Inside the Social Network’s (Datacenter) Network

Arjun Roy, Hongyi Zengt, Jasmeet Baggaf, George Porter, and Alex C. Snoeren

Department of Computer Science and Engineering
University of California, San Diego

fFacebook, Inc.

ABSTRACT

Large cloud service providers have invested in increasingly
larger datacenters to house the computing infrastructure re-
quired to support their services. Accordingly, researchers
and industry practitioners alike have focused a great deal of
effort designing network fabrics to efficiently interconnect
and manage the traffic within these datacenters in perfor-
mant yet efficient fashions. Unfortunately, datacenter oper-
ators are generally reticent to share the actual requirements
of their applications, making it challenging to evaluate the
practicality of any particular design.

Moreover, the limited large-scale workload information
available in the literature has, for better or worse, heretofore
largely been provided by a single datacenter operator whose
use cases may not be widespread. In this work, we report
upon the network traffic observed in some of Facebook’s dat-
acenters. While Facebook operates a number of traditional
datacenter services like Hadoop, its core Web service and
supporting cache infrastructure exhibit a number of behav-
iors that contrast with those reported in the literature. We
report on the contrasting locality, stability, and predictability
of network traffic in Facebook’s datacenters, and comment
on their implications for network architecture, traffic engi-
neering, and switch design.

Keywords

Datacenter traffic patterns

CCS Concepts

eNetworks — Network measurement; Data center net-
works; Network performance analysis; Network monitor-
ing; Social media networks;

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM 15, August 17-21, 2015, London, United Kingdom

© 2015 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-3542-3/15/08. .. $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787472

123

1. INTRODUCTION

Datacenters are revolutionizing the way in which we de-
sign networks, due in large part to the vastly different engi-
neering constraints that arise when interconnecting a large
number of highly interdependent homogeneous nodes in a
relatively small physical space, as opposed to loosely cou-
pled heterogeneous end points scattered across the globe.
While many aspects of network and protocol design hinge
on these physical attributes, many others require a firm un-
derstanding of the demand that will be placed on the network
by end hosts. Unfortunately, while we understand a great
deal about the former (i.e., that modern cloud datacenters
connect 10s of thousands of servers using a mix of 10-Gbps
Ethernet and increasing quantities of higher-speed fiber in-
terconnects), the latter tend to be not disclosed publicly.

Hence, many recent proposals are motivated by lightly
validated assumptions regarding datacenter workloads, or, in
some cases, workload traces from a single, large datacenter
operator [12, 26]. These traces are dominated by traffic gen-
erated as part of a major Web search service, which, while
certainly significant, may differ from the demands of other
major cloud services. In this paper, we study sample work-
loads from within Facebook’s datacenters. We find that traf-
fic studies in the literature are not entirely representative of
Facebook’s demands, calling into question the applicability
of some of the proposals based upon these prevalent assump-
tions on datacenter traffic behavior. This situation is partic-
ularly acute when considering novel network fabrics, traffic
engineering protocols, and switch designs.

As an example, a great deal of effort has gone into iden-
tifying effective topologies for datacenter interconnects [4,
19, 21, 36]. The best choice (in terms of cost/benefit trade-
off) depends on the communication pattern between end
hosts [33]. Lacking concrete data, researchers often de-
sign for the worst case, namely an all-to-all traffic matrix
in which each host communicates with every other host with
equal frequency and intensity [4]. Such an assumption leads
to the goal of delivering maximum bisection bandwidth [4,
23, 36], which may be overkill when demand exhibits sig-
nificant locality [17].

In practice, production datacenters tend to enforce a cer-
tain degree of oversubscription [12, 21], assuming that either
the end-host bandwidth far exceeds actual traffic demands,

http://dx.doi.org/10.1145/2785956.2787472

Finding

Previously published data

Potential impacts

Traffic is neither rack local nor all-to-all; low utilization (§4)

50-80% of traffic is rack local [12, 17]

Datacenter fabrics [4, 36, 21]

Demand is wide-spread, uniform, and stable, with rapidly
changing, internally bursty heavy hitters (§5)

Demand is frequently concentrated
and bursty [12, 13, 14]

Traffic engineering [5, 14,
25, 39]

Small packets (outside of Hadoop), continuous arrivals; many
concurrent flows (§6)

Bimodal
on/off behavior [12]; <5 concurrent
large flows [8]

ACK/MTU packet SDN controllers [1, 22,
28, 32, 34]; Circuit/hybrid

switching [7, 20, 30, 39]

size,

Table 1: Each of our major findings differs from previously published characterizations of datacenter traffic. Many systems
incorporate one or more of the previously published features as design assumptions.

or that there is significant locality in demand that decreases
the need for full connectivity between physically disparate
portions of the datacenter. The precise degree of oversub-
scription varies, but there is general agreement amongst op-
erators that full connectivity is rarely worthwhile [11]. To
mitigate potential “hotspots” caused by oversubscription, re-
searchers have suggested designs that temporarily enhance
connectivity between portions of the datacenter [5, 25, 40].
The utility of these approaches depends upon the prevalence,
size, and dynamics of such hotspots.

In particular, researchers have proposed inherently non-
uniform fabrics which provide qualitatively different con-
nectivity to certain portions of the datacenter through various
hybrid designs, typically including either optical [30, 39] or
wireless links [25, 40]. If demand can be predicted and/or
remains stable over reasonable time periods, it may be feasi-
ble to provide circuit-like connectivity between portions of
the datacenter [20]. Alternatively, network controllers could
select among existing paths in an intelligent fashion [14].
Regardless of the technology involved, all of these tech-
niques require traffic to be predictable over non-trivial time
scales [14, 20, 25, 30, 39].

Finally, many have observed that the stylized nature of
datacenter traffic opens up many avenues for increasing the
efficiency of switching hardware itself. In particular, while
some have proposed straightforward modifications like de-
creased buffering, port count, or sophistication [4] in vari-
ous layers of the switching fabric, others have proposed re-
placing conventional packet switches either with circuit or
hybrid designs that leverage locality, persistence, and pre-
dictability of traffic demands [30]. More extreme, host-
based solutions advocate connecting end-hosts directly [21,
23]. Obviously, when, where, or if any of these approaches
makes economic sense hinges tightly on offered loads [33].

While there have been a number of studies of univer-
sity [14] and private datacenters [12], many proposals cannot
be fully evaluated without significant scale. Almost all of the
previous studies of large-scale (10K hosts or larger) datacen-
ters [5, 12, 14, 17, 21, 25, 26] consider Microsoft datacen-
ters. While Facebook’s datacenters have some commonality
with Microsoft’s, such as eschewing virtual machines [14],
they support a very different application mix. As a result,
we observe a number of critical distinctions that may lead to
qualitatively different conclusions; we describe those differ-
ences and explain the reasons behind them.

Our study is the first to report on production traffic in
a datacenter network connecting hundreds of thousands of
10-Gbps nodes. Using both Facebook-wide monitoring sys-

124

tems and per-host packet-header traces, we examine services
that generate the majority of the traffic in Facebook’s net-
work. While we find that the traffic patterns exhibited by
Facebook’s Hadoop deployments comport well with those
reported in the literature, significant portions of Facebook’s
service architecture [10, 15] vary dramatically from the
MapReduce-style infrastructures studied previously, leading
to vastly different traffic patterns. Findings of our study with
significant architectural implications include:

e Traffic is neither rack-local nor all-to-all; locality de-
pends upon the service but is stable across time peri-
ods from seconds to days. Efficient fabrics may ben-
efit from variable degrees of oversubscription and less
intra-rack bandwidth than typically deployed.

Many flows are long-lived but not very heavy. Load
balancing effectively distributes traffic across hosts; so
much so that traffic demands are quite stable over even
sub-second intervals. As a result, heavy hitters are
not much larger than the median flow, and the set of
heavy hitters changes rapidly. Instantaneously heavy
hitters are frequently not heavy over longer time pe-
riods, likely confounding many approaches to traffic
engineering.

Packets are small (median length for non-Hadoop traf-
fic is less than 200 bytes) and do not exhibit on/off
arrival behavior. Servers communicate with 100s of
hosts and racks concurrently (i.e., within the same 5-
ms interval), but the majority of traffic is often destined
to (few) 10s of racks.

While we do not offer these workloads as any more rep-
resentative than others—indeed, they may change as Face-
book’s services evolve—they do suggest that the space of
cloud datacenter workloads is more rich than the literature
may imply. As one way to characterize the significance of
our findings, Table 1 shows how our results compare to the
literature, and cites exemplar systems that incorporate these
assumptions in their design.

The rest of this paper is organized as follows. We begin
in Section 2 with a survey of the major findings of previ-
ous studies of datacenter traffic. Section 3 provides a high-
level description of the organization of Facebook’s datacen-
ters, the services they support, and our collection method-
ologies. We then analyze aspects of the traffic within a num-
ber of Facebook’s datacenters that impact provisioning (Sec-
tion 4), traffic engineering (Section 5), and switch design
(Section 6), before concluding in Section 7.

