
Towards a SPDY’ier Mobile Web?

Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, K.K. Ramakrishnan
AT&T Labs – Research

One AT&T Way, Bedminster, NJ, 07921
{erman,gvijay,rjana,kkrama}@research.att.com

ABSTRACT
Despite its widespread adoption and popularity, the Hyper-
text Transfer Protocol (HTTP) suffers from fundamental
performance limitations. SPDY, a recently proposed alter-
native to HTTP, tries to address many of the limitations
of HTTP (e.g., multiple connections, setup latency). With
cellular networks fast becoming the communication chan-
nel of choice, we perform a detailed measurement study to
understand the benefits of using SPDY over cellular net-
works. Through careful measurements conducted over four
months, we provide a detailed analysis of the performance
of HTTP and SPDY, how they interact with the various
layers, and their implications on web design. Our results
show that unlike in wired and 802.11 networks, SPDY does
not clearly outperform HTTP over cellular networks. We
identify, as the underlying cause, a lack of harmony between
how TCP and cellular networks interact. In particular, the
performance of most TCP implementations is impacted by
their implicit assumption that the network round-trip la-
tency does not change after an idle period, which is typi-
cally not the case in cellular networks. This causes spurious
retransmissions and degraded throughput for both HTTP
and SPDY. We conclude that a viable solution has to ac-
count for these unique cross-layer dependencies to achieve
improved performance over cellular networks.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; C.4 [Performance of Systems]:
Measurement techniques

Keywords
SPDY, Cellular Networks, Mobile Web

1. INTRODUCTION
As the speed and availability of cellular networks grows,

they are rapidly becoming the access network of choice. De-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’13, December 9–12, 2013, Santa Barbara, California, USA.
Copyright 2013 ACM 978-1-4503-2101-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535372.2535399.

spite the plethora of ‘apps’, web access remains one of the
most important uses of the mobile internet. It is therefore
critical that the performance of the cellular data network be
tuned optimally for mobile web access.

The Hypertext Transfer Protocol (HTTP) is the key build-
ing block of the web. Its simplicity and widespread support
has catapulted it into being adopted as the nearly ‘univer-
sal’ application protocol, such that it is being considered
the narrow waist of the future internet [11]. Yet, despite its
success, HTTP suffers from fundamental limitations, many
of which arise from the use of TCP as its transport layer
protocol. It is well-established that TCP works best if a
session is long lived and/or exchanges a lot of data. This is
because TCP gradually ramps up the load and takes time
to adjust to the available network capacity. Since HTTP
connections are typically short and exchange small objects,
TCP does not have sufficient time to utilize the full net-
work capacity. This is particularly exacerbated in cellular
networks where high latencies (hundreds of milliseconds are
not unheard off [18]) and packet loss in the radio access net-
work is common. These are widely known to be factors that
impair TCP’s performance.

SPDY [7] is a recently proposed protocol aimed at ad-
dressing many of the inefficiencies with HTTP. SPDY uses
fewer TCP connections by opening one connection per do-
main. Multiple data streams are multiplexed over this single
TCP connection for efficiency. SPDY supports multiple out-
standing requests from the client over a single connection.
SDPY servers transfer higher priority resources faster than
low priority resources. Finally, by using header compression,
SPDY reduces the amount of redundant header information
each time a new page is requested. Experiments show that
SPDY reduces page load time by as much as 64% on wired
networks and estimate as much as 23% improvement on cel-
lular networks (based on an emulation using Dummynet) [7].

In this paper, we perform a detailed and systematic mea-
surement study on real-world production cellular networks
to understand the benefits of using SPDY. Since most web-
sites do not support SPDY – only about 0.9% of all web-
sites use SPDY [15] – we deployed a SPDY proxy that func-
tions as an intermediary between the mobile devices and web
servers. We ran detailed field measurements using 20 pop-
ular web pages. These were performed across a four month
span to account for the variability in the production cellular
network. Each of the measurements was instrumented and
set up to account for and minimize factors that can bias the
results (e.g., cellular handoffs).

303

Our main observation from the experiments is that, unlike
in wired and 802.11 WiFi networks, SPDY does not outper-
form HTTP. Most importantly, we see that the interaction
between TCP and the cellular network has the most impact
on performance. We uncover a fundamental flaw in TCP
implementations where they do not account for the high
variability in the latency when the radio transitions from
idle to active. Such latency variability is common in cellular
networks due to the use of a radio resource state machine.
The TCP Round-Trip Time (RTT) estimate and thus the
time out value is incorrect (significantly under-estimated)
after an idle period, triggering spurious retransmissions and
thus lower throughput.

The TCP connection and the cellular radio connection for
the end-device becomes idle because of users’ web brows-
ing patterns (with a “think time” between pages [9]) and
how websites exchange data. Since SPDY uses a single long
lived connection, the TCP parameter settings at the end of
a download from one web site is carried over to the next site
accessed by the user. HTTP is less affected by this because
of its use of parallel connections (isolates impact to a subset
of active connections) and because the connections are short
lived (isolates impact going across web sites). We make the
case that a viable solution has to account for these unique
cross-layer dependencies to achieve improved performance
of both HTTP and SPDY over a cellular network.

The main contributions of this paper include:

• We conduct a systematic and detailed study over more
than four months on the performance of HTTP and
SPDY. We show that SPDY and HTTP perform sim-
ilarly over cellular networks.

• We show that the interaction between the cellular net-
work and TCP needs further optimization. In partic-
ular, we show that the RTT estimate, and thus the
retransmission time-out computation in TCP is incon-
gruous with how the cellular network radio state ma-
chine functions.

• We also show that the design of web sites, where data
is requested periodically, also triggers TCP timeouts.
We also show that there exist dependencies in web
pages today that prevent the browser from fully utiliz-
ing SPDY’s capabilities.

2. BACKGROUND
We present a brief background on how HTTP and SPDY

protocols work in this section. We use the example in Fig-
ure 1 to aid our description.

2.1 The HTTP Protocol
The Hypertext Transfer Protocol (HTTP) is a stateless,

application-layer protocol for transmitting web documents.
It uses TCP as its underlying transport protocol. Figure 1(a)
shows an example web page which consists of the main
HTML page and four objects referred in that page. When
requesting the document, a browser goes through the typi-
cal TCP 3-Way handshake as depicted in Figures 1(b) and
(c). Upon receiving the main document, the browser parses
the document and identifies the next set of objects needed
for displaying the page. In this example there are four more
objects that need to be downloaded.

