LS

© o N o

Internet Architecture Evolution: Found in Translation

Anonymous Author(s)

ABSTRACT

The success of the Internet is undeniable, but so are its limi-
tations. Over the past two decades, the research community
has responded with clean-slate redesigns, proposing innova-
tive architectures focused on issues like security and infor-
mation dissemination, among others. Unfortunately, these
efforts have had limited impact on the commercial Internet,
if any. The reason is that the Internet architecture is deeply
entrenched, making a complete replacement elusive.

In this paper, we argue that a successful approach to evolv-
ing the Internet requires three key ingredients. It should (1)
be backwards compatible with the current Internet, (2) evolve
from the existing architecture, and (3) allow new architec-
tures to reach their full potential. Recently, the community
introduced an overlay-based approach for an Extensible In-
ternet. We believe this is a clear step in the right direction:
it is backwards-compatible, does not require replacing the
current Internet infrastructure, and is deployable today. How-
ever, we contend that this approach is not fully adequate as
it lacks the third requirement, which we deem crucial for
new architectures to gain a foothold and grow. As an alter-
native, we advocate for a translation-based approach and
present our rationale on how it may enable effective Internet
evolution by meeting the three requirements above.

1 INTRODUCTION

The remarkable growth of the Internet over the past five
decades and its establishment as the dominant global com-
munications infrastructure demonstrate the wisdom of its
original design principles [14]. However, in recent decades,
some fundamental assumptions underlying these principles
have changed, and it is widely acknowledged that the Inter-
net architecture is lacking along several dimensions [21].

The most acknowledged architectural flaw is the lack
of security in the original design, leaving the Internet vul-
nerable to various attacks, including DDoS [5] and route
hijacks [19, 31]. Others [24, 49] have questioned whether
point-to-point packet delivery is still the appropriate service
model in a content-oriented world. The research community
responded to this problem with clean slate redesigns of the
Internet, including security approaches [50], information-
centric architectures [24, 49], mobility-oriented solutions
[46], architectures centred around evolvability [35], and en-
tirely new conceptions of the Internet [43].

These clean-slate designs have had little to no impact on
the commercial Internet. There are several reasons for this

apparent lack of success. First, clean-slate architectures re-
quire a massive overhaul of the Internet infrastructure or
its entire replacement. However, the Internet architecture
is deeply embedded in its elements (routers and end-hosts),
which means a total replacement or a significant overhaul re-
mains elusive. Indeed, any architecture should be backwards-
compatible with the existing Internet. The second problem is
that each clean-slate solution addresses a specific issue with
the current architecture. By elevating one problem above
the others, other issues remain. Unfortunately, there is no
one-size-fits-all architecture, and the future is hard to predict.

Over the past decades, we have also learned that different
types of network changes can lead designers to question
their initial assumptions. For instance, rapid changes in user
behaviour, new infrastructure or operational methods, or
even political and economic changes often unveil hidden ar-
chitectural limitations. This assumption mismatch leads to a
second requirement: the architecture should support network
evolution. Clean-slate designs that consider this capability a
first-class citizen [35, 43] suffer from a deployability problem
by either requiring the replacement of the current Internet
[43] or centring its evolution mechanism in the new architec-
ture [35]. In other words, they do not evolve from the existing
architecture, an aspect that is subtly — yet crucially — differ-
ent than guaranteeing backwards compatibility (Section 2.2).

Recently, McCauley et al. proposed Trotsky [33], an archi-
tectural framework that provides a backwards-compatible
path to an Extensible Internet!. Trotsky’s key idea is to intro-
duce a new layer (L3.5), which is an intrinsic overlay on L3. In
addition, it decouples the tasks of interconnecting networks
within a domain (left to L3) and interconnecting different
domains with the new L3.5. Trotsky is a simple and elegant
solution that not only eases the deployment of radical new
architectures but also ensures compatibility with the legacy
Internet, providing a promising path forward. The fact that
it remains IP-centric (as we expect IP to be the de facto L3
underlay) is an essential advantage for deployment.

The IP-centrality is, however, both a blessing and a curse.
On the one hand, IP is deployed everywhere, thus enabling
the fast deployment of Trotsky and a myriad of multiple
architectures on top, as L3.5 overlays. On the other hand—
and, we argue, more fundamentally—the centrality of IP may
stifle the potential for new architectures to blossom, for two
fundamental reasons. First, as the new architectures run as a
L3.5 layer on top of this L3 underlay, they inherit the intrinsic
limitations of the L3 that is used as a “logical pipe”. As a resullt,

The EI design is further detailed in [8].

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

they hamper some of the essential services offered by the
L3.5 architecture—often, the precise services that motivated
it in the first place (Section 2.3)!

Second, an overlay-based approach offers misguided incen-
tives. As in many cases the underlay precludes offering the
full-service set of the L3.5 architecture, it limits the incentives
for its deployment and use. In addition, it does not incen-
tivize the replacement of the good old Internet architecture
(with all its recognized limitations) with better alternatives.
On the contrary, we believe it propels the current Internet
to become even more entrenched!