2. RELATED WORK

Initial studies of datacenter workloads were conducted via
simulation [6] or on testbeds [18]. Subsequently, however, a
number of studies of production datacenter traffic have been
performed, primarily within Microsoft datacenters.

It is difficult to determine how many distinct Microsoft
datacenters are reported on in literature, or how representa-
tive that set might be. Kandula ef al. observe that their results
“extend to other mining data centers that employ some fla-
vor of map-reduce style workflow computation on top of a
distributed block store,” but caution that “web or cloud data
centers that primarily deal with generating responses for web
requests (e.g., mail, messenger) are likely to have different
characteristics.” [26]. By that taxonomy, Facebook’s data-
centers clearly fall in the latter camp. Jalaparti et al. [24]
examine latency for Microsoft Bing services that are similar
in concept to Facebook’s service; we note both similarities
to our workload (relatively low utilization coupled with a
scatter-gather style traffic pattern) and differences (load ap-
pears more evenly distributed within Facebook datacenters).

Three major themes are prevalent in prior studies, and
summarized in Table 1. First, traffic is found to be heavily
rack local, likely as a consequence of the application pat-
terns observed; Benson et al. note that for cloud datacen-
ters “a majority of traffic originated by servers (80%) stays
within the rack” [12]. Studies by Kandula er al. [26], De-
limitrou et al. [17] and Alizadeh et al. [8] observe similarly
rack-heavy traffic patterns.

Second, traffic is frequently reported to be bursty and
unstable across a variety of timescales—an important ob-
servation, since traffic engineering techniques often depend
on relatively long-lived, predictable flows. Kapoor et al.
observe that packets to a given destination often arrive in
trains [27]; while Benson et al. find a strong on/off pat-
tern where the packet inter-arrival follows a log-normal dis-
tribution [13]. Changing the timescale of observation can
change the ease of prediction; Delimitrou ef al. [17] note
that while traffic locality varies on a day-to-day basis, it re-
mains consistent at the scale of months. Conversely, Ben-
son et al. [14] claim that while traffic is unpredictable at
timescales of 150 seconds and longer, it can be relatively
stable on the timescale of a few seconds, and discuss traffic
engineering mechanisms that might work for such traffic.

Finally, previous studies have consistently reported a bi-
modal packet size [12], with packets either approaching the
MTU or remaining quite small, such as a TCP ACK seg-
ment. We find that Facebook’s traffic is very different, with
a consistently small median packet size despite the 10-Gbps
link speed. Researchers have also reported that individual
end hosts typically communicate with only a few (e.g., less
than 5 [8]) destinations at once. For some Facebook services,
an individual host maintains orders of magnitude more con-
current connections.

3. A FACEBOOK DATACENTER

In order to establish context necessary to interpret our
findings, this section provides a brief overview of Face-

125

10Gx16 Ring

Figure 1: Facebook’s 4-post cluster design [19]

book’s datacenter network topology, as well as a description
of the application services that it supports; more detail is
available elsewhere [2, 9, 10, 15, 19]. We then describe the
two distinct collection systems used to assemble the network
traces analyzed in the remainder of the paper.

3.1 Datacenter topology

Facebook’s network consists of multiple datacenter sites
(henceforth site) and a backbone connecting these sites.
Each datacenter site contains one or more datacenter build-
ings (henceforth datacenter) where each datacenter contains
multiple clusters. A cluster is considered a unit of deploy-
ment in Facebook datacenters. Each cluster employs a con-
ventional 3-tier topology depicted in Figure 1, reproduced
from a short paper [19].

Machines are organized into racks and connected to a
top-of-rack switch (RSW) via 10-Gbps Ethernet links. The
number of machines per rack varies from cluster to cluster.
Each RSW in turn is connected by 10-Gbps links to four
aggregation switches called cluster switches (CSWs). All
racks served by a particular set of CSWs are said to be in
the same cluster. Clusters may be homogeneous in terms
of machines—e.g. Cache clusters—or heterogeneous, e.g.
Frontend clusters which contain a mixture of Web servers,
load balancers and cache servers. CSWs are connected to
each other via another layer of aggregation switches called
Fat Cats (FC). As will be seen later in this paper, this design
follows directly from the need to support a high amount of
intra-cluster traffic. Finally, CSWs also connect to aggrega-
tion switches for intra-site (but inter-datacenter) traffic and
datacenter routers for inter-site traffic.

The majority of Facebook’s current datacenters employ
this 4-post Clos design. Work is underway, however, to mi-
grate Facebook’s datacenters to a next-generation Fabric ar-
chitecture [9]. The analyses in this paper are based upon
data collected from machines in traditional 4-post clusters,
although Facebook-wide statistics (e.g., Table 3) cover hosts
in both traditional 4-post clusters and newer Fabric pods.

One distinctive aspect of Facebook’s datacenters is that
each machine typically has precisely one role: Web servers
(Web) serve Web traffic; MySQL servers (DB) store user
data; query results are stored temporarily in cache servers
(Cache)—including leaders, which handle cache coherency,
and followers, which serve most read requests [15]; Hadoop
servers (Hadoop) handle offline analysis and data mining;
Multifeed servers (MF) assemble news feeds [31]. While
there are a number of other roles, these represent the major-
ity, and will be the focus of our study. In addition, a rel-

HTTP Request
/
: ‘ nflog Samples
= 1
i i —>
HTTP Reply
Figure 2: How an HTTP request is served
Type Web | Cache | MF | SLB | Hadoop | Rest
Web - 63.1 15.2 5.6 - 16.1
Cache-1 - 86.6 59 - - 7.5
Cache-f | 88.7 5.8 - - - 5.5
Hadoop - - - - 99.8 0.2

Table 2: Breakdown of outbound traffic percentages for four
different host types

atively small number of machines do not have a fixed role
and are dynamically repurposed. Facebook’s datacenters do
not typically house virtual machines: each service runs on
a physical server. Moreover—and in contrast to previously
studied datacenters [12]—to ease provisioning and manage-
ment, racks typically contain only servers of the same role.

3.2 Constituent services

The organization of machines within a cluster—and even
a datacenter—is intimately related to the communication
patterns between the services they support. We introduce the
major services by briefly describing how an HTTP request is
served by http://facebook.com, shown in Figure 2.

When an HTTP query hits a Facebook datacenter, it ar-
rives at a layer-four software load balancer (SLB) [37]. The
query is then redirected to one of the Web servers. Web
servers are largely stateless, containing no user data. They
fetch data from the cache tier [15]. In case of a cache
miss, a cache server will then fetch data from the database
tier. At the same time, the Web server may communi-
cate with one or more backend machines to fetch objects
such as news stories and ads. Table 2 quantifies the rela-
tive traffic intensity between different services by classify-
ing the outbound traffic from four different servers—a Web
server, cache leader (cache-1), cache follower (cache-f), and
Hadoop—based upon the role of the destination host. (The
data is extracted from packet-header traces described in Sec-
tion 3.3.2.)

In contrast to most service tiers, Hadoop nodes are not
involved with serving end-user requests. Instead, Hadoop
clusters perform offline analysis such as data mining. HDFS
and Hadoop MapReduce are the main applications running
on these servers.

3.3 Data collection

Due to the scale of Facebook’s datacenters, it is imprac-
tical to collect complete network traffic dumps. Instead,

126

Scribe

Figure 3: Fbflow architecture

we consider two distinct sources of data. The first, Fbflow,
constantly samples packet headers across Facebook’s entire
global network. The second, port mirroring, focuses on a
single machine (or rack) at a time, allowing us to collect
complete packet-header traces for a brief period of time at
particular locations within a single datacenter.

3.3.1 Fbflow

Fbflow is a production monitoring system that samples
packet headers from Facebook’s entire machine fleet. Its ar-
chitecture, comprised of two main component types—agents
and taggers—is shown in Figure 3. Fbflow samples packets
by inserting a Netfilter nf1og target into every machine’s
iptable rules. The datasets we consider in this paper
are collected with a 1:30,000 sampling rate. A user-level
Fbflow agent process on each machine listens to the nflog
socket and parses the headers, extracting information such as
source and destination IP addresses, port numbers, and pro-
tocol. These parsed headers—collected across all machines
in Facebook’s datacenters—along with metadata such as ma-
chine name and capture time, are streamed to a small number
of taggers using Scribe [2], a log aggregation system.

Taggers, running on a subset of machines, read a portion
of the packet-header stream from Scribe, and further anno-
tate it with additional information such as the rack and clus-
ter containing the machine where the trace was collected,
its autonomous system number, etc., by querying other data
sources. Taggers then convert each annotated packet header
into a JSON object and feed it into Scuba [3], a real-time
data analytics system. Samples are simultaneously stored
into Hive [38] tables for long-term analysis.