With the original versions of HTTP, a single object was
downloaded per connection. HTTP version 1.1 introduced
the notion of persistent connections that have the ability to
reuse established TCP connections for subsequent requests
and the concept of pipelining. With persistence, objects are
requested sequentially over a connection as shown in Fig-
ure 1(b). Objects are not requested until the previous re-
sponse has completed. However, this introduces the problem
of head-of-line (HOL) blocking where subsequent requests
get significantly delayed in waiting for the current response
to come back. Browsers attempt to minimize the impact of
HOL blocking by opening multiple concurrent connections
to each domain — most browsers today use six parallel con-
nections — with an upper limit on the number of active
connections across all domains.

With pipelining, multiple HTTP requests can be sent to
a server together without waiting for the corresponding re-
sponses as shown in Figure 1(c). The client then waits for
the responses to arrive in the order in which they were re-
quested. Pipelining can improve page load times dramati-
cally. However, since the server is required to send its re-
sponses in the same order that the requests were received,
HOL blocking can still occur with pipelining. Some mobile
browsers have only recently started supporting pipelining.

2.2 The SPDY Protocol
Even though HTTP is widely adopted and used today, it

suffers from several shortcomings (e.g., sequential requests,
HOL blocking, short-lived connections, lack of server ini-
tiated data exchange, etc.) that impact web performance,
especially on the cellular network.

SPDY [7] is a recently proposed application-layer protocol
for transporting content over the web with the objective
of minimizing latency. The protocol works by opening one
TCP connection per domain (or just one connection if going
via a proxy). SPDY then allows for unlimited concurrent
streams over this single TCP connection. Because requests
are interleaved on a single connection, the efficiency of TCP
is much higher: fewer network connections need to be made,
and fewer, but more densely packed, packets are issued.

SPDY implements request priorities to get around one ob-
ject request choking up the connection. This is described in
Figure 1(d). After downloading the main page, and iden-
tifying the objects on the page, the client requests all four
objects in quick succession, but marks objects 3 and 4 to be
of higher priority. As a result, server transfers these objects
first thereby preventing the connection from being congested
with non-critical resources (objects 2 and 5) when high pri-
ority requests are pending. SPDY also allows for multiple
responses to be transferred as part of the same packet (e.g.
objects 2 and 5 in Figure 1(d)) can fit in a single response
packet can be served altogether. Finally, SPDY compresses
request and response HTTP headers and Server-initiated
data exchange. All of these optimizations have shown to
yield up to 64% reduction in page load times with SPDY [7].

3. EXPERIMENTAL SETUP
We conducted detailed experiments comparing the perfor-

mance of HTTP and SPDY on the 3G network of a com-
mercial, production US cellular provider over a four month
period in 2013.

Figure 2 provides an overview of our test setup. Clients
in our setup connect over the cellular network using HTTP

304

1

2

3

4

5

Client Server
SYN

SYN-ACK

ACK

GET 5

GET 2

GET 1

Client Server
SYN

SYN-ACK

ACK

5

GET 2

GET 1

3

42

5

1

GET

GET
GET

2

3

4

5

1

Client Server
SYN

SYN-ACK

ACK

5

GET 2

GET 1

3

4

GET

GET
GET

3

4

2 5

1

SSL / SPDY Setup

(b) HTTP Persistent Conn. (c) HTTP w/ Pipelining (d) SPDY(a) Example Web Page

Figure 1: Example showing how HTTP and SPDY work.

Cloud

Internet
Test

Server

SPDY
Proxy

HTTP
Proxy

Cellular
Network

Figure 2: Our test setup

or SPDY to proxies that support that corresponding proto-
col. These proxies then use persistent HTTP to connect to
the different web servers and fetch requested objects. We
run a SPDY and an HTTP proxy on the same machine
for a fair comparison. We use a proxy as an intermedi-
ary for two reasons: (a) We necessarily could not compare
SPDY and HTTP directly. There are relatively few web
sites that support SPDY. Moreover, a web server running
SPDY would not support HTTP and vice versa. Thus, we
would be evaluating connections to different servers which
could affect our results (depending on their load, number
of objects served, etc). (b) Most cellular operators in the
US already use HTTP proxies to improve web performance.
Running a SPDY proxy would allow operators to support
SPDY over the cellular network even if the web sites do not.

Test Devices: We use laptops running Windows 7 and
equipped with 3G (UMTS) USB cards as our client devices.
We ran experiments with multiple laptops simultaneously
accessing the test web sites to study the effect of multiple
users loading the network. There are several reasons we use
a laptop for our experiments. First, tablets and cellular-
equipped laptops are on the rise. These devices request
the regular web pages unlike smart phones. Second, and
more importantly, we wanted to eliminate the effects of a
slow processor as that could affect our results. For example,
studies [16] have shown that HTML, Javascript, and CSS
processing and rendering can delay the request of required
objects and significantly affect the overall page load time.
Finally, it has been observed [13] that having a slow pro-
cessor increases the number of zero window advertisements,
which significantly affects throughput.

Test Client: We used a default installation of the Google
Chrome browser (ver 23.0) as the test client, as it supported

traversing a SPDY proxy. Depending on the experiment, we
explicitly configured Chrome to use either the HTTP or the
SPDY proxy. When using a HTTP proxy, Chrome opens
up to 6 parallel TCP connections to the proxy per domain,
with a maximum of 32 active TCP connections across all
domains. With SPDY, Chrome opens one SSL-encrypted
TCP connection and re-uses this connection to fetch web
objects. The connection is kept persistent and requests for
different websites re-use the connection.

Test Location: Cellular experiments are sensitive to a
lot of factors, such as signal strength, location of the de-
vice in a cell, the cell tower’s backhaul capacity, load on the
cell tower, etc. For example, a device at a cell edge may fre-
quently get handed-off between towers, thereby contributing
to added delays. To mitigate such effects, we identified a cell
tower that had sufficient backhaul capacity and had mini-
mal interference from other cell sites. For most of our exper-
iments, we chose a physical location with an unobstructed
view of the tower and received a strong signal (between -
47 and -52 dBm). We configured the 3G modem to remain
connected to that base station at that sector on a particular
channel frequency and used a diagnostic tool to monitor the
channel on that sector.