Faced with this conundrum, in this paper we revive a
decades-old solution [15, 44] and argue for translation as
the approach to enable a multi-architecture Internet that
is backwards-compatible, enables evolvability, and avoids
the limitations of overlaying. Specifically, we propose direct
translation between L3 architectures (Section 3) to enable
the inter-operation of architectures, both present and future.

In contrast to overlay approaches [33], a framework for
Internet evolution based on translation enables a new ar-
chitecture domain to offer all its services, retaining all the
benefits that motivated its design, as it is not dependent on
the intrinsics of an L3 underlay. The challenge becomes the
development of effective translation mechanisms, a new av-
enue for research. We believe that the time is ripe for the
networking community to embrace this approach. Advances
in fast programmable networking hardware (programmable
ASICs [23], SmartNICs [30]) and host stacks [9, 47]) can
enable architecture translators at production-grade perfor-
mance and scale. Indeed, their packet processing capabilities
have recently enabled the development of routing node pro-
totypes for new network architectures, including for NDN
[40] and SCION [16], which is indicative of the plausibility
to construct effective and fast Internet translators.

After detailing the limitations of existing work (Section 2)
and arguing for translation (Section 3), in this paper we also
present our initial exploration of this approach. We present
the design of two translators—IP to SCION and IP to NDN—
to shed light on the practicality of their development (Sec-
tion 4), as well as a discussion on open challenges (Section 5).

2 BACKGROUND AND MOTIVATION

We review problems with the Internet architecture (Sec-
tion 2.1) that motivated the development of clean-slate de-
signs over the past 15 years (Section 2.2). We then discuss
Trotsky, a promising path for Internet evolution, and its in-
trinsic limitations that motivate our paper (Section 2.3).

2.1 Limitations of the Internet Architecture

The outstanding success of the Internet as a global commu-
nication infrastructure is a testament to the quality of its

Anon.

architectural design. However, the success that spurred its
growth also revealed important flaws.

Lack of security. Security was not among the primary
goals of the Internet’s original design. As a result, the Internet
infrastructure is prone to multiple attacks, including DDoS
and route hijacks [19, 31]. Although modern cryptography
has provided solutions to enable confidentiality and integrity
in end-to-end communications, availability remains an issue,
along with the lack of path control provided to end-hosts
(e.g., to avoid compromised domains).

Host-centricity. The Internet was originally designed as
a host-to-host communication network. Today, however, its
use is primarily dominated by the consumption of multime-
dia content and other forms of information dissemination.
CDNs have emerged to address this mismatch, enabling ef-
ficient content distribution on a global scale, overcoming
the absence of content-oriented primitives in the Internet’s
design. However, their use leads to complex agreements with
ISPs and other stakeholders, incurring significant operating,
capital, and efficiency costs. More worryingly, as only a few
large commercial players can afford to deploy and operate a
CDN, this trend is leading to Internet flattening [7].

Fixed end-hosts. The original architecture provided uni-
cast point-to-point communication between fixed end-hosts.
That model starkly contrasts the massive presence of mobile
devices, whose location is constantly changing. The main-
stream communication abstractions for mobility rely on an
indirection layer [37] that decouples sending and receiving
hosts through application-specific and network-level solu-
tions that led to security [36] and performance [22] issues.

Difficult to evolve. The Internet design did not consider
the possibility of evolving its network layer. While the el-
egant minimality of the Internet’s architectural waist has
allowed for much innovation at layers above and below it,
the current design lacks the abstractions to allow for incre-
mental architectural improvements. The lack of principles
of abstraction and modularity [28] for the evolution of the
architecture has led to the “ossification” of the Internet [45].

2.2 Clean-slate architectures

Unlike the incremental patchwork of evolutionary approaches
[38], clean-slate research gives the opportunity to rethink the
Internet without being constrained by the actual realization
[17]. Over more than a decade, clean-slate research spurred
regular specific funding programs, e.g., NSF’s FIND/FIA and
FP7-ICT’s FIRE. Several architectures emerged in this con-
text, each typically focusing on a specific architectural issue.
Embracing security. SCION [50] proposes a path-aware
internetworking approach to building a communication in-
frastructure that provides security and high availability by
design, including preventing route hijacks and several forms

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212



213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

Internet Architecture Evolution: Found in Translation

of DDoS attacks. A path-aware network architecture pro-
vides information about paths to endpoints, which is useful
for enforceable path control. The added transparency and
control are fundamental to improving security. For exam-
ple, disjoint network paths can be used to mitigate network
failures, and the exclusion of specific routes can be used to
resist surveillance or bypass a network under attack.

Embracing content. Information-centric networking [4]
architectures treat content as a first-class citizen and im-
plement communication models that decouple content con-
sumption and production. NDN [49], arguably its most suc-
cessful instance, builds the narrow waist around named con-
tent. To support named-based content retrieval, NDN imple-
ments network mechanisms such as name-based routing and
forwarding, data-centric security, and in-network caching.