3.3.2 Port mirroring

While Fbflow is a powerful tool for network monitor-
ing and management, its sampling-based collection prohibits
certain types of data analysis. Specifically, in production
use, it aggregates statistics at a per-minute granularity. In
order to collect high-fidelity data, we deploy a number of
special-purpose trace collection machines within the data-
center that collect packet-header traces over short intervals.

We deploy monitoring hosts in five different racks across
Facebook’s datacenter network, locating them in clusters
that host distinct services. In particular, we monitor a rack
of Web servers, a Hadoop node, cache followers and lead-
ers, and a Multifeed node. In all but one (Web) instance,
we collect traces by turning on port mirroring on the RSW

(ToR) and mirroring the full, bi-directional traffic for a sin-
gle server to our collection server. For the hosts we monitor,
the RSW is able to mirror the selected ports without loss. In
the case of Web servers, utilization is low enough that we are
able to mirror traffic from a rack of servers to our collection
host. We did not measure database servers that include user
data in this study.

Recording the packet traces using a commodity server is
not entirely trivial, as t cpdump is unable to handle more
than approximately 1.5 Gbps of traffic in our configuration.
In order to support line-rate traces, we employ a custom ker-
nel module that effectively pins all free RAM on the server
and uses it to buffer incoming packets. Our kernel mod-
ule extracts the packets immediately after the Ethernet driver
hands the packets to the kernel to avoid any additional delay
or overhead. Once data collection is complete, the data is
spooled to remote storage for analysis. Memory restrictions
on our collection servers limit the traces we collect in this
fashion to a few minutes in length.

4. PROVISIONING

The appropriate design, scale, and even technology of a
datacenter interconnect depends heavily on the traffic de-
mands of the services it hosts. In this section, we quantify
the traffic intensity, locality, and stability across three dif-
ferent types of clusters inside Facebook datacenters; in par-
ticular, we examine clusters supporting Hadoop, Frontend
machines serving Web requests, and Cache.

Our study reveals that while Facebook’s Hadoop deploy-
ments exhibit behavior largely consistent with the literature,
the same cannot be said for clusters hosting Facebook’s other
services. In particular, most traffic is not rack-local, yet
locality patterns remain stable within and across both long
(multiple-day) and short (two-minute) time intervals. We
define stable traffic as being close to constant (low devia-
tion from a baseline value) over a time interval, and slowly
changing across time intervals. Note that this definition is
dependent upon the length of the interval being considered;
accordingly, we examine several different timescales.

4.1 Utilization

Given that Facebook has recently transitioned to 10-Gbps
Ethernet across all of their hosts, it is not surprising that
overall access link (i.e., links between hosts and their RSW)
utilization is quite low, with the average 1-minute link uti-
lization less than 1%. This comports with the utilization lev-
els reported for other cloud-scale datacenters [12, 17]. De-
mand follows typical diurnal and day-of-the-week patterns,
although the magnitude of change is on the order of 2x as
opposed to the order-of-magnitude variation reported else-
where [12], Even the most loaded links are lightly loaded
over 1-minute time scales: 99% of all links are typically less
than 10% loaded. Load varies considerably across clusters,
where the average link utilization in the heaviest clusters
(Hadoop) is roughly 5x clusters with light load (Frontend).

As in other datacenters with similar structure [12, 13], uti-
lization rises at higher levels of aggregation. Focusing on the

127

links between RSWs and CSWs, median utilization varies
between 10—-20% across clusters, with the busiest 5% of the
links seeing 23—46% utilization. These levels are higher
than most previously studied datacenters [12, Fig. 9], likely
due to the disproportionate increase in edge-link technology
(1—10 Gbps) vs. aggregation links (10—40 Gbps). The
variance between clusters decreases, with the heaviest clus-
ters running 3x higher than lightly loaded ones. Utilization
is higher still on links between CSWs and FC switches, al-
though the differences between clusters are less apparent be-
cause different clusters are provisioned with different num-
bers of uplinks depending on their demand. We examine link
utilization at finer timescales in Section 6.

4.2 Locality and stability

Prior studies have observed heavy rack locality in data-
center traffic. This behaviour seems in line with applications
that seek to minimize network utilization by leveraging data
locality, allowing for topologies with high levels of oversub-
scription. We examine the locality of Facebook’s traffic from
a representative sampling of production systems across var-
ious times of the day.

Figure 4 shows the breakdown of outbound traffic by des-
tination for four different classes of servers: a Hadoop server
within a Hadoop cluster, a Web server in a Frontend cluster,
and both a cache follower and a cache leader from within the
same Cache cluster. For each server, each second’s traffic
is represented as a stacked bar chart, with rack-local traffic
in cyan, the cluster-local traffic in blue, the intra-datacenter
traffic in red, and inter-datacenter traffic in green.

Among the four server types, Hadoop shows by far the
most diversity—both across servers and time: some traces
show periods of significant network activity while others do
not. While all traces show both rack- and cluster-level local-
ity, the distribution between the two varies greatly. In one
ten-minute-long trace captured during a busy period, 99.8%
of all traffic sent by the server in Figure 4 is destined to other
Hadoop servers: 75.7% of that traffic is destined to servers in
the the same rack (with a fairly even spread within the rack);
almost all of the remainder is destined to other hosts within
the cluster. Only a vanishingly small amount of traffic leaves
the cluster.

In terms of dispersion, of the inter-rack (intra-cluster) traf-
fic, the Hadoop server communicates with 1.5% of the other
servers in the cluster—spread across 95% of the racks—
though only 17% of the racks receive over 80% of the
server’s traffic. This pattern is consistent with that observed
by Kandula et al. [26], in which traffic is either rack-local or
destined to one of roughly 1-10% of the hosts in the cluster.

Hadoop’s variability is a consequence of a combina-
tion of job size and the distinct phases that a Hadoop job
undergoes—any given data capture might observe a Hadoop
node during a busy period of shuffled network traffic, or dur-
ing a relatively quiet period of computation.

By way of contrast, the traffic patterns for the other server
classes are both markedly more stable and dramatically dif-
ferent from the findings of Kandula et al. [26]. Notably,
only a minimal amount of rack-local traffic is present; even

4500

HEEE |nter-Datacenter I
4000[| mumm Intra-Datacenter
3500 | | HEEE Intra-Cluster | I
Intra-Rack | II
3000 Bl I I||
& 2500(I Il l
o [
o ol rff |
= 2000} | 1]
1500 I " | 1 i
1 i | 1
1000 |

500

1000

Mbps

100
Time (seconds)

20

40

Il |nter-Datacenter
Il ntra-Datacenter
EE ntra-Cluster

Intra-Rack
DL

80 100

60
Time (seconds)

2500

Mbps

Inter-Datacenter
Intra-Datacenter
Intra-Cluster

500
Intra-Rack
0

20 40 60 8|

Time (seconds)

600
500
400
g8 ‘
o 300
2 ‘
200
Il nter-Datacenter
100 Il ntra-Datacenter
I ntra-Cluster
Intra-Rack
0 I

20 40 60

Time (seconds)

80 100

Figure 4: Per-second traffic locality by system type over a two-minute span: Hadoop (top left), Web server (top right), cache
follower (bottom left) and leader (bottom right) (Note the differing y axes)

inter-datacenter traffic is present in larger quantities. Fron-
tend cluster traffic, including Web servers and the atten-
dant cache followers, stays largely within the cluster: 68%
of Web server traffic during the capture plotted here stays
within the cluster, 80% of which is destined to cache sys-
tems; the Multifeed systems and the SLB servers get 8%
each. While miscellaneous background traffic is present, the
volume of such traffic is relatively inconsequential.

Cache systems, depending on type, see markedly different
localities, though along with Web servers the intra-rack lo-
cality is minimal. Frontend cache followers primarily send
traffic in the form of responses to Web servers (88%), and
thus see high intra-cluster traffic—mostly servicing cache
reads. Due to load balancing (see Section 5.2), this traffic
is spread quite widely; during this two-minute interval the
cache follower communicates with over 75% of the hosts in
the cluster, including over 90% of the Web servers. Cache
leaders maintain coherency across clusters and the backing
databases, engaging primarily in intra- and inter-datacenter
traffic—a necessary consequence of the cache being a "sin-
gle geographically distributed instance." [15]

The stability of these traffic patterns bears special men-
tion. While Facebook traffic is affected by the diurnal traffic
pattern noted by Benson et al. [12], the relative proportions
of the locality do not change—only the total amount of traf-
fic. Over short enough periods of time, the graph looks es-
sentially flat and unchanging. In order to further investigate
the cause and particulars of this stability, we turn our atten-
tion to the traffic matrix itself.