Proxies Used: We used a virtual machine running Linux
in a compute cloud on the east coast of US to host our prox-
ies. At the time of our experiments, there were no proxy
implementations that supported both HTTP and SPDY.
Hence we chose implementations that are purported to be
widely used and the most competent implementations for
the corresponding protocols. We used Squid [2] (v3.1) as
our HTTP proxy. Squid supports persistent connections to
both the client and the server. However, it only supports a
rudimentary form of pipelining. For this reason, we did not
run experiments of HTTP with pipelining turned on. Our
comparisons are restricted to HTTP with multiple persistent
connections. For SPDY, we used a SPDY server built by
Google and made available as part of the Chromium source
tree. This server was used in the comparison [7] of SPDY
and HTTP and has since had extensions built in to support
proxying.1 We ran tcpdump to capture network level packet
traces and tcp-probe kernel module to capture TCP con-
gestion window values from the proxy to the mobile device.

1We also tested performance with a SOCKS proxy, but
found the results to be worse than both HTTP and SPDY.

305

Avg. Avg. Avg. Avg. Avg.
Total Size No. of Text JS/ Imgs/

Website Objs (KB) Domains Objs CSS Other
Finance 134.8 626.9 37.6 28.6 41.3 64.9
Entertainment 160.6 2197.3 36.3 16.5 28.0 116.1
Shopping 143.8 1563.1 15.8 13.3 36.8 93.7
Portal 121.6 963.3 27.5 9.6 18.3 93.7
Technology 45.2 602.8 3.0 2.0 18.0 25.2
ISP 163.4 1594.5 13.2 13.2 36.4 113.8
News 115.8 1130.6 28.5 9.1 49.5 57.2
News 157.7 1184.5 27.3 29.6 28.3 99.8
Shopping 5.1 56.2 2.0 3.1 2.0 0.0
Auction 59.3 719.7 17.9 6.8 7.0 45.5
Online Radio 122.1 1489.1 17.9 24.1 21.0 77.0
Photo Sharing 29.4 688.0 4.0 2.3 10.0 17.1
Technology 63.4 895.1 9.0 4.1 15.0 44.3
Baseball 167.8 1130.5 12.5 19.5 94.0 54.3
News 323 1722.7 84.7 73.4 73.6 176.0
Football 267.1 2311.0 75.0 60.3 56.9 149.9
News 218.5 4691.3 37.0 19.0 56.3 143.2
Photo Sharing 33.6 1664.8 9.1 3.3 6.7 23.6
Online Radio 68.7 2908.9 15.5 5.2 23.8 39.7
Weather 163.2 1653.8 48.7 19.7 45.3 98.2

Table 1: Characteristics of tested websites. The
numbers are averaged across runs.

Web Pages Requested: We identified the top web sites
visited by mobile users to run our tests (in the top Alexa
sites). Of these, we eliminated web sites that are primar-
ily landing pages (e.g., Facebook login page) and picked the
remaining 20 most requested pages. These 20 web pages
have a good mix of news websites, online shopping and auc-
tion sites, photo and video sharing as well as professionally
developed websites of large corporations. We preferred the
“full” site instead of the mobile versions keeping in mind the
increasing proliferation of tablets and large screen smart-
phones. These websites contain anywhere from 5 to 323
objects, including the home page. The objects in these sites
were spread across 3 to 84 domains. Each web site had
HTML pages, Javascript objects, CSS and images. We tab-
ulate important aspects of these web sites in Table 1.

Test Execution: We used a custom client that talks to
Chrome via the remote debugging interface and got Chrome
to load the test web pages. We generated a random order
in which to visit the 20 web sites and used that same order
across all experiments. Each website was requested 60 sec-
onds apart. The page may take much shorter time to load;
in that case the system would be idle until the 60 second
window elapsed. We chose 60 seconds both to allow for web
pages to load completely and to reflect a nominal think time
that users take between requests.

We used page load time as the main metric to monitor
performance. Page load time is defined as the time it takes
the browser to download and process all the objects associ-
ated with a web page. Most browsers fire a javascript event
(onLoad()) when the page is loaded. The remote debugging
interface provided us the time to download the different ob-
jects in a web page. We alternated our test runs between
HTTP and SPDY to ensure that temporal factors do not
affect our results. We ran each experiment multiple times
during the typically quiet periods (e.g., 12 AM to 6 AM) to
mitigate effects of other users using the base station.

4. EXPERIMENTAL RESULTS
We first compare the performance of SPDY and HTTP

using data collected from a week’s worth of experiments.
Since there was a lot of variability in the page load times,
we use a box plot to present the results in Figure 3. The x-

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
a
g
e
 L

o
a
d
 T

im
e
 (

in
 m

s
e
c
)

Test Website

HTTP
SPDY

Figure 3: Page Load Time for different web sites
with HTTP and SPDY.

axis shows the different websites we tested; the y-axis is the
page load time in milliseconds. For each website, the (red)
box on the left shows the page load times for HTTP, while
the (blue) box on the right shows the times for SPDY. The
box plot gives the standard metrics: the 25 percentile, the 75
percentile and the black notch in the box is the median value.
The top and bottom of the whiskers shows the maximum
and minimum values respectively. Finally, the circle in these
boxes shows the mean page load time across all the runs.

The results from Figure 3, interestingly, do not show a
convincing winner between HTTP and SPDY. For some
sites, the page load time with SPDY is lower (e.g., 3, 7),
while for others HTTP performs better (e.g., 1, 4). But for
a large number of sites there isn’t a significant difference.2

This is in sharp contrast to existing results on SPDY where
it has been shown to have between 27-60% improvement [7].
Importantly, previous results have shown an average of 23%
reduction over emulated cellular networks [17].

4.0.1 Performance over 802.11 Wireless Networks
As a first step in explaining the result in Figure 3, we

wanted to ensure that the result was not an artifact of our
test setup or the proxies used. Hence, we ran the same ex-
periments using the same setup, but over an 802.11g wireless
network connected to the Internet via a typical residential
broadband connection (15 Mbps down/ 2 Mbps up).