Embracing mobility. MobilityFirst [46] proposes mobil-
ity as the dominant communication pattern. Its key idea is the
separation of names or identifiers from network addresses
or locators, relying instead on a scalable, distributed, global
name service to dynamically bind identifiers to network
addresses. In addition, its design includes security, context
awareness, and content retrieval aspects.

Embracing evolvability. The RINA Architecture [43]
is based on the principle that networking is inter-process
communication (IPC). It utilizes a recursive set of layers,
with each layer performing the same functions but at dif-
ferent scopes and granularities. RINA supports gradual up-
grades, promoting the evolution of the infrastructure. XIA
[35] enables end hosts to express a range of delivery mecha-
nisms and services through network packets carrying mul-
tiple forms of addresses simultaneously. To handle partial
rollout and backward compatibility, XIA encodes a directed
acyclic graph in the packet header. This allows the packet
to fall back on alternative services that, when combined,
provide the intended service.

Limitations. The first set of clean-slate designs [46, 49,
50] are effective in addressing a specific limitation of the
Internet architecture. However, each, individually does not
address all known Internet problems. And, paraphrasing [12],
an Internet architecture is a different effort than the simple
union of these sub-architectures.

By contrast, RINA and XIA target evolvability, but they
have their own issues. RINA, on one hand, would require
a significant infrastructure overhaul—a replacement of the
existing IP-based infrastructure. XIA, on the other hand, en-
ables partial deployment via translations between architec-
tures. However, it assumes that the core translation mecha-
nism is built around XIA. In other words, XIA is not designed
to operate as an extension of IP but as a replacement. We ar-
gue that any deployable solution should consider a different
starting assumption: that the IP Internet is widely deployed.
This is one of the insights of Trotsky, described next.

SCION Host1 L35 SCION Host2
] i s
T?"‘ L2 |Eth:
Trotsky Processor \ - f
— = =
& Internet Router \ = = - = Ne )
(o N e/ e T Ne/f == )
L3.5 Overlay (SCION) ~_ V.4 —r.,f,-/ ~
= L3 Path (IP) L3 underlay
Prefix Hijack
E:.:._—‘ SCION Host Successful Successful
—— - DDoS
Trudy

Figure 1: A SCION L3.5 overlay on top of an IP L3 loses
its security benefits.

2.3 Evolution via overlaying

Trotsky [33] is an overlay-based framework for evolving
the Internet architecture. It forms the basis of the proposal
by the same authors for an Extensible Internet [8]. Trotsky
departs from the assumption that IP is so deeply entrenched
in existing networking hardware and software applications
that moving away from it will hardly happen. We agree with
this assumption and believe it should be a foundational design
principle. The key idea is introducing a new layer, L3.5, on
top of the traditional L3. New architectures are deployed on
this L3.5 layer, which runs on top of “logical pipes”, facilitat-
ing the seamless integration of new network architectures
without necessitating a complete overhaul of the existing
infrastructure. Trotsky has the potential to be deployed on
a global scale, leveraging the reuse of IP for the L3 pipes,
a key advantage. Trotsky’s deployment strategy involves
decoupling inter-domain (left to L3.5) and intra-domain net-
working (left to L3) and implementing Trotsky processors at
domain edges, where L3.5 services would be supported (as
well as in hosts).

Trotsky is a simple, backwards-compatible approach to
Internet evolution, as it reuses existing tunnelling and for-
warding mechanisms, treating inter-domain routing as an
L3.5 overlay. One of Trotsky’s features is its ability to enable
the incremental deployment of new architectures, ensuring
a smooth transition without disrupting the existing Internet.

While an elegant, practical solution to the evolution of
the Internet architecture, we argue that an overlay-based
approach such as Trotsky’s has limitations that are detrimen-
tal to its effectiveness. We support our claim with two main
arguments, in addition to a few secondary ones.

Overlaying limits the benefits of new architectures.
The key problem is that deploying a new architecture as an
overlay may preclude some of its advantages. Indeed, the
underlay could potentially nullify the very reason for the
architecture, as the new L3.5 will inevitably inherit limita-
tions of the L3 underlay. We illustrate this problem with
the example of running SCION as an L3.5 architecture on

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318



319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

Copy of Content A

Trotsky Processor

= Internet Router L3 Underlay

L3.5 Overlay (NDN)

L3 Path (IP)

. Content A

2 Hops (Closest in Overlay)

Request Content A
5 Hops (Farthest in Underlay)

Figure 2: A NDN L3.5 overlay on top of an IP L3 sees
its caching benefits reduced.

top of the current L3 IP-based infrastructure (Figure 1). As
explained in Section 2, the current Internet is vulnerable to
DDoS attacks and route hijacks. SCION, on the other hand,
has intrinsic mechanisms to prevent both. For prefix and
route hijacking, SCION includes cryptographic techniques
and a secure path construction process that ensures each
path segment is verified [29]. The cryptographic path pro-
tection enables path hiding even if an attacker knows the
network topology, making the path impossible to DDoS [10].
As the L3 pipe used in Trotsky is vulnerable to these attacks,
a SCION L3.5 running as an overlay would inherit this prob-
lem. Despite the robust mechanisms SCION incorporates
to prevent the attacks, it would still be susceptible due to
the underlay it uses as a communication pipe. We argue this
would fundamentally undermine the rationale for deploying
this architecture as an overlay.