128

Locality | All | Hadoop | FE | Sve. | Cache | DB
Rack 12.9 13.3 2.7 12.1 0.2 0
Cluster | 57.5 80.9 81.3 | 56.3 13.0 | 30.7
DC 11.9 33 73 | 157 | 40.7 34.5
Inter-DC | 17.7 2.5 8.6 | 159 16.1 34.8
| Percentage [237 [215]180] 102 | 52 |

Table 3: Different clusters have different localities; last row
shows each cluster’s contribution to total network traffic

4.3 Traffic matrix

In light of the surprising lack of rack locality and high
degree of traffic stability, we examine traffic from the more
long-term and zoomed-out perspective provided by Fbflow.

Table 3 shows the locality of traffic generated by all of
Facebook’s machines during a 24-hour period in January
2015 as reported by Fbflow. Facebook’s traffic patterns re-
main stable day-over-day—unlike the datacenter studied by
Delimitrou et al. [17]. The clear majority of traffic is intra-
cluster but not intra-rack (i.e., the 12.9% of traffic that stays
within a rack is not counted in the 57.5% of traffic labeled as
intra-cluster). Moreover, more traffic crosses between data-
centers than stays within a rack.

Table 3 further breaks down the locality of traffic gener-
ated by the top-five cluster types which, together, account for
78.6% of the traffic in Facebook’s network. Hadoop clusters
generate the most traffic (23.7% of all traffic), and are sig-
nificantly more rack-local than others, but even its traffic is
far from the 40-80% rack-local reported in the literature [12,

SR
- |

107
106
10°
10*
103
10°
10!

e Ske <
AW e
W

(a) Rack-to-rack, Hadoop cluster

RGN
<

(b) Rack-to-rack, Frontend cluster

10°

(c) Cluster-to-cluster

Figure 5: Traffic demand by source (x axis) and destination (y axis). The graphs are each normalized to the lowest demand in
that graph type (i.e., the Hadoop and Frontend clusters are normalized to the same value, while the cluster-to-cluster graph is

normalized independently).

17]. Rather, Hadoop traffic is clearly cluster local. Frontend
(FE) traffic is cluster local by design, but not very rack-local,
and the locality of a given rack’s traffic depends on its con-
stituent servers (e.g., Web server, Multifeed, or cache).

This distinction is clearly visualized in Figure 5, gener-
ated in the style of Delimitrou ef al. [17]. The two left por-
tions of the figure graph the relative traffic demands between
64 racks within clusters of two different types. While we
show only a subset of the total set of racks in each cluster,
the pattern is representative of the cluster as a whole.

Traffic within the Hadoop cluster (left) is homogenous
with a very strong diagonal (i.e., intra-rack locality). The
cluster-wide uniformity outside the local rack accounts
for intra-cluster traffic representing over 80% of Hadoop
traffic—even though traffic to the local rack dominates any
given other rack in isolation. Map tasks are placed to maxi-
mize read locality, but there are a large number of concurrent
jobs which means that it is possible that any given job will
not fit entirely within a rack. Thus, some amount of traffic
would necessarily need to leave the rack during the shuffle
and output phases of a MapReduce job. In addition, the clus-
ter serves data requests from other services which might not
strive for as much read locality, which would also contribute
to reduced overall rack locality.

The Frontend cluster (center) exhibits three different pat-
terns according to rack type, with none being particularly
rack-local. In particular, we see a strong bipartite traffic
pattern between the Web servers and the cache followers in
Webserver racks that are responsible for most of the traffic,
by volume, within the cluster. This pattern is a consequence
of placement: Web servers talk primarily to cache servers
and vice versa, and servers of different types are deployed in
distinct racks, leading to low intra-rack traffic.

This striking difference in Facebook’s locality compared
to previously studied Internet-facing user-driven applica-
tions is a consequence of the realities of serving a densely
connected social graph. Cache objects are replicated across
clusters; however, each object typically appears once in a

129

cluster (though hot objects are replicated to avoid hotspots,
which we discuss in Section 5). Since each Web server needs
to be able to handle any request, they might need to access
data in a potentially random fashion due to load balancing.

To make this argument more concrete, loading the Face-
book news feed draws from a vast array of different ob-
jects in the social graph: different people, relationships, and
events comprise a large graph interconnected in a compli-
cated fashion. This connectedness means that the working
set is unlikely to reduce even if users are partitioned; the
net result is a low cache hit rate within the rack, leading
to high intra-cluster traffic locality. In addition, partition-
ing the graph such that users and their data are co-located
on racks has the potential to introduce failure modes which
disproportionately target subsets of the user base, leading to
a suboptimal experience.

The other three cluster types exhibit additional distinctive
behaviors (not shown). Traffic in cache leader clusters, for
example, has very little intra-rack demand, instead spread-
ing the plurality of its traffic across the datacenter. Traffic in
back-end database clusters is the most uniform, divided al-
most evenly amongst nodes within the cluster, the same dat-
acenter, and worldwide. Service clusters, which host racks
supporting a variety of supporting services, exhibit a mixed
traffic pattern that lies between these extreme points.

Inter-cluster communication varies considerably by clus-
ter type. Figure 5c plots the traffic demand between 15
clusters within a single datacenter for the a 24-hour period.
Hadoop clusters, for example, have a very small propor-
tion of inter-cluster traffic, while cache leader clusters have
a large amount of inter-cluster traffic, split between cache
followers in other clusters and database clusters. While each
cluster may possess the same four-post structure internally, it
may make sense to consider heterogenous inter-cluster com-
munication fabrics, as demand varies over more than seven
orders of magnitude between cluster pairs.

While the 4-post cluster remains prevalent in Facebook
datacenters, Facebook recently announced a new network

09
08
0.7
06

04

Intra-Rack
XXX Intra-Cluster
AA4 Intra-Datacenter
WEm Inter-Datacenter
kk Al

03
0.2
0.1

Intra-Rack Intra-Rack
XXX Intra-Cluster 03 XXX Intra-Cluster
A4 Intra-Datacenter 02 Ada Intra-Datacenter
W InterDatacenter o B Inter-Datacenter
*kk All *kx All

801 01 1 10 100

Kilobytes

1000 10000 100000 1000000 0.1 1 10

(a) Web servers

100

Kilobytes

(b) Cache follower

1000 10000 100000 1000000 10 100

Kilobytes

1000 10000 100000 1000000

(c) Hadoop

Figure 6: Flow size distribution, broken down by location of destination

Intra-Rack
XXX Intra-Cluster
AAA Intra-Datacenter
W Inter-Datacenter
*kx All

Intra-Rack
XXX Intra-Cluster
AAA Intra-Datacenter
WBm Inter-Datacenter
Hokx Al

10000 100000

100

1000
Milliseconds

1000000

100

(a) Web servers

1000

Milliseconds

(b) Cache follower

w
05
O
04
03 Intra-Rack
XXX Intra-Cluster
0.2 AAA Intra-Datacenter
01 WBm Inter-Datacenter
Fokx Al

10000 100000 1000000

100

1000 10000
Milliseconds

(c) Hadoop

100000 1000000

Figure 7: Flow duration distribution, broken down by location of destination

topology that is being implemented in datacenters going for-
ward [9]. While servers are no longer grouped into clusters
physically (instead, they comprise pods where all pods in a
datacenter have high connectivity), the high-level logical no-
tion of a cluster for server management purposes still exists
to ease the transition. Accordingly, the rack-to-rack traffic
matrix of a Frontend “cluster” inside one of the new Fabric
datacenters over a day-long period (not shown) looks similar
that shown in Figure 5.

4.4 Implications for connection fabrics

The low utilization levels found at the edge of the network
reinforce common practice of oversubscribing the aggrega-
tion and core of the network, although it remains to be seen
whether utilization will creep up as the datacenters age. The
highly contrasting locality properties of the different clus-
ters imply a single homogenous topology will either be over-
provisioned in some regions or congested in others—or both.
This reality argues that non-uniform fabric technologies that
can deliver higher bandwidth to certain locations than others
may find use. Researchers are exploring techniques to ame-
liorate traffic hotspots. The stability of the traffic patterns we
observe, however, suggest that rapid reconfigurability may
not be as necessary as some have assumed.

Somewhat surprisingly, the lack of significant levels of
intra-rack locality (except in the Hadoop cluster) hints that
RSWs (i.e., top-of-rack switches) that deliver something less
than full non-blocking line-rate connectivity between all of
their ports may be viable. In particular, the bipartite traffic
pattern between end hosts and RSW uplinks may afford op-
timizations in switch design. We return to consider further
implications for switch design in Section 6.

130

S. TRAFFIC ENGINEERING

Prior studies suggest that the stability of datacenter traf-
fic depends on the timescale of observation. In this section,
we analyze Facebook’s traffic at fine timescales, with an eye
towards understanding how applicable various traffic engi-
neering and load balancing approaches might be under such
conditions.