Figure 4 shows the average page load times and the 95%
confidence intervals. Like previous results [7], this result also
shows that SPDY performs better than HTTP consistently
with page load time improvements ranging from 4% for web-
site 4 to 56% for website 9 (ignoring website 2). Since the
only difference between the two tests is the access network,
we conclude that our results in Figure 3 is a consequence of
how the protocols operate over the cellular network.

5. UNDERSTANDING THE CROSS-LAYER
INTERACTIONS

We look at the different components of the application and
the protocols that can affect performance. In the process we

2HTTP seems to perform quite poorly with site 2. Upon
investigation, we found that the browser would occasionally
stall on this site. These stalls happened more often with
HTTP than with SPDY resulting in increased times.

306

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20

P
a
g
e
 L

o
a
d
 T

im
e
 (

in
 m

s
e
c
)

Website

HTTP
SPDY

Figure 4: Average Page Load Time over an
802.11g/Broadband network.

observe that there are significant interdependencies between
the different layers (from browser behavior and web page
design, to TCP protocol implementations, to the intricacies
of the cellular network) that affect overall performance.

5.1 Object download times
The first result we study is the break down of the page

load time. Recall that, by default, the page load time is the
time it takes the browser to process and download all the
objects required for the web page. Hence, we look into the
average download time of objects on a given page. We split
the download time of the object into 4 steps: (a) the initial-
ization step which includes the time from when the browser
realizes that it requires the object to when it actually re-
quests the object, (b) the send step which includes the time
to actually send the request over the network, (c) the wait
time which is the time between sending the request till the
first byte of response, and finally (d) the receive time which
is the time to receive the object.

We plot the average time of these steps for the different
web sites in Figure 5. First, we see that the trends for aver-
age object download time are quite similar to that of page
load times (in Figure 3). This is not surprising given that
page load time is dependent on the object download times.
Next, we see that the send time is almost invisible for both
HTTP and SPDY indicating that sending the request hap-
pens very quickly. Almost all HTTP requests fit in one
TCP packet. Similarly almost all SPDY requests also fit in
a single TCP packet; even when the browser bundles multi-
ple SPDY requests in one packet. Third, we see that receive
times with HTTP and SPDY are similar, with SPDY result-
ing in slightly better average receive times. We see that the
initialization time is much higher with HTTP because the
browser has to either open a new TCP connection to down-
load the object (and add the delay of a TCP handshake), or
wait until it can re-use an existing TCP connection.

SPDY incurs very little initialization time because the
connection is pre-established. On the other hand, it incurs
a significant wait time. Importantly, this wait time is signif-
icantly higher than the initialization time for HTTP. This
negates any advantages SPDY gains by reusing connections
and avoiding connection setup. The wait times for SPDY
are much greater because multiple requests are sent together
or in close succession to the proxy. This increases delay as

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 1011121314151617181920

A
v
e
ra

g
e
 O

b
je

c
t
T

im
e
 (

in
 m

s
e
c
)

Web Site

HTTP Init
HTTP Send
HTTP Wait

HTTP Recv
SPDY Init
SPDY Send

SPDY Wait
SPDY Recv

Figure 5: Split of average download times of objects
by constituent components.

the proxy catches up in serving the requests to the client.
Figure 7 discussed in the next section shows this behavior.

5.2 Web Page design and object requests
We now look at when different objects for a website are

requested by the browser. One of the performance enhance-
ments SPDY allows is for all objects to be requested in paral-
lel without waiting for the response of outstanding objects.
In contrast, HTTP has only one outstanding request per
TCP connection unless pipelining is enabled.

We plot the request time (i.e., the time the browser sends
out a request) for both HTTP and SPDY for four websites
(due to space considerations) in Figure 6. Two of these
are news websites and two contain a number of photos and
videos. SPDY, unlike what was expected, does not actually
request all the objects at the same time. Instead for three
of the four web sites, SPDY requests objects in steps. Even
for the one website where all the objects are requested in
quick succession, we observe a delay between the first re-
quest and the subsequent requests. HTTP, on the other
hand, requests objects continuously over time. The number
of objects it downloads in parallel depends on the number
of TCP connections the browser opens to each domain and
across all domains.

We attribute this sequence of object requests to how the
web pages are designed and how the browsers process them
to identify constituent objects. Javascript and CSS files in-
troduce interdependencies by requesting other objects. Ta-
ble 1 highlights that websites make heavy use of JavaScript
or CSS and contain anywhere from 2 to 73 different scripts
and stylesheets. The browser does not identify these further
objects until these files are downloaded and processed. Fur-
ther, browsers process some of these files (e.g., Javascripts)
sequentially as these can change the layout of the page. This
results in further delays. The overall impact to page load
speeds depends on the number of such files in a web page,
and on the interdependencies in them.

To validate our assertion that SPDY is not requesting
all the objects at once because of these interdependencies
and also to understand better the higher wait time of ob-
jects, we built two test web pages that consist of only a
main HTML page and images which we placed on a test
server (see Fig. 2). There were a total of 50 objects that

307

 0

 40

 80

 120

 160

 100 1000 10000

News Website

HTTP
SPDY

 0

 40

 80

 120

 160

 100 1000 10000

Photos and Videos Website

HTTP
SPDY

 0

 50

 100

 150

 200

 250

 300

 100 1000 10000

News Website

HTTP
SPDY

 0

 20

 40

 60

 80

 100

 120

 140

 100 1000 10000

Photos Website

HTTP
SPDY

Time from start (in msec)

C
u

m
u

la
ti
v
e

 O
b

je
c
ts

 R
e

q
u

e
s
te

d

Figure 6: Object request pat-
terns for different websites.

10

20

30

40

50

1 2 3 4 5 6 7 8

HTTP, different domains

10

20

30

40

50

1 2 3 4 5

HTTP, same domain

10

20

30

40

50

1 2 3 4 5 6 7

SPDY, different domains

10

20

30

40

50

1 2 3 4 5 6 7 8 9

SPDY, same domainO
b

je
c
t

ID

Time (in sec)

Figure 7: Object request and
download with test web pages.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000

O
b

je
c
t

ID
 (

in
 t

h
e

 o
rd

e
r

re
c
e

iv
e

d
 a

t
P

ro
x
y
)

Time (in msec)

Time between Request and First Byte

Data Download

Data Transfer

Figure 8: Queuing delay at the
proxy

needed to be downloaded as part of the web page. We con-
trolled the effect of domains by testing the two extremes: in
one web page, all the objects came from different domains,
while in the second extreme all the objects came from the
same domain. Figure 7 shows the results of these two tests.
Since there are no interdependencies in the web page, we
see that the browser almost immediately identifies all the
objects that need to be downloaded after downloading the
main HTML page (shown using red dots). SPDY then re-
quests all the images on the page in quick succession (shown
in green dots) in both cases. HTTP on the other hand, is
affected by these extremes. When all objects are on different
domains, the browser opens one connection to each domain
up to a maximum number of connection (32 in the case of
Chrome). When all the objects are on the same domain,
browsers limit the number of concurrent connections (6 in
the case of Chrome) but reuse the connections.