Another example is an information-oriented architecture
that includes in-network caching (e.g., [49]). Running NDN
as an L3.5 layer using Trotsky would not guarantee the lo-
cality of content to an L3.5 interest request, as a neighbour
in the overlay can be many hops away in the underlay (e.g.,
in Figure 2, the closest NDN node is two L3.5 hops away,
while the nearest L3 node in the underlay is only three hops
away). The caching benefits from the overlay can, therefore,
be lost. While specific cross-layer mechanisms can tackle
this problem, it is important to be mindful that layering viola-
tions often come with significant cost, increased complexity,
scalability issues and security concerns.

Misguided incentives. While a new architecture run-
ning as an overlay can offer new functionalities, it may not
address fundamental limitations in the underlying architec-
ture, as we have shown above. This limitation may discour-
age investment and development in deploying and utilizing
the envisioned L3.5 architecture, because the underlying L3
cannot fully support its potential. Instead of promoting the
adoption of fundamentally better alternatives, overlay-based
approaches might reinforce the dominance of the existing
Internet, entrenching the current architecture further.

Other concerns. An overlay solution introduces ineffi-
ciencies due to the overhead imposed by the new layer it

Copy of Content A

Anon.

adds. This overhead can constrain both performance and scal-
ability. In addition, while an end-to-end approach is valued
for its simplicity and robustness (as noted in [39]), end-hosts
must operate under the same architecture. While acknowl-
edging the manifold benefits of an end-to-end approach, we
recognize its limitations in accommodating emerging use
cases with varied host architectures.

3 EVOLUTION VIA TRANSLATION

The approach we argue for in this paper is to have the net-
work explicitly translate between architectures. Unlike an
overlay, the idea is to deploy the new architectures “in series”.
We should start by noting that we are not the first to propose
translation to address limitations of the Internet architecture
or as a way to extend it. In 1993, Paul F. Tsuchiya and Tony
Eng proposed the Network Address Translator (NAT) [44] to
address the problems of IP address depletion and scaling in
routing—a translator widely used today. One decade later, Jon
Crowcroft et al. proposed Plutarch [15], an inter-networking
solution that stitches together architectural contexts—sets
of network elements that share the same architecture in
terms of naming, addressing, packet formats and transport
protocols. These contexts communicate through interstitial
functions that translate different architectures.

In this paper, we revisit Plutarch, armed with the knowl-
edge of two decades of attempts to evolve the Internet. Our
goal is to articulate the arguments of why we think trans-
lation is the most effective approach to achieve a multi-
architecture Internet that (1) enables architecture evolution,
(2) is backwards-compatible, (3) offers the full benefit of
the new architectures, (4) incentivizes their deployment, (5)
enables end-hosts from different architectures to communi-
cate end-to-end, and (6) guarantees the level of performance
of today’s Internet. In the following, we justify how direct
translation may fulfil all these requirements.

The approach. We envision direct translation between
different architectures. This approach refers to the process
of converting the protocols or architectural principles from
one Internet architecture to another, directly at L3, while
preserving their essential functionalities and characteristics.
Translation enables interoperability and seamless communi-
cation between architectures without the need for an addi-
tional L3.5 layer. The successful translator ensures that data
packets, communication protocols, and network services re-
tain their intended meaning and functionality across the
transition between architectures. Like Trotsky, we make the
pragmatic choice to use Autonomous Systems (or domains)
as a starting point, and propose introducing translators be-
tween architecture domains.

We note that direct translation is similar in spirit to Plutarch
but differs from XIA [35]. The latter requires deploying that

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

Internet Architecture Evolution: Found in Translation

IP Host1 IP Host2
= =
. I N
N Direct I- I-
Translator — ==

= Internet //l o
Rout / - R
outer \l!il 3\;

o to DDoS
Hijacks Trudy Cody

Figure 3: Translation allows the SCION domain to re-
tain all its security properties.

new architecture and using their built-in translation mech-
anisms. Direct translation, much like the Trotsky overlay
approach, is immediately deployable due to its reliance on
the existing Internet as a starting point.