5.1 Flow characteristics

Figures 6 and 7 plot the size and duration, respectively,
of flows (defined by 5-tuple) collected in 10-minute (2.5-
minute for the Web-server rack) packet traces of three differ-
ent node types: a Web-server rack, a single cache follower
(cache leader is similar to follower and not shown due to
space constraints), and a Hadoop node. We show the overall
distribution (in black) as well as per-destination curves.

Consistent with the literature [26, Fig. 9], we find that
most flows in Facebook’s Hadoop cluster are short. As dis-
cussed previously, the traffic demands of Hadoop vary sub-
stantially across nodes and time. We plot the results from
tracing one node over a relatively busy 10-minute interval;
traces from other nodes or even the same node at different
times reveal somewhat different distributions, so we cau-
tion against examining the specific distribution too carefully.
Even in the graphed interval, however, 70% of flows send
less than 10 KB and last less than 10 seconds; the median
flow sends less than 1 KB and lasts less than a second. Less
than 5% of the flows are larger than 1 MB or last longer than
100 seconds; almost none exceed our 10-minute trace.

Conversely, traces from other service types are much
more representative due to load balancing. Moreover, many
of Facebook’s internal services use some form of connec-

1. 1.

0.9 0.9
08 08
07 07
06 06

'y 4 '8

Qos Qos

] Z o

0.4 7 0.4

03 [03

0.2 0.2

—
0.1 0.1

10
0.9
08
0.7
0.6
'8
0o0s5
o
0.4
03
0.2
0.1

0801 0.1 1 10 100 1000 10000 100000 1000000 0900

Kilobytes/second

(a) Hadoop (rate, each series is 1 second)

Kilobytes/second

(b) Cache (rate, each series is 1 second)

1000 o %.1 10

1
Proportion of Median

(c) Cache (stability, each series is a rack)

Figure 8: Per-destination-rack flow rate distribution (for both Hadoop and cache) and stability (cache).

1.0
0.9F
0.8
0.7
0.6
LL
0os5f
®)
0.4r
Intra-Rack
03y XXX Intra-Cluster
0.2} AAA Intra-Datacenter |
01k Wl Inter-Datacenter | |
' Fokx Al
o'8.01 0.1 1 10 100 1000 10000 100000 1000000
Kilobytes

Figure 9: Cache follower per-host flow size

tion pooling [29], leading to long-lived connections with
relatively low throughput. Pooling is especially prevalent
for cache follower(leader, not shown) nodes, where only
30(40)% of flows are less than 100 seconds in length, with
more than 40(25)% of flows exceeding our 10-minute cap-
ture period. That said, most flows are active (i.e., actu-
ally transmit packets) only during distinct millisecond-scale
intervals with large intervening gaps. In other words, re-
gardless of flow size or length, flows tend to be internally
bursty. In general cache flows are also significantly larger
than Hadoop; Web servers lie somewhere in the middle.

If we consider higher levels of aggregation, i.e., group-
ing flows by destination host or rack, the distribution of flow
sizes simply shifts to the right for Web servers (retaining its
basic shape). The behavior is starkly different for cache fol-
lowers, however: the wide flow-size distribution apparent at
a S-tuple granularity (Figure 6b) disappears at host and rack
levels, replaced by a very tight distribution around 1 MB per
host (Figure 9). This arises as a consequence of the deci-
sion to load balance incoming user requests across all Web
servers, combined with the large number of user requests.
Since requests and responses are typically small (on the or-
der of a few kilobytes) we do not observe any imbalance
created by unequal response sizes.

5.2 Load balancing

Existing traffic engineering efforts seek to leverage vari-
ability of traffic; highly regular traffic does not provide much

131

opportunity for improvement. In the previous section, we
note that Facebook’s approach to load balancing is highly
effective on timescales lasting minutes to hours, leaving
less room for traffic engineering. We now consider traffic
characteristics over the course of a few seconds to deter-
mine whether traffic engineering might be effective on short
timescales.

We consider how the traffic from a host varies from one
second to next. We examine the distribution of flow rates,
aggregated by destination rack, per second over a two-
minute period and compare each second to the next. Intu-
itively, the better the load balancing, the closer one second
appears to the next.

We first examine the Hadoop cluster by looking at 120
consecutive 1-second intervals. Figure 8a plots a CDF of
per-destination-rack flow sizes for each interval (i.e., there
are 120 separate curves). While we do not claim this par-
ticular server is representative, it does depict widely varying
rates (i.e., more than three orders of magnitude) which are
common in our observations.

In and of itself, this is unsurprising—Hadoop has peri-
ods of varying network traffic, and a production cluster is
likely to see a myriad jobs of varying sizes. It is this vari-
ability of traffic that existing network traffic engineering
schemes seek to leverage. Orchestra [16] relies on tem-
poral and per-job variation to provide lower task comple-
tion times for high-priority tasks, while Hedera [5] pro-
vides non-interfering route placement for high bandwidth
elephant flows that last for several seconds, which are preva-
lent within Hadoop workloads.

A different story emerges for Frontend traffic, and the
cache in particular. Recall from Table 2 that the largest
share of cache follower traffic are responses bound for Web
servers. Figure 8b shows the distribution of per-second flow
rates on a per-rack basis from a single cache follower node
to distinct Web server racks during a two minute period. The
distributions for each of the 120 seconds are similar, and all
are relatively tight, i.e., the CDFs are fairly vertical about the
median of ~2 Mbps. Similar patterns (albeit with different
scales) can be observed for other services as well.

From the viewpoint of a single host, each second is sim-
ilar to the next. However, this analysis does not take per-
destination variation into consideration. It is conceivable
that there could exist consistently high- or low-rate destina-

1.0 1
09 09
08 08
0.7 0.7

06 XXX Flows, 1-ms bin 06 XXX Flows, 1-ms bin 06 XXX Flows, 1-ms bin
w 99¢ Flows, 10-ms bin w @%@ Flows, 10-ms bin w 98¢ Flows, 10-ms bin
8 05 @®@ Flows, 100-ms bin 8 05 @89 Flows, 100-ms bin 8 05 @®@ Flows, 100-ms bin
04 XXX Hosts, 1-ms bin 04 XXX Hosts, 1-ms bin 04 XXX Hosts, 1-ms bin
@@ Hosts, 10-ms bin [@8@ Hosts, 10-ms bin @@ Hosts, 10-ms bin
03 @8 Hosts, 100-ms bin 03 @®¢ Hosts, 100-ms bin 03 @8 Hosts, 100-ms bin
0.2 XXX Racks, 1-ms bin 0.2 XXX Racks, 1-ms bin 0.2 XXX Racks, 1-ms bin
o1 @@ Racks, 10-ms bin 01 @@ Racks, 10-ms bin o1 @@ Racks, 10-ms bin
@®@ Racks, 100-ms bin : @8@ Racks, 100-ms bin @0@ Racks, 100-ms bin
095" 100 200 300 400 500 600 700 800 900 100.0 080100 200 300 400 500 600 700 800 900 1000 090 100 200 300 400 500 600 700 800 900 100.0

Heavy hitter stability between intervals (%)

(a) Cache follower

Heavy hitter stability between intervals (%)

(b) Cache leader

Heavy hitter stability between intervals (%)

(c) Web servers

Figure 10: Heavy-hitter stability as a function of aggregation for 1/10/100-ms time windows

tions that potentially could be treated differently by a traffic
engineering scheme. For each host, we consider outbound
traffic rates per destination rack (normalized to the median
rate for that rack), and track the rate over time for each rack.
Figure 8c plots these distributions for the outbound traffic for
the same cache machine as Figure 8b. Each series represents
a single destination; a near vertical series represents a desti-
nation rack where the rate does not deviate far from the me-
dian rate. We find that per-destination-rack flow sizes are re-
markably stable across not only seconds but intervals as long
as 10 seconds (not shown) as well. All of the flows are within
a factor of two of their median size in approximately 90%
of the 1-second intervals—the median flow exhibits “signif-
icant change” in only 45% of the 1-second intervals accord-
ing to the 20% deviation cutoff defined by Benson ez al. [14].
Contrast this to the traffic leaving a Hadoop node—which is
not load balanced—where the middle 90% of flows can vary
in size by over six orders of magnitude compared to their
median size in the trace (not shown).

Such stability, both over time and by destination, is the
result of a combination of workload characteristics and en-
gineering effort. To a cache system, the offered load per sec-
ond is roughly held constant—Ilarge increases in load would
indicate the presence of relatively hot objects, which is ac-
tively monitored and mitigated. Bursts of requests for an ob-
ject lead the cache server to instruct the Web server to tem-
porarily cache the hot object; sustained activity for the ob-
ject leads to replication of the object or the enclosing shard
across multiple cache servers to help spread the load. We
note further that the request rate distribution for the top-50
most requested objects on a cache server is close across all
cache servers, and that the median lifespan for objects within
this list is on the order of a few minutes. Per-destination traf-
fic stability is again a consequence of user request multiplex-
ing across all available Web servers, coupled with relatively
small request/response pairs.