Note that while the requests for SPDY are sent out ear-
lier (green dots) than HTTP, SPDY has much more signif-
icant delay until the first byte of data is sent back to the
client (start of blue horizontal line). Moreover, we also ob-
serve especially in the different domain case, that if multi-
ple objects are downloaded in parallel the time to receive
the objects (length of blue line) is increased. We find in
this experiment that removing all the interdependencies for
SPDY does not significantly improve the performance. In
our tests, HTTP had an average page load time of 5.29s and
6.80s with single vs multiple domains respectively. Con-
versely, SPDY averages 7.22s and 8.38s with single or mul-
tiple domain tests. Consequently, prioritization alone is not
a panacea to SPDY’s performance in cellular networks.

5.3 Eliminating Server-Proxy link bottleneck
Figures 6 and 7 show that while today’s web pages do

not take full advantage of SPDY’s capabilities, that is not a
reason for the lack of performance improvements with SPDY
in cellular networks. So as the next step, we focus on the
proxy and see if the proxy-server link is a bottleneck.

In Figure 8 we plot the sequence of steps at the proxy for a
random website from one randomly chosen sample execution
with SPDY. The figure shows the objects in the order of
requests by the client. There are three regions in the plot for
each object. The black region shows the time between when
the object was requested at the proxy to when the proxy
receives the first byte of response from the web server. The
next region, shown in cyan, represents the time it takes the
proxy to download the object from the web server, starting
from the first byte that it receives. Finally, the red region
represents the time it takes the proxy to transfer the object
back to the client.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20

A
v
g
.
D

a
ta

 T
ra

n
s
fe

rr
e
d
 (

M
B

)

Time (min)

HTTP
SPDY

Figure 9: Average data transferred from proxy to
device every second.

It is clear from Figure 8 that the link between the web
server and proxy is not the bottleneck. We see that in most
cases, the time between when the proxy receives the request
from the client to when it has the first byte of data from
the web server is very short (average of 14 msec with a max
of 46 msec). The time to download the data, at an average
of 4 msec, is also quite short. Despite having the data,
however, we observe that the proxy is unable to send the
data quickly to the client device. There is a significant delay
between when the data was downloaded to the proxy to
when it begins to send the data to the client.

This result shows that SPDY has essentially moved the
bottleneck from the client to the proxy. With HTTP, the
client does not request objects until the pending ones are
downloaded. If these downloads take a while, the overall
download process is also affected. In essence, this is like
admission control at the client. SPDY gets rid of this by
requesting all the objects in quick succession. While this
works well when there is sufficient capacity on the proxy-
client link, the responses get queued up at the proxy when
the link between the proxy and the client is a bottleneck.

5.4 Throughput between client and proxy
The previous result showed that the proxy was not able

to transfer objects to the client quickly, resulting in long
wait times for SPDY. Here, we study the average through-
put achieved by SPDY and HTTP during the course of our
experiments. Since each website is requested exactly one
minute apart, in Figure 9 we align the start times of each
experiment, bin the data transferred by SPDY and HTTP
each second, and compute the average across all the runs.

308

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200

HTTP
SPDY

 0
 20
 40
 60
 80

 100
 120
 140

 0 3 6 9
 0

 20
 40
 60
 80

 100
 120
 140

 360 363 366 369
 0

 50

 100

 150

 200

 250

 300

 720 725 730 735
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1140 1145 1150

D
a

ta
 i
n

 F
lig

h
t

(i
n

 K
b

y
te

s
)

Time (in sec)

Figure 10: The number of unacknowledged bytes for a random run with HTTP and SPDY.

The figure shows the average amount of data that was
transferred during that second. The vertical lines seen every
minute indicate the time when a web page was requested.
We see from the graph that HTTP, on average, achieves
higher data transfers than SPDY. The difference sometimes
is as high as 100%. This is a surprising result because, in the-
ory, the network capacity between the client and the proxy
is the same in both cases. The only difference is that HTTP
uses multiple connections each of which shares the available
bandwidth, while with SPDY the single connection uses the
entire capacity. Hence, we would expect the throughput to
be similar; yet they are not. Since network utilization is de-
termined by how TCP adapts to available capacity, we shift
our attention to how TCP behaves in the cellular network.

5.5 Understanding TCP performance
To understand the cause for the lower average through-

put with SPDY, we look at how TCP behaves when there
is one connection compared to when there are multiple con-
nections. We start by looking at the outstanding bytes in
flight between the proxy and the client device with HTTP
and SPDY. The number of bytes in flight is defined as the
number of bytes the proxy has sent to the client that are
awaiting acknowledgment. We plot the data from one ran-
dom run of the experiment in Figure 10.

Figure 10 shows that there are instances where HTTP
has more unacknowledged bytes, and other instances where
SPDY wins. When we looked at the correlation between
page load times and the number of unacknowledged bytes,
we found that whenever the outstanding bytes is higher, it
results in lower page load times. To illustrate this, we zoom
into four websites (1, 7, 13 and 20) from the same run and
plot them in the lower half of Figure 10. For the first two
websites, HTTP has more unacknowledged data and hence
the page load times was lower (by more than one second),
whereas for 13 and 20, SPDY has more outstanding data
and hence lower page load times (faster by 10 seconds and
2 seconds respectively). We see that the trend applied for
the rest of the websites and other runs. In addition, we see
in websites 1 and 20 that the growth in outstanding bytes
(i.e., the growth of throughput) is quite slow for SPDY. We
have already established in Figure 8 that the proxy is not
starved for data. Hence, the possible reasons for limiting

the amount of data transferred could be either limits in the
sender’s congestion window or the receiver window.