The advantage. By stitching together different architec-
tures in “series”, translation enables (1) architecture evolution
and is (2) backwards-compatible. New architectures are added
to the Internet by integrating translators between the new
and some existing architecture, with the current Internet as
a natural first target. Crucially, a new architecture domain
is deployed at L3, so it does not inherit the limitations of
an underlay connectivity layer. An effective translator will
therefore (3) enable retaining the full benefits of the architec-
ture in that domain. Figure 3 provides a visual representation
of the integration of a SCION domain into the Internet ar-
chitecture. In this example, two IP hosts communicate via a
SCION network. The translator at the edge of the IP domain
translates the IP packets sent by the host into SCION packets,
which are then forwarded towards the destination?. Contrary
to the packets traversing the IP domains, the packets in the
SCION network are protected against several network at-
tacks, including route hijacks and (several forms of) DDoS.

This improvement over overlay-based approaches (4) in-
centivizes the investment in and deployment of new archi-
tectures that add value (e.g., the security benefits of SCION),
as in these new domains, users retain the full benefits of
the architecture. As a result, we expect this approach to al-
low new network architectures to blossom while interacting
seamlessly with the current infrastructure. The possibility
to (5) enable hosts from diverse architectures to communicate
seamlessly is also an added value of the approach.

We hold two reasons for trusting the feasibility of this
approach concerning performance. First, translation avoids
overlay overheads. However, it is crucial that the transla-
tion mechanism itself does not impact performance. Fortu-
nately, modern hardware (programmable switches, Smart-
NICs/DPUs) and fast network stacks (DPDK, XDP) can assist
in achieving this objective. For instance, programmable chips
capable of Terabit speeds, such as the Intel Tofino [23], enable

ZNote that there are no tunnels involved; the packets are translated directly
between architectures.

. — o ¢ /
— X -~
Vulneraple A:erable

to Prefix

the implementation of fully customized packet processing
logic directly within the switch ASIC using high-level lan-
guages like P4 [11]. Translation involves manipulating pro-
tocol data units (e.g., rewriting or repurposing packet fields)
and bridging disparate network semantics (e.g., converting
one address type to another), tasks ideally suited for high-
speed packet processors. Seminal studies [18, 20, 34, 40, 41]
also demonstrate the viability of unconventional forwarding
mechanisms in high-speed programmable hardware, includ-
ing the development of routing nodes for various clean-slate
architectures [49, 50], offering further evidence of (6) the
feasibility of high-speed Internet translators.

4 INITIAL EXPLORATION

We now address the question: is it possible to develop ef-
fective and high-performance translators? We present our
initial exploration for two clean-slate architectures.
IP-SCION translation. We have built a prototype of an IP
to SCION translator (the Direct Translator in Figure 3). Due
to page restrictions, we focus on the most challenging aspect
of its design: conversion from the IP destination address to its
counterparts, the SCION address and Forwarding Path fields.
The first thing to consider is that the control plane of the
translator acts like a regular SCION host, as it is the ingress
to the SCION network. As with any host, the translator con-
trol plane must contact the Address Resolution service (to
obtain the SCION address) and the Path Servers (to get the
Forwarding Path). The latter involves several steps: path
lookup, path verification, and path combination. To obtain
these fields, our translator uses the SCION-IP Gateway (SIG),
as a proxy. The SIG service allows legacy IP hosts to commu-
nicate via the SCION network®. The SIG services return the
SCION address and forwarding path, and our control plane
installs the required translation rules in the switch tables.
Note that the first packet of a flow triggers this process, but
the subsequent packets remain entirely in the data plane.
We also developed a P4 program for the data plane to trans-
late from IP to SCION for the Tofino 2 Native Architecture.
Our program compiles in the Intel Tofino SDE, which guar-
antees it achieves 10+ Tbps throughput when running in our
hardware switch. Our solution enables a maximum Forward-
ing Path of 20 hops (we highlight this aspect as particularly
challenging). For context, the average AS Path Length on
the Internet is currently around 4, and 16 is considered an
extreme case by the SCION authors [13]. We also evaluated
the translation functionality by testing our solution using
the SCIONLab network [3], with a similar setup to that of
Figure 3. We achieved successful communication (using ping
and iperf) between two IP hosts located in different domains,

3Note that the SIG encapsulates IP packets into SCION packets (i.e., follow-
ing an overlay approach).

478
479
480
481

482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530



531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

with packets traversing several countries across the SCION
domain.

IP-NDN translation. There are two main challenges in
building IP-NDN translators: (i) NDN does not reflect the
traditional network stack [1], and (ii) NDN uses different
packet types for requests and responses, namely Interest and
Data packets, whose structure is highly variable [2].

Addressing the first challenge requires spanning the differ-
ent layers of the two network stacks. To translate network-
level names from NDN to IP, we need to convert the trans-
port and application-level semantics of NDN names for the
TCP/IP counterparts. Conversely, translation from IP to NDN
may require inspection of application-level data in the IP
payload, which is difficult in networking hardware.

For the second challenge, NDN packets contain network-
level names (similar to URLSs) required for name-based for-
warding. Parsing names with highly variable structures within
the constraints of high-speed networking is also a challeng-
ing task [6, 25, 26, 32, 48]. We are investigating efficient data
plane designs for these translation challenges.