5.3 Heavy hitters

In this section, we examine the behavior of traffic at
sub-second timescales to better understand its stability and
whether traffic engineering can apply. In particular, we wish
to see if certain flows (aggregated or not) stand out in terms
of rate, since such flows would provide the largest opportu-
nity for potential impact on network performance. We de-

132

Type Number Size (Mbps)
pl0 | p50 | p90 [p10 | p50 | p90
f 1 4 15 1.6 3.2 473
Web h 1 4 14 1.6 3.3 48.1
r 1 3 9 1.7 4.6 48.9
f 8 19 35 5.1 9.0 22.5
Cache (f) h 8 19 33 8.4 9.7 23.6
r 7 15 23 84 | 145 | 31.0
f 1 16 48 2.6 3.3 408
Cache(l) h 1 8 25 32 8.1 414
r 1 7 17 5 12.6 | 427
f 1 2 3 4.6 | 12.7 | 1392
Hadoop h 1 2 3 4.6 | 12.7 | 1392
r 1 2 3 4.6 | 12.7 | 1392

Table 4: Number and size of heavy hitters in 1-ms intervals
for each of flow(f), host(h), and rack(r) levels of aggregation.

fine a set of flows that we call heavy hitters, representing
the minimum set of flows (or hosts, or racks in the aggre-
gated case) that is responsible for 50% of the observed traf-
fic volume (in bytes) over a fixed time period. Intuitively,
the presence of heavy hitters can signify an imbalance that
can be acted upon—if they are persistent for enough time,
and large enough compared other flows that treating them
differently makes a difference.

Table 4 shows statistics regarding the number and size of
the heavy hitters that constitute 50% of the traffic in 1-ms
intervals for each of the four server classes. Because we are
interested in instantaneously large flows, we measure size
in terms of rate instead of number of bytes sent over the
lifetime of the flow. Next, we consider the the lifespan of
heavy hitters, aggregated by 5-tuple, destination host and
rack, and measured across intervals of 1, 10 and 100 mil-
liseconds. Figure 10 shows the fraction of the heavy hitters
that remain in subsequent time intervals. We do not show the
Hadoop nodes, as our heavy-hitter definition almost always
results in the identification of 1-3 heavy hitters at each of
flow, host, and rack aggregation levels across all three time
intervals.

Heavy hitter persistence is low for individual flows (red):
in the median case, no more than roughly 15% of flows
persist regardless of the length of period, a consequence of
the internal burstiness of flows noted earlier. Host-level ag-
gregation (green) fares little better; with the exception of

0.9

0.8

0.7

1-ms bin
10-ms bin
100-ms bin ||
1-ms bin
10-ms bin
100-ms bin ||
1-ms bin
10-ms bin
100-ms bin ||

XXX Flows,
@09 Flows,
@09 Flows,
XXX Hosts,
@@ Hosts,
@09 Hosts,
XXX Racks,
“ Racks,
@0@ Racks,

" . . n n
20.0 30.0 40.0 50.0 60.0 70.0 80.0
Intersection of heavy hitters in an interval and enclosing second (%)

0.6

CDF

0.5

0.4

03

0.2

0.1

10.0 90.0 100.0

(a) Web server

0.9

0.8

0.7

1-ms bin
10-ms bin
100-ms bin | |
1-ms bin
10-ms bin
100-ms bin ||
1-ms bin
10-ms bin
100-ms bin ||

XXX Flows,

“ Flows,
@09 Flows,
XXX Hosts,
“ Hosts,
@09 Hosts,
XXX Racks,
“ Racks,
@0@ Racks,

20.0 30.0 40.0 50.0 60.0 70.0 80.0
Intersection of heavy hitters in an interval and enclosing second (%)

0.6

CDF

0.5

0.4

03

0.2

0.1

10.0 90.0 100.0

(b) Cache follower

Figure 11: Intersection between heavy hitters in a subinter-
val with enclosing second

destination-host-level aggregation for Web servers, no more
than 20% of heavy hitter hosts in a sub-second interval will
persist as a heavy hitter in the next interval. Web servers
have a higher rate over 100-millisecond periods since they
have a relatively small number of cache servers and load bal-
ancers with which they communicate, while cache servers
converse with many different Web servers.

It is not until considering rack-level flows (blue) that
heavy hitters are particularly stable. In the median case,
over 40% of cache heavy hitters persist into the next 100-
ms interval, and almost 60% for Web servers. Heavy hitters
from Web servers are more stable in general, with 32% of
rack-level heavy hitters persisting in the median 1-ms inter-
val case. Even so, heavy hitter persistence is not particularly
favorable for traffic engineering. With a close to 50% chance
of a given heavy hitter continuing in the next time period,
predicting a heavy hitter by observation is not much more
effective than randomly guessing.

Even if one could perfectly predict the heavy hitters on
a second-by-second timescale, it remains to consider how
useful that knowledge would be. We compare the heavy hit-
ters from enclosing one-second intervals to the instantaneous
heavy hitters from each of the subintervals within the second
to see what fraction of the heavy hitters in a subinterval are
heavy hitters across the entire enclosing second. A limited
degree of overlap implies three things: First, it establishes

133

an upper bound on the effectiveness of traffic engineering—
a significant amount of ephemeral heavy hitter traffic would
go unseen and untreated by the TE scheme. Second, it serves
as an indicator of the difficulty of prediction in the first place;
if a one-second prediction interval is not sufficient, smaller
timescales (consuming more resources) may be needed. Fi-
nally, this metric is an indicator of burstiness, as it indicates
the presence of a large number of ephemeral heavy hitters.
Figure 11 plots a CDF of the fraction of a second’s
overall heavy hitters that are instantaneously heavy in each
1/10/100-ms interval within the second. We show results for
a Web server and cache follower—cache leaders are similar.
At 5-tuple granularity, predictive power is quite poor, at less
than 10-15%. Rack-level predictions are much more effec-
tive, with heavy hitters remaining heavy in the majority of
100-ms intervals in the median case for both services. Host-
level predictions are more useful for Web servers than cache
nodes, but only the 100-ms case is more than 30% effective.

5.4 Implications for traffic engineering

Facebook’s extensive use of connection pooling leads to
long-lived flows that seem like potential candidates for traf-
fic engineering. These same services use application-level
load balancing to great effect, however, leaving limited room
for in-network approaches. Many existing techniques work
by identifying heavy hitters and then treating them differ-
ently (e.g., provisioning a circuit, moving them to a lightly
loaded path, employing alternate buffering strategies, etc.).
For any such scheme to work, however, it must be possible to
first identify the heavy hitters, and then realize some benefit.

Unfortunately, it appears challenging to identify heavy
hitters in a number of Facebook’s clusters that persist with
any frequency. Moreover, even for the timescales and ag-
gregation levels where it is possible (e.g., rack-level flows
over intervals of 100-ms or larger), it is not clear there is
a great deal of benefit to be gained, as the heavy hitters
are frequently not particularly heavy for the vast majority
of the period. Previous work has suggested traffic engi-
neering schemes can be effective if 35% of traffic is pre-
dictable [14]; only rack-level heavy hitters reach that level
of predictability for either Web or cache servers. This some-
what counter-intuitive situation results from a combination
of effective load balancing (which means there is little dif-
ference in size between a heavy hitter and the median flow)
and the relatively low long-term throughput of most flows,
meaning even heavy flows can be quite bursty internally.

6. SWITCHING

Finally, we study aspects of the traffic that bear directly on
top-of-rack switch design. In particular, we consider the size
and arrival processes of packets, and the number of concur-
rent destinations for any particular end host. In addition, we
examine the impact of burstiness over short timesales and its
impact on switch buffering.

6.1 Per-packet features

Figure 12 shows the distribution of packet sizes for each
of the four host types. Overall, the median packet size is

1.0

0.9

0.8

0.7

0.6

CDF

0.5

0.4

0.3fF
XXX Web Server

Blm Hadoop
@®¢ Cache Leader ||
Cache Follower

0.2

0.1

0.0 . . n n
0 800 1000 1200 1400
Bytes

.
600

Figure 12: Packet size distribution

5

BN W s G
[N
o _u o

Packets (x1000)
Packets (x1000)

o
o
o o

12 16 18 20 22

14
Time (seconds)

(a) 15 ms

0 12 14 16 18 20 22
Time (seconds)

(b) 100 ms

Figure 13: Hadoop traffic is not on/off at 15 nor 100 ms

approximately 250 bytes, but that is significantly skewed by
Hadoop traffic. Hadoop traffic is bimodal: almost all packets
are either MTU length (1500 bytes for the servers we study)
or TCP ACKs. Packets for the other services have a much
wider distribution, but the median packet size for all of them
is significantly less than 200 bytes, with only 5-10% of the
packets fully utilizing the MTU.

