse QFT stage of the QPE algo-
rithm?

initialised in the state |0) = [1] ?

. Show that permutation matrices are unitary.

. This question concerns using Shor’s algorithm to factor the number 21.

(a) Step through Shor’s algorithm on Slide 8 of lecture 10 with N = 21. Verify that 21 is
neither even nor a prime power, and then use z = 10 for step 3 — find the order of 10 mod 21
and use this to factor 21.

(b) Say we were to run Shor’s algorithm in full with z = 10, and were to measure the phase
corresponding to the eigenvector u; (as defined on Slide 14), express this eigenvector (in full,
not as abbreviated by a sum) and its eigenvalue.

. (a) Show that, as claimed in lecture 11:
e—i(Hl—l—Hg)At — e—iHlAte—ngAt 4 O(At2)
H1+H2)At

(b) Show that we can obtain a more accurate simulation if, to estimate e~ , We

mstead use:
ef’iHlAt/Qe*inAtefiH1At/2

. If we are performing quantum chemistry on a n-qubit Hamiltonian, and we prepare the input
to the second register as a uniform superposition of all eigenvectors, what is the probability
that QPE gives us the ground-state phase?

. The matrices defining probabilistic automata, as defined on Slide 7 of lecture 12, have the
property that the entries in each column add up to 1. Prove that this property is preserved
under matrix multiplication.

. (a) What is the language accepted by the quantum automaton described on Slide 8 of lecture
127

(b) Prove that there is no two-state probabilistic automaton with this behaviour.

(c) Describe a probabilistic automaton (with more than two states) that exhibits this be-
haviour.



9.

10.

11.

Consider a quantum finite automaton with two basis states, |0) being the start state and |1)
the only accepting state. The automaton operates on a two letter alphabet, with matrices:

1 (1 1 1 0
%—ﬁL—J7M—kJ

Give a complete description of the probabilities of acceptance associated with various possible
input strings.

Suppose M is a quantum Turing machine that accepts a language L in the bounded probability
sense: for each string w € L, there is a probability > % that M is observed in an accepting
state after reading w and for each string w & L, there is a probability < % that M is observed
in an accepting state after reading w. We define a new machine Mj that, on input w makes
three independent runs of M on input w and decides acceptance by majority. What is the
probability that My accepts w € L7 What about w ¢ L?

(Optional) Tt can be proven that entanglement is necessary for exponential speed-ups. Give
a sketch of a proof of this, by showing that an initial product state, which undergoes a circuit
consisting of gates which always output a product state when a product state is input, can
be simulated on a classical computer with only a polynomial overhead in the number of
computations.