5 DISCUSSION AND OPEN CHALLENGES

Our initial exploration offers confidence in the feasibility of
building architecture translators in high-speed networking
hardware. In this section, we discuss other challenges.

The right incentives. We argued that one advantage of
translation over overlaying is a better alignment regarding
incentives. Anyway, it is essential to ensure that partial de-
ployments at one domain have built-in incentives to increase
in size and entice other domains to follow suit. Partial or
disconnected (island-like) deployments should offer some
partial utility with the promise that extending and joining
adjacent deployments can offer even more utility. It is also
important to avoid situations where new deployments can
be perceived as unduly burdening or operating unfairly to-
wards existing infrastructure, or situations where partial
deployments are inhibited by existing infrastructure such
that they are only useful when deployed at scale. The first
parties to benefit from the new architecture should have the
power to deploy it on their own at least initially—-even if
only partially—and to then incentivize their suppliers and
peers to follow suit. Finally, avoiding scenarios where the
first movers do not immediately benefit is fundamental. If
ISPs need to build or replace infrastructure in the hope that
customers will want it, they put themselves at a competitive
disadvantage to competitors who do not make that move.

Building efficient translators. Developing efficient trans-
lation operations involves the codification of generic and
architecture-specific translation paths, which may span from
simple modifications and re-purposing of packet fields to
complex match-action computations. A related challenge is
state management. Can the required state be stored in the

Anon.

switch hardware, or do we need to explore other mechanisms
(e.g., RDMA-based)? What if it is impossible to maintain the
required state or part of the transition computations in a sin-
gle platform (e.g., in a network switch)? It may be necessary
to investigate multi-platform approaches (involving a slow
and a fast path, for instance) and develop mechanisms to
divert traffic to the right platform. Another important aspect
is related to configuration. Defining the runtime mechanisms
for reconfiguration will be particularly challenging.

Do we need global translation services? This concern
arises from the need for global resolution entities in sev-
eral clean-slate architecture proposals, namely in ICN (e.g.,
DONA [27], PSIRP [42], NDN [49]). We conjecture that some
global (DNS-like) mechanisms may be needed, and it seems
to be an exciting avenue to explore. For instance, explor-
ing source-routing mechanisms based on (scalable) gossip
mechanisms (as [15] suggests) may be an option to consider.

How many translators do we need? In theory, to sup-
port n different network architecture we would need n?
translators [33]. This may not be a serious concern, for two
reasons. First, we expect the number n to be small [15],
as evidenced by the number of clean-slate architectures
developed so far. To be fair, we expect that an effective
multi-architecture approach, namely the one we favour here,
should incentivize the emergence of architectures. Anyway,
the initial translators should be from the new architecture to
IP (NEW <-> OLD), leading to a linear growth with n in the
beginning. In case there is demand for translators between
new architectures (say, NEW_A <-> NEW_B), we can also
interconnect them by stitching together two (NEW <-> OLD)
translators, as in (NEW_A <-> OLD <-> NEW_B).

6 CONCLUSION

We conclude with a biological analogy to clarify our main
point. An overlay-based approach is similar to an epiphyte,
a plant that grows on the surface of another plant. They
differ from parasites in that they grow on other plants for
physical support and do not negatively affect the host; quite
the contrary. This is similar to an overlay-based approach to
Internet evolution, enclosing many positives. Still, the host
plant can limit epiphyte diversity and abundance.

Our alternative is similar to mutualistic symbiosis, a rela-
tionship where two species interact closely, benefiting each
other and evolving together. In a translation-based Internet
evolution, new architectures are introduced and interwoven
with the existing system through translation. The old and
new systems coexist, with each providing mutual benefits:
the new architectures gain a foothold and can grow, while
the old system continues to operate and support the tran-
sition. Notably, mutualistic symbiosis can drive evolutionary
changes, promoting diversification and the emergence of new
species.

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636



637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
6838
689

Internet Architecture Evolution: Found in Translation

REFERENCES

(1]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[n.d.]. Named Data Networking: Architecture Overview.
//mamed-data.net/project/archoverview/ Retrieved 2024-06-28.
[n.d.]. NDN Packet Format Specification v0.3. https://docs.named-
data.net/NDN-packet-spec/current/ Retrieved 2024-06-28.

[n.d.]. The SCIONLab global research network. https://www.scionlab.
org/ Retrieved 2024-06-28.

Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk
Kutscher, and Borje Ohlman. 2012. A survey of information-centric
networking. IEEE Communications Magazine 50, 7 (2012), 26-36.
Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. 2022. Aggregate-based congestion control for pulse-wave
DDoS defense. In Proceedings of the ACM SIGCOMM 2022 Conference.
693-706.

Ali AlSabeh, Elie Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2022.
P4ddpi: Securing p4-programmable data plane networks via dns deep
packet inspection. In NDSS Symposium 2022.

Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios
Giotsas, and Ethan Katz-Bassett. 2020. Cloud provider connectivity
in the flat internet. In Proceedings of the ACM Internet Measurement
Conference. 230-246.

Hari Balakrishnan, Sujata Banerjee, Israel Cidon, David Culler, Debo-
rah Estrin, Ethan Katz-Bassett, Arvind Krishnamurthy, Murphy Mc-
Cauley, Nick McKeown, Aurojit Panda, et al. 2021. Revitalizing the
public internet by making it extensible. , 18—24 pages.

Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast userspace
packet processing. In 2015 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS). IEEE, 5-16.

Laure Blanchez. [n.d.]. SCION eliminates DDoS like a boss - This is
How. https://www.anapaya.net/blog/scion-eliminates-ddos-like-a-
boss Retrieved 2024-06-28.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87-95.

Robert Braden, David Clark, Scott Shenker, and John Wroclawski.
2000. Developing a next-generation Internet architecture. White
paper, DARPA (2000).

Laurent Chuat, Markus Legner, David Basin, David Hausheer, Samuel
Hitz, Peter Miiller, and Adrian Perrig. 2022. The Complete Guide to
SCION. Information Security and Cryptography (2022).

David Clark. 1988. The design philosophy of the DARPA Internet
protocols. In Symposium proceedings on Communications architectures
and protocols. 106-114.

Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and
Andrew Warfield. 2003. Plutarch: an argument for network pluralism.
ACM SIGCOMM Computer Communication Review 33, 4 (2003), 258
266.

Joeri de Ruiter and Caspar Schutijser. 2021. Next-generation internet
at terabit speed: SCION in P4. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies.
119-125.

Anja Feldmann. 2007. Internet clean-slate design: what and why?
ACM SIGCOMM Computer Communication Review 37, 3 (2007), 59-64.
Sergio Gimenez, Eduard Grasa, and Steve Bunch. 2020. A Proof of
Concept implementation of a RINA interior router using P4-enabled
software targets. In 2020 23rd Conference on Innovation in Clouds,
Internet and Networks and Workshops (ICIN). IEEE, 57-62.

Sharon Goldberg, Michael Schapira, Peter Hummon, and Jennifer
Rexford. 2010. How secure are secure interdomain routing protocols.

https:

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

In Proceedings of the ACM SIGCOMM 2010 Conference (SIGCOMM ’10).
Diogo Gongalves, Salvatore Signorello, Fernando MV Ramos, and
Muriel Médard. 2019. Random linear network coding on pro-
grammable switches. In 2019 ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS). IEEE, 1-6.
Mark Handley. 2006. Why the Internet only just works. BT Technology
Journal 24, 3 (2006), 119-129.

Robert Hsieh and Aruna Seneviratne. 2003. A comparison of mecha-
nisms for improving mobile IP handoff latency for end-to-end TCP.
In Proceedings of the 9th annual international conference on Mobile
computing and networking. 29-41.

Intel. [n.d.]. The Intel® Tofino™ series of P4-programmable
Ethernet switch ASICs. https://www.intel.com/content/www/us/en/
products/details/network-io/programmable-ethernet- switch/tofino-
series.html Retrieved 2024-06-28.

Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,
Nicholas H Briggs, and Rebecca L Braynard. 2009. Networking named
content. In Proceedings of the 5th international conference on Emerging
networking experiments and technologies. 1-12.

Alexander Kaplan and Shir Landau Feibish. 2022. Practical handling
of DNS in the data plane. In Proceedings of the Symposium on SDN
Research. 59-66.

Jason Kim, Hyojoon Kim, and Jennifer Rexford. 2021. Analyzing
traffic by domain name in the data plane. In Proceedings of the ACM
SIGCOMM Symposium on SDN Research (SOSR). 1-12.

Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolin-
skiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. 2007. A data-
oriented (and beyond) network architecture. In Proceedings of the 2007
conference on Applications, technologies, architectures, and protocols for
computer communications. 181-192.

Teemu Koponen, Scott Shenker, Hari Balakrishnan, Nick Feamster,
Igor Ganichev, Ali Ghodsi, P Brighten Godfrey, Nick McKeown, Guru
Parulkar, Barath Raghavan, et al. 2011. Architecting for innovation.
ACM SIGCOMM Computer Communication Review 41, 3 (2011), 24-36.
Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and
Adrian Perrig. 2020. {EPIC}: every packet is checked in the data
plane of a {Path-Aware} Internet. In 29th USENIX Security Symposium
(USENIX Security 20). 541-558.

Jianshen Liu, Carlos Maltzahn, Craig Ulmer, and Matthew Leon Curry.
2021. Performance characteristics of the bluefield-2 smartnic. arXiv
preprint arXiv:2105.06619 (2021).

Robert Lychev, Sharon Goldberg, and Michael Schapira. 2013. BGP
security in partial deployment: is the juice worth the squeeze?. In
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIG-
COMM ’13).