Thus, while link utilization is low, the packet rate is still
high. For example, a cache server at 10% link utilization
with a median packet size of roughly 175 bytes generates
85% of the packet rate of a fully utilized link sending MTU-
sized packets. As a result, any per-packet operation (e.g.,
VLAN encapsulation) may still be stressed in a way that the
pure link utilization rate might not suggest at first glance.

6.2 Arrival patterns

Benson et al. observe that packet arrivals exhibit an on/off
pattern at the end-host level [12, 13]. Hosts in Facebook’s
datacenter do not exhibit this behavior, even within Hadoop
clusters. Figure 13 shows a time series of traffic sent by a
Hadoop host (arriving at a RSW port) binned by 15- and
100-ms intervals. (c.f. Benson et al.’s analogous graphs [13,
Figure 5] and [12, Figure 6]). If one considers traffic on
a per-destination host basis, on/off behavior remerges (not
shown), suggesting its disappearance may be due to a large
number of concurrent destinations.

Figure 14 plots the CDF of inter-arrival times between
outgoing TCP flows at each of the four types of servers we
study. While a significant amount of traffic is routed over
long-lived pooled connections, as is the case for request-
response traffic between Web servers and cache followers,
ephemeral flows do exist. The inter-arrival periods for flows
emanating from all four classes of host are shorter than

134

1.0

0.9

0.8

0.7

0.6

0.5

CDF

0.4

0.3f
XXX Web Server

Bl Hadoop
@89 Cache Leader ||
Cache Follower

0.2

0.1

10 100

L I I
1000 10000 100000

SYN Interarrival (usec)

1000000

Figure 14: Flow (SYN packet) inter-arrival

those reported in the literature [26, Fig. 11], but to vary-
ing degrees. Hadoop nodes and Web servers see an order-
of-magnitude increase in flow intensity relative to previous
reports—Ilikely due at least in part to the 10x increase in
link rate—with median inter-arrival times of approximately
2 ms (i.e., more than 500 flows per second). Perhaps due
to connection pooling (which would decouple the arrival of
external user requests from the internal flow-arrival rate),
the distribution of inter-arrival times for flows at both types
of cache node are similar and longer: cache leaders see a
slightly higher arrival rate than followers, with median inter-
arrival timess of 3 and 8 ms, respectively.

6.3 Buffer utilization

The combination of a lack of on/off traffic, higher flow
intensity, and bursty individual flows suggests a potential in-
crease in buffer utilization and overruns. Despite low av-
erage link utilization, bursty traffic can still lead to unac-
ceptable loss rates. Recent work at Facebook has led to the
development of in-house switching platforms [35], enabling
us to gather buffer utilization statistics at fine granularity. In
particular, we collect buffer occupancies over a 24-hour pe-
riod for switches connecting Web servers and cache nodes at
a 10-microsecond granularity. Figure 15a plots the median
and maximum values per second for the entire period, nor-
malized to the buffer size. In other words, a single point for
the median series represents the 50th-percentile buffer occu-
pancy during that second (out of 100,000 samples per sec-
ond), normalized by the size of the buffer. We also plot the
normalized average link utilization (Figure 15b) and egress
drop rate (Figure 15c¢) over the same period, sourced via
fbflow and SNMP counters, respectively.

A few trends are apparent from our results. The first is that
standing buffer occupancies are non-trivial, and can be quite
high in the Web-server case. Even though link utilization
is on the order of 1% most of the time, over two-thirds of
the available shared buffer is utilized during each 10-us in-
terval. Diurnal variation exists in buffer occupancies, utiliza-
tion and drop rate, highlighting the correlation between these
metrics over time. Even with the diurnal trafic pattern, how-
ever, the maximum buffer occupancy in the Web-server rack
approaches the configured limit for roughly three quarters
of the 24-hour period. While link utilization is roughly cor-

10°

Web rack maximum

Cache rack maximum
Cache rack median
Web rack median

—
15}

Relative Buffer Occupancy Fraction

—
15}

10-°

I I I I I
40000 50000 60000 70000 80000

Seconds

I I I
0 10000 20000 30000

(a) Normalized buffer occupancy, 10-microsecond resolution

1.0

o
©

o
©

o
3

o
=)

Cache Rack]
— Web Server Rack

Utilization (Normalized to highest observed)
o o o o
Now x o

o
i

o
o

40000 50000 60000 70000 80000

Seconds

10000 20000 30000

(b) Link utilization, 10-minute average

g
=]

o
©

o
©

o
~

o
)

o
~

Egress Drops (Normalized)
o
&

o o
N w

o
e

o
o

40000 50000 60000 70000 80000

Seconds

10000 20000 30000

(c) Web rack egress drops, 15-minute average

Figure 15: Correlating buffer occupancy, link utilization and
packet drops in Web server and Cache racks

related with buffer occupancy within the Web-server rack,
utilization by itself is not a good prediction of buffer require-
ments across different applications. In particular, the Cache
rack has higher link utilization, but much lower buffer uti-
lization and drop rates (not shown).

These buffer utilization levels occur despite relatively
small packet sizes (Section 6.1). As utilization increases in
the future, it might be through an increase in the number

135

of flows, in the size of packets, or both. Either will have
impacts on buffer utilization: larger packets with the same
level of burstiness will use up more of the buffer, while a
larger number of flows leads to a greater chance of multiple
flows sending bursts of packets simultaneously. Thus, care-
ful buffer tuning is likely to be important moving forward.

6.4 Concurrent flows

We consider concurrent to mean existing within the same
5-ms window (c.f. the 50-ms window considered by Al-
izadeh et al. while measuring a datacenter of hosts connected
with 1-Gbps Ethernet [8]). We find that Web servers and
cache hosts have 100s to 1000s of concurrent connections (at
the 5-tuple level), while Hadoop nodes have approximately
25 concurrent connections on average—corresponding quite
well with the findings of Alizadeh et al. [8, Figure 5]. That
said, switches are obviously less concerned with individual
connections than destination ports. If we group connections
destined to the same host, the numbers reduce only slightly
(by at most a factor of two)—and not at all in the case of
Hadoop.

Given the general lack of intra-rack traffic, almost all
flows will traverse an up-link port. Hence, it is perhaps more
interesting to consider flows at the rack level—i.e., consid-
ering the number of different racks with which an individ-
ual host is communicating. Figure 16 shows the number of
concurrent flows sent by a single host over a 5-ms interval
to different classes of destination hosts for three different
host types: cache follower, cache leader, Web server. Cache
followers communicate with 225-300 different racks, while
leaders talk to 175-350. In the median interval, both types
of cache nodes communicate with approximately 250 other
racks—the location of the racks varies dramatically as dis-
cussed previously, however. Web servers communicate with
10-125 racks concurrently, 50 in the median interval.

Some proposed switch designs [25, 30] employ different
technologies for large flows. Hence, we restrict our focus to
the heavy hitter racks, namely those destination racks that
constitute the majority of the traffic. The median number of
heavy-hitter racks is 6-8 for Web servers and cache leaders
with an effective max of 20-30, while the cache follower
has 29 heavy hitter racks in the median case and up to 50
in the tail. Due to the differences in locality, Web servers
and cache followers have very few rack-level heavy hitters
of their cluster, while the cache leader displays the opposite
pattern. Even considering only heavy hitter racks, the num-
ber of concurrent destinations is still significantly larger than
that reported by Alizadeh et al. [8]. In addition, the relative
impermanence of our heavy hitters suggests that, for Fron-
tend clusters at least, hybrid circuit-based approaches may
be challenging to employ.

7. CONCLUSION

Facebook’s datacenter network supports a variety of dis-
tinct services that exhibit different traffic patterns. We find
that several deviate substantially from the services consid-
ered in the literature. The different applications, combined

w w

Q05 o5

= =
04 04
03 XXX Intra-Cluster 03
0.2 AAA Intra-Datacenter 0.2
01 Wl Inter-Datacenter 01

vy Al

100

150 200 250
Number of racks in 5 ms

300 350 400 100 150

(a) Web server

200

Number of racks in 5 ms

(b) Cache follower

w
Qo5
o
04
03
XXX Intra-Cluster XXX Intra-Cluster
AAA Intra-Datacenter 02 AAA Intra-Datacenter
Bl Inter-Datacenter 01 W Inter-Datacenter
Yy Al) vy All

250 300 350 400 0'% 0 50 100 150 200 250

Number of racks in 5 ms

300 350 400

(c) Cache leader

Figure 16: Concurrent (5-ms) rack-level flows

1 1 1.0 [\
0.9 0.9 0.9
08 08 08
0.7 0.7 0.7
0.6 0.6 0.6
w w w
Qos Qos Qos
o o o
0.4 0.4 04
03 %X Intra-Cluster 03 3% Intra-Cluster 03 3% Intra-Cluster
0.2 AAA Intra-Datacenter 0.2 AAA Intra-Datacenter 0.2 AAA Intra-Datacenter
o1 W8 Inter-Datacenter o W Inter-Datacenter o B Inter-Datacenter
vy Al wvy Al vy Al
%0 10 % 5 %0 10 20 5 %0 10 3 20 5

20 30
Number of rack in 5 ms

(a) Web server

20 30
Number of rack in 5 ms

(b) Cache follower

20 0
Number of rack in 5 ms

(c) Cache leader

Figure 17: Concurrent (5-ms) heavy-hitter racks

with the scale (hundreds of thousands of nodes) and speed
(10-Gbps edge links) of Facebook’s datacenter network re-
sult in workloads that contrast in a number of ways from
most previously published datasets. Space constraints pre-
vent us from providing an exhaustive account; we describe
features that may have implications for topology, traffic en-
gineering, and top-of-rack switch design.