5.5.1 Congestion window growth
We processed the packet capture data and extracted the

receive window (rwin) advertised by the client. From the
packet capture data, it was pretty clear that rwin was not
the bottleneck for these experimental runs. So instead we
focused on the proxy’s congestion window and its behavior.
To get the congestion window, we needed to tap into the
Linux kernel and ran a kernel module (tcp_probe) that re-
ports the congestion window (cwnd) and slow-start threshold
(ssthresh) for each TCP connection.

Figure 11 shows the congestion window, ssthresh, the
amount of outstanding data and the occurrence of retrans-
missions during the course of one random run with SPDY.
First we see that in all cases, the cwnd provides the ceiling
on the outstanding data, indicating that it is the limiting
factor in the amount of data transferred. Next we see that
both the cwnd and the ssthresh fluctuate throughout the
run. Under ideal conditions, we would expect them to ini-
tially grow and then stabilize to a reasonable value. Finally,
we see many retransmissions (black circles) throughout the
duration of the run (in our plot, the fatter the circle, the
greater the number of retransmissions.)

To gain a better understanding, we zoom into the inter-
val between 40 seconds and 190 seconds in Figure 12. This
represents the period when the client issues requests to web-
sites 2, 3, and 4. The vertical dashed line represents time
instances where there are retransmissions. From Figure 12
we see that, at time 60, when accessing website 2, both the
cwnd and ssthresh are small. This is a result of multi-
ple retransmissions happening in the time interval 0-60 sec-
onds (refer Figure 11). From 60 to 70 seconds, both the
cwnd and ssthresh grow as data is transferred. Since the
cwnd is higher than the ssthresh, TCP stays in conges-
tion avoidance and does not grow as rapidly as it would in
‘slow-start’. The pattern of growth during the congestion
avoidance phase is also particular to TCP-Cubic (because it
first probes and then has an exponential growth).

After about 70 seconds, there isn’t any data to transfer
and then the connection goes idle until about 85 seconds.
This is the key period of performance loss: At this time,

309

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200

N
u

m
b

e
r

o
f

S
e

g
m

e
n

ts

Time (in sec)

Retransmission

Outstanding Data

CWnd

SSThresh

Figure 11: The cwnd, ssthresh, and outstanding data
for one run of SPDY. The figure also shows times at
which there are retransmissions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 40 60 80 100 120 140 160 180

N
u

m
b

e
r

o
f

S
e

g
m

e
n

ts

Time (in sec)

CWnd
SSThresh
Out. Data

Figure 12: The cwnd, ssthresh, and outstanding data
for three consecutive websites.

when the proxy tries to send data, multiple effects are trig-
gered. First, since the connection has been idle, a TCP pa-
rameter (tcp_slow_start_after_idle) is triggered. Intu-
itively this parameter captures that fact that network band-
width could have changed during the idle period and hence
it makes sense to discard all the estimates of the available
bandwidth. As a result of this parameter, TCP reduces
the cwnd to the default initial value of 10. Note that the
ssthresh and retransmission timeout (RTO) values are left
unmodified; as a result the connection goes through slow
start until cwnd grows beyond the ssthresh.

Cellular networks make use of a radio resource controller
(RRC) state machine to manage the state of the radio chan-
nel for each device.3 The radio on the device transitions
between idle and active states to conserve energy and share
the radio resources. Devices transfer the most data when
they are in the active (or DCH) state. They transition to
idle after a small period of inactivity. When going from
idle to active, the state machine imposes a promotion delay,
which is typically around 2 seconds [12]. This promotion
delay results in a period in which TCP does not receive any
acknowledgments either. Since TCP’s RTO value is not reset
after an idle period, and this RTO value is much smaller than
the promotion delay, it results in a TCP time out and subse-

3Refer to Appendix A for a brief description of the RRC
state machine.

quent retransmissions (refer Figure 11). As a consequence,
cwnd is reduced and the ssthresh is set to a value based on
the cwnd (the specific values depend on the flavor of TCP).
TCP then enters slow start and cwnd and ssthresh grow
back quickly to their previous values (again this depends on
the version of TCP, and in this case depends on the behav-
ior of TCP-Cubic). As a result of an idle and subsequent
retransmission, a similar process repeats itself twice, at 90
and 120 seconds with the cwnd and ssthresh. Interestingly,
at 110 seconds, we do not see retransmissions even though
there was an idle period. We attribute this to the fact that
the RTO value is grown large enough to accommodate the
increased round trip time after the idle time.

When website 3 is requested at time 120, the cwnd and
ssthresh grow as data is transferred. The website also
transfers small amounts of data at around 130 seconds, af-
ter a short idle period. That causes TCP to reduce its cwnd
to 10. However the idle period is short enough that the
cellular network does not go idle. As a result, there are
no retransmissions and the ssthresh stays at 65 segments.
The cwnd remains at 10 as no data was transferred after that
time. When website 4 is requested at 180 seconds, however,
the ssthresh falls dramatically because there is a retrans-
mission (TCP as well as the cellular network become idle).
Moreover, there are multiple retransmissions as the RTT
estimates no longer hold.

5.5.2 Understanding Retransmissions
One of the reasons for both SPDY and HTTP’s perfor-

mance issues is the occurrence of TCP retransmissions. Re-
transmissions result in the collapse of TCP congestion win-
dow, which in turn hurts throughput. We analyze the oc-
currence of retransmissions and its cause in this section.

There are on average 117.3 retransmissions for HTTP and
67.3 for SPDY. We observed in the previous section that
most of the TCP retransmissions were spurious due to an
overly tight RTO value. Upon close inspection of one HTTP
run, we found all (442) retransmissions were in fact spurious.
On a per connection basis, HTTP has fewer retransmissions
(2.9) since there are 42.6 concurrent TCP connections open
on average. Thus, the 67.3 retransmits for SPDY results in
much lower throughput. We also note from our traces that
the retransmissions are bursty in nature and typically affect
a few (usually one) TCP connections. Figure 13 shows that
even though HTTP has a higher number of retransmissions,
when one connection’s throughput is compromised, other
TCP connections continue to perform unaffected. Since
HTTP uses a ‘late binding’ of requests to connections (by
allowing only one outstanding request per connection), it is
able to avoid affected connections, and maintain utilization
of the path between the proxy and the end-device. On the
other hand, since SPDY opens only one TCP connection, all
these retransmissions affect its throughput.