Aniss Maghsoudlou, Oliver Gasser, Ingmar Poese, and Anja Feldmann.
2022. FlowDNS: correlating Netflow and DNS streams at scale. In Pro-
ceedings of the 18th International Conference on Emerging Networking
EXperiments and Technologies. 187-195.

James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan,
and Scott Shenker. 2019. Enabling a permanent revolution in internet
architecture. In Proceedings of the ACM Special Interest Group on Data
Communication. 1-14.

Rui Miguel, Salvatore Signorello, and Fernando MV Ramos. 2018.
Named data networking with programmable switches. In 2018 IEEE
26th International Conference on Network Protocols (ICNP). IEEE, 400—
405.

David Naylor, Matthew K Mukerjee, Patrick Agyapong, Robert Grandl,
Ruogu Kang, Michel Machado, Stephanie Brown, Cody Doucette, Hsu-
Chun Hsiao, Dongsu Han, et al. 2014. XIA: architecting a more trust-
worthy and evolvable internet. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 50-57.

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742


https://named-data.net/project/archoverview/
https://named-data.net/project/archoverview/
https://docs.named-data.net/NDN-packet-spec/current/
https://docs.named-data.net/NDN-packet-spec/current/
https://www.scionlab.org/
https://www.scionlab.org/
https://www.anapaya.net/blog/scion-eliminates-ddos-like-a-boss
https://www.anapaya.net/blog/scion-eliminates-ddos-like-a-boss
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/details/network-io/programmable-ethernet-switch/tofino-series.html

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

(36]

(37]

Charlie Perkins. 1999. Mobile IP and security issue: an overview.
In First IEEE/POPOV Workshop on Internet Technologies and Services.
Proceedings (Cat. No. 99EX391). IEEE, 131-148.

Charles E Perkins. 1997. Mobile ip. IEEE communications Magazine
35, 5 (1997), 84-99.

[38] Jennifer Rexford and Constantine Dovrolis. 2010. Future Internet

architecture: clean-slate versus evolutionary research. Commun. ACM
53,9 (2010), 36-40.

[39] Jerome H Saltzer, David P Reed, and David D Clark. 1984. End-to-end

(40]

[41]

[42]

arguments in system design. ACM Transactions on Computer Systems
(TOCS) 2, 4 (1984), 277-288.

Salvatore Signorello, Radu State, Jérome Francois, and Olivier Festor.
2016. Ndn. p4: Programming information-centric data-planes. In 2016
IEEE NetSoft Conference and Workshops (NetSoft). IEEE, 384-389.
Kamila Souckova. 2019. FPGA-based line-rate packet forwarding for
the SCION future Internet architecture. Master’s thesis. ETH Zurich.
Sasu Tarkoma, Mark Ain, and Kari Visala. 2009. The publish/subscribe
internet routing paradigm (psirp): Designing the future internet archi-
tecture. In Towards the Future Internet. IOS press, 102-111.

[43] Joe Touch, Yu-Shun Wang, and Venkata Pingali. 2006. A recursive

[44]

network architecture. ISL, Tech. Rep 626 (2006).
Paul F Tsuchiya and Tony Eng. 1993. Extending the IP Internet through
address reuse. ACM SIGCOMM Computer Communication Review 23,

[45]

[46]

[47]

[48]

[49]

[50]

Anon.

1(1993), 16-33.

Jonathan S Turner and David E Taylor. 2005. Diversifying the internet.
In GLOBECOM 05. IEEE Global Telecommunications Conference, 2005.,
Vol. 2. IEEE, 6-pp.

Arun Venkataramani, James F Kurose, Dipankar Raychaudhuri, Kiran
Nagaraja, Morley Mao, and Suman Banerjee. 2014. Mobilityfirst: A
mobility-centric and trustworthy internet architecture. ACM SIG-
COMM Computer Communication Review 44, 3 (2014), 74-80.

Marcos AM Vieira, Matheus S Castanho, Racyus DG Pacifico, Eler-
son RS Santos, Eduardo PM Camara Junior, and Luiz FM Vieira. 2020.
Fast packet processing with ebpf and xdp: Concepts, code, challenges,
and applications. ACM Computing Surveys (CSUR) 53, 1 (2020), 1-36.

Jackson Woodruff, Murali Ramanujam, and Noa Zilberman. 2019.
P4dns: In-network dns. In 2019 ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS). IEEE, 1-6.

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KC
Claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang, and Be-
ichuan Zhang. 2014. Named data networking. ACM SIGCOMM Com-
puter Communication Review 44, 3 (2014), 66-73.

Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian
Perrig, and David G Andersen. 2011. SCION: Scalability, control, and
isolation on next-generation networks. In 2011 IEEE Symposium on
Security and Privacy. IEEE, 212-227.

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848



	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Limitations of the Internet Architecture
	2.2 Clean-slate architectures
	2.3 Evolution via overlaying

	3 Evolution via translation
	4 Initial exploration
	5 Discussion and open challenges
	6 Conclusion
	References