Our methodology imposes a few limitations on the scope
of this study. Using end hosts to capture and timestamp
packets introduces scheduler-based variations on timestamp
accuracy. In addition, we can only capture traffic from a few
hosts at a time without risking drops in packet collection. To-
gether, these constraints prevent us from evaluating effects
like incast or microbursts, which are noted as being contrib-
utors to poor application performance [24]. Further, per-host
packet dumps are necessarily anecdotal and ad hoc, relying
on the presence of an unused capture host on the same rack
as the target. While Fbflow is deployed datacenter-wide,
the sheer amount of measurement data it provides presents
another challenge—specifically, one of data processing and
retention—which limits the resolution at which it can oper-
ate. We thus view effective network monitoring and analysis
to be an ongoing and constantly evolving problem.

Acknowledgements

This work is supported in part by the National Science Foun-
dation through grants CNS-1314921 and CSR-1018808.
We are indebted to Theo Benson, Nick McKeown, Remzi
Arpaci-Dusseau, our shepherd, Srikanth Kandula, and the
anonymous reviewers for their comments and suggestions
on earlier drafts of this manuscript. Petr Lapukhov, Michal
Burger, Sathya Narayanan, Avery Ching and Vincent Liu
provided invaluable insight into the inner workings of var-

136

ious Facebook services. Finally, and most significantly,
Omar Baldonado catalyzed and faciliated the collaboration
that enabled this study.

8. REFERENCES

[1] An open network operating system. http://onosproject.org.
[2] Scribe (archived). https://github.com/facebookarchive/scribe.
[3] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra,

C. Gerea, D. Merl, J. Metzler, D. Reiss, S. Subramanian, J. L.
Wiener, and O. Zed. Scuba: Diving into data at Facebook.
Proc. VLDB Endow., 6(11):1057-1067, Aug. 2013.

M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity, data center network architecture. In Proc. ACM
SIGCOMM, Aug. 2008.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In Proc. USENIX NSDI, Apr. 2010.

A. Alameldeen, M. Martin, C. Mauer, K. Moore, X. Min,

M. Hill, D. Wood, and D. Sorin. Simulating a $2M
commercial server on a $2K PC. IEEE Computer,
36(2):50-57, Feb. 2003.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese. Conga: Distributed congestion-aware load
balancing for datacenters. In Proc. ACM SIGCOMM, Aug.
2014.

M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In Proc. ACM SIGCOMM, Aug. 2010.

A. Andreyev. Introducing data center fabric, the
next-generation Facebook data center network.
https://code.facebook.com/posts/360346274145943, 2014.
B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-value
store. In Proc. ACM SIGMETRICS/Performance, June 2012.
L. A. Barroso, J. Clidaras, and U. Holzle. The Datacenter as
a Computer:An Introduction to the Design of

(4]

(3]

[6

—_

[7

—

[8

—_—

(9]

[10]

(11]

http://onosproject.org
https://github.com/facebookarchive/scribe
https://code.facebook.com/posts/360346274145943

Warehouse-Scale Machines. Morgan & Claypool, 2nd
edition, 2013.

[12] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In Proc. ACM
IMC, 2010.

[13] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding data center traffic charachteristics. In Proc.
ACM SIGCOMM WREN, Aug. 2009.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:

Fine grained traffic engineering for data centers. In Proc.

ACM CoNEXT, Dec. 2011.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,

H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,

M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and

V. Venkataramani. TAO: Facebook’s distributed data store

for the social graph. In Proc. USENIX ATC, June 2013.

M. Chowdhury, M. Zaharia, J. Ma, M. 1. Jordan, and

I. Stoica. Managing data transfers in computer clusters with

orchestra. In Proceedings of the ACM SIGCOMM 2011

Conference, SIGCOMM ’11, pages 98-109, New York, NY,

USA, 2011. ACM.

C. Delimitrou, S. Sankar, A. Kansal, and C. Kozyrakis.

ECHO: Recreating network traffic maps for datacenters with

tens of thousands of servers. In Proc. IEEE International

Symposium on Workload Characterization, Nov. 2012.

D. Ersoz, M. S. Yousif, and C. R. Das. Characterizing

network traffic in a cluster-based, multi-tier data center. In

Proc. IEEFE International Conference on Distributed

Computing Systems, June 2007.

N. Farrington and A. Andreyev. Facebook’s data center

network architecture. In Proc. IEEE Optical Interconnects,

May 2013.

N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz,

V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat.

Helios: A hybrid electrical/optical switch architecture for

modular data centers. In Proc. ACM SIGCOMM, Aug. 2010.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A

scalable and flexible data center network. In Proc. ACM

SIGCOMM, Aug. 2009.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an operating

system for networks. SIGCOMM CCR, 38(3), July 2008.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,

Y. Zhang, and S. Lu. BCube: A high performance,

server-centric network architecture for modular data centers.

In Proc. ACM SIGCOMM, Aug. 2009.

V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,

and C. Yan. Speeding up distributed request-response

workflows. In Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM, SIGCOMM ’13, pages 219-230,

New York, NY, USA, 2013. ACM.

S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest

data center networks. In Proc. ACM HotNets, Oct. 2009.

[26] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

137

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

(39]

[40]

R. Chaiken. The nature of data center traffic: Measurements
& analysiss. In Proc. ACM IMC, Nov. 2009.

R. Kapoor, A. C. Snoeren, G. M. Voelker, and G. Porter.
Bullet trains: A study of NIC burst behavior at microsecond
timescales. In Proc. ACM CoNEXT, Dec. 2013.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for
lzaé%g-scale production networks. In Proc. USENIX OSDI,

A. Likhtarov, R. Nishtala, R. McElroy, H. Fugal,

A. Grynenko, and V. Venkataramani. Introducing mcrouter:
A memcached protocol router for scaling memcached
deployments.
https://code.facebook.com/posts/296442737213493, Sept.
2014.

H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M.
Voelker, G. Papen, A. C. Snoeren, and G. Porter. Circuit
switching under the radar with REACToR. In Proc. USENIX
NSDI, Apr. 2014.

R. Mack. Building timeline: Scaling up to hold your life
story. https://www.facebook.com/note.php?note_id=
10150468255628920, Jan. 2012.

B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker. Extending networking into the virtualization
layer. In Proc. ACM HotNets, 2009.

L. Popa, S. Ratnasamy, G. lannaccone, A. Krishnamurthy,
and I. Stoica. A cost comparison of datacenter network
architectures. In Proc. ACM CoNEXT, Dec. 2010.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,

M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In Proc. USENIX OSDI,
2010.

A. Simpkins. Facebook open switching system (fboss) and
wedge in the open.
https://code.facebook.com/posts/843620439027582/
facebook-open-switching-system-fboss-and-wedge-in-the-open/,
2015.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking data centers randomly. In Proc. USENIX NSDI,
Apr. 2012.

D. Sommermann and A. Frindell. Introducing Proxygen,
Facebook’s C++ HTTP framework.
https://code.facebook.com/posts/1503205539947302, 2014.
A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive — a
petabyte scale data warehouse using Hadoop. In Proc. IEEE
ICDE, Mar. 2010.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
T. S. E. Ng, M. Kozuch, and M. Ryan. c-Through: Part-time
optics in data centers. In Proc. ACM SIGCOMM, Aug. 2010.
X.Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y.
Zhao, and H. Zheng. Mirror mirror on the ceiling: Flexible
wireless links for data centers. In Proc. ACM SIGCOMM,
Aug. 2012.

https://code.facebook.com/posts/296442737213493
https://www.facebook.com/note.php?note_id=10150468255628920
https://www.facebook.com/note.php?note_id=10150468255628920
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://code.facebook.com/posts/1503205539947302

	Introduction
	Related Work
	A Facebook datacenter
	Datacenter topology
	Constituent services
	Data collection
	Fbflow
	Port mirroring

	Provisioning
	Utilization
	Locality and stability
	Traffic matrix
	Implications for connection fabrics

	Traffic engineering
	Flow characteristics
	Load balancing
	Heavy hitters
	Implications for traffic engineering

	Switching
	Per-packet features
	Arrival patterns
	Buffer utilization
	Concurrent flows

	Conclusion
	References