5.6 Cellular network behavior

5.6.1 Cellular State Machine
In this experiment we analyze the performance improve-

ment gained by they device staying in the DCH state. Since
there is a delay between each website request, we run a con-
tinual ping process that transfers a small amount of data ev-
ery few seconds. We choose a payload that is small enough

310

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9
x 10

4

Time index

R
e

tr
a

n
s
m

it
te

d
 f

ra
m

e
 n

u
m

b
e

r

HTTP

SPDY

TCP stream 3

TCP stream 11

TCP stream 9

Retransmission
bursts affecting
a single TCP
stream

Figure 13: Retransmission bursts
affecting a single TCP stream

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000

%
 o

f
in

s
ta

n
c
e
s

Page Load Time (msec)

SPDY - Ping
HTTP - Ping

HTTP - No Ping
SPDY - No Ping

Figure 14: Impact of cellular RRC
state machine.

-3000

-2000

-1000

 0

 1000

 2000

 3000

 2 4 6 8 10 12 14 16 18 20

R
e
la

ti
v
e
 d

if
fe

re
n
c
e

Website

HTTP

SPDY

Figure 15: Page load times with &
w/o tcp_slow_start_after_idle

to not interfere with our experiments, but large enough that
the state machine keeps the device in DCH mode.

Figure 14 shows the CDF of the page load times for the dif-
ferent websites across the different runs. Unsurprisingly, the
result shows that having the cellular network in DCH mode
through continuous background ping messages significantly
improves the page load time of both HTTP and SPDY. For
example, more than 80% of the instances load in less than 8
seconds when the device sends continual ping messages, but
only between 40% (SPDY) and 45% (HTTP) complete load-
ing without the ping messages. Moreover, SPDY performs
better than HTTP for about 60% of the instances with the
ping messages. We also looked into the number of retrans-
missions with and without ping messages; not surprisingly,
we observed that the number of retransmissions reduced by
∼91% for HTTP and ∼96% for SPDY indicating that TCP
RTT estimation is no longer impacted by the cellular state
machine. While this result is promising, it is not practical to
keep the device in DCH state as it wastes cellular resources
and drains device battery. Hence, mechanisms need to be
built into TCP that account for the cellular state machine.

5.6.2 Performance over LTE
We analyze the performance of HTTP and SPDY over

LTE in this section. LTE adopts an improved RRC state ma-
chine with a significantly smaller promotion delay. On the
other hand, LTE also has lower round-trip times compared
to 3G, which has the corresponding effect of having much
smaller RTO values. We perform the same experiments us-
ing the same setup as in the previous 3G experiments, but
connect to an LTE network with LTE USB laptop cards.

Figure 16 shows the box plot of page load times for HTTP
and SPDY over LTE. As expected, we see that both HTTP
and SPDY have considerably smaller page load times com-
pared to 3G. We also see that HTTP performs just as well
as SPDY, if not better, for the initial few pages. How-
ever, SPDY’s performance is better than HTTP after the
initial set of web pages. We attribute this to the fact that
LTE’s RRC state machine addresses many of the limitations
present in the 3G state machine, thereby allowing TCP’s
congestion window to grow to larger values and thus allow-
ing SPDY to transfer data more quickly. We also looked at
the retransmission data for HTTP and SPDY – the num-
ber of retransmissions reduced significantly with an average
of 8.9 and 7.52 retransmissions per experiment with HTTP
and SPDY (as opposed to 117 and 63 with 3G) respectively.

While the modified state machine of LTE results in bet-
ter performance, we also wanted to see if it eliminated the
issue of retransmission as a result of the state promotion de-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
a

g
e

 L
o

a
d

 T
im

e
 (

in
 m

s
e

c
)

Test Website

HTTP
SPDY

Figure 16: Page Load Time of HTTP and SPDY
over LTE

lay. We focus on a short duration of a particular, randomly
selected, run with SPDY in Figure 17. The figure shows
the congestion window of the TCP connection (in red), the
amount of data in flight (in cyan) and the times when there
are retransmissions (in black). The thicker retransmission
lines indicate multiple retransmissions. We see from the fig-
ure that retransmissions occur after an idle period in LTE
also. For example, at around 600 seconds, the proxy tries to
send data to the device after an idle period; timeouts occur
after the transmission of data, leading to retransmissions;
and the congestion window collapses. This result leads us
to believe that the problem persists even with LTE, albeit
less frequently than with 3G.

5.7 Summary and Discussion
We see from these results how the interaction between the

different layers affects performance. First we see websites
sending and/or requesting data periodically (ads, tracking
cookies, web analytics, page refreshes, etc.). We also observe
that a key factor affecting performance is the independent
reaction of the transport protocol (i.e., TCP) and the cellu-
lar network to inferred network conditions.

TCP implementations assume their cwnd statistics do not
hold after an idle period as the network capacity might have
changed. Hence, they drop the cwnd to its initial value. That
in itself would not be a problem in wired networks as the
cwnd will grow back up quickly. But in conjunction with the
cellular network’s idle-to-active promotion delay, it results in
unintended consequences. Spurious retransmissions occur-
ring due to the promotion delay cause the ssthresh to fall
to the cwnd value. As a result, when TCP tries to recover, it
goes through slow start only for a short duration, and then

311

 0

 20

 40

 60

 80

 100

 300 400 500 600 700 800

N
o
.
o

f
s
e
g
m

e
n
ts

Time (sec)

Congestion Window

Outstanding Data

Retransmissions

Figure 17: SPDY’s Congestion window and retrans-
missions over LTE.

switches to congestion avoidance, even for small number of
segments. From a TCP standpoint, this defeats the design
intent where short transfers that do not have the potential
of causing congestion (and loss) should be able to rapidly
acquire bandwidth, thus reducing transfer time. This dif-
ficulty of transport protocols ‘shutting down’ after an idle
period at just the time when applications wake up and seek
to transfer data (and therefore requiring higher throughput)
is not new and has been observed before [8]. However, the
process is further exacerbated in cellular networks with the
existence of a large promotion delay. These interactions thus
degrade performance, including causing multiple (spurious)
retransmissions that have significant undesirable impacts on
the individual TCP connection behavior.

Our results also point to a fundamental flaw in TCP im-
plementations. Existing implementations discard the con-
gestion window value after an idle period to account for
potential changes in the bandwidth during the idle period.
However, information about the latency profile (i.e., RTT es-
timates) are retained. With the cellular state machine, the
latency profile also changes after an idle period; since the es-
timates are inaccurate, it results in spurious retransmissions.
We notice that LTE, despite an improved state machine, is
still susceptible to retransmissions when coming out of the
idle state. When we keep the device in active mode continu-
ously, we transform the cellular network to behave more like
a traditional wired (and also a WiFi) network in terms of
latency profile. Consequently, we see results similar to the
ones seen over wired networks.

6. POTENTIAL IMPROVEMENTS
Having identified the interactions between TCP and the

cellular network as the root cause of the problem, in this
section, we propose steps that can minimize their impact.

6.1 Using multiple TCP connections
The observation that using a single TCP connection causes

SPDY to suffer because of retransmissions suggests a need
to explore the use of multiple TCP connections. We ex-
plore this option by having the browser use 20 SPDY con-
nections to a single proxy process listening on 20 different
ports.4 However, the use of multiple TCP connections did

4On the browser, we made use of a proxy auto config (PAC)
file that dynamically allocate the proxy address and one of
the 20 ports for each object requested.

not help in improving the page load times for SPDY. This
is primarily because with SPDY, requests are issued to each
connection up front. As a result, if a connection encounters
retransmissions, pending objects requested on that connec-
tion are delayed. What is required is a late binding of the
response to an ‘available’ TCP connection (meaning that it
has a open congestion window and can transmit data pack-
ets from the proxy to the client at that instant) and avoiding
a connection that is currently suffering from the effects of
spurious timeouts and retransmissions. Such a late binding
would allow the response to come back on any available TCP
connection, even if the request was sent out on a different
connection. This takes advantage of SPDY’s capability to
send the requests out in a ‘burst’, and allows the responses
to be delivered to the client as they arrive back, avoiding
any ’head-of-the-line blocking’.

6.2 TCP Implementation Optimizations

6.2.1 Resetting RTT Estimate after Idle
There is a fundamental need to decay the estimate of the

available capacity of a TCP connection once it goes idle.
The typical choice made today by implementations is to
just reset cwnd to the initial value. The round trip time
(RTT) estimate, however, is left untouched by implementa-
tions. The RTT estimate drives the retransmission timeout
(RTO) value and hence controls when a packet is retrans-
mitted. Not resetting the RTT estimate may be acceptable
in networks that have mostly ‘stable’ latency characteristics
(e.g., a wired or WiFi network), but as we see in our obser-
vations with the cellular network this leads to substantially
degraded performance. The cellular network has vastly vary-
ing RTT values. In particular, the idle to active transition
(promotion) can take a few seconds. Since the previous RTT
estimate derived when the cellular connection was active
may have been of the order of tens or hundreds of millisec-
onds, there is a high probability of a spurious timeout and
retransmission of one or more packets after the idle period.
These retransmissions have the cascading effect of reducing
the cwnd further, and also reducing ssthresh. Therefore,
when the cwnd starts growing, it grows in the congestion
avoidance mode, which further reduces throughput. Thus
the interaction of TCP with the RRC state machine of the
cellular network has to be properly factored in to achieve
the best performance. Our recommended approach is to re-
set the RTT estimate as well, to the initial default value (of
multiple seconds). This causes the RTO value to be larger
than the promotion delay for the 3G cellular network, thus
avoiding spurious timeouts and unnecessary retransmissions.
This, in turn, allows the cwnd to grow rapidly, ultimately re-
ducing page load times.

6.2.2 Benefit of Slow Start after Idle?
One approach we also considered was whether avoiding

the ’slow start after idle’ would improve performance. We
examined the benefit or drawback of the TCP connection
transitioning to slow start after idle. We disabled the slow
start parameter and studied the improvement in page load
time. Figure 15 plots the relative difference between the
average page load time of the different websites with and
without this parameter enabled. A negative value on the
Y-axis indicates that disabling the parameter is beneficial,
while a positive value indicates that enabling it is beneficial.

312

We see that the benefits vary across different websites. Our
packet traces indicate that the amount of outstanding data
(and hence throughput) is quite similar in both the cases.
The number of retransmitted packets seem similar under
good conditions, but disabling the parameter runs the risk
of having lots of retransmissions under congestion or poor
channel conditions since the cwnd value is inaccurate after
an idle period. In some instances, cwnd grows so large with
the parameter disabled, that the receive window becomes
the bottleneck and negates the benefit of a large congestion
window at the sender.

6.2.3 Impact of TCP variants
We replaced TCP Cubic with TCP Reno to see if mod-

ifying the TCP variant has any positive impact on perfor-
mance. We find in Table 2 that there is little to distinguish
between Reno and Cubic for both HTTP and SPDY over
3G. We see that the average page load time across all the
runs of all pages is better with Cubic. Average throughput
is quite similar with Reno and Cubic, with SPDY achieving
the highest value with Cubic. While this seemingly con-
tradicts the result in Figure 9, note that this result is the
average across all times (ignoring idle times), while the re-
sult in Figure 9 considers the average at that one second
instant. Indeed the maximum throughput result confirms
this: HTTP with Cubic achieves a higher throughput than
SPDY with Cubic. SPDY with Reno does not grow the con-
gestion window as much as SPDY with Cubic. This proba-
bly results in SPDY with Reno having the worst page load
time across the combinations.

Reno Cubic
HTTP SPDY HTTP SPDY

Avg. Page Load (msec) 9690.84 9899.95 9352.58 8671.09
Avg. Throughput (KBps) 121.88 119.55 115.36 129.79
Max. Throughput (KBps) 1024.74 528.88 889.33 876.98
Avg. cwnd (# segments) 10.45 24.16 10.59 52.11
Max. cwnd (# segments) 22 48 22 197

Table 2: Comparison of HTTP and SPDY with dif-
ferent TCP variants.

6.2.4 Cache TCP Statistics?
The Linux implementation of TCP caches statistics such

as the slow start threshold and round trip times by default
and reuses them when a new connection is established. If
the previous connection had statistics that are not currently
accurate, then the new connection is negatively impacted.
Note that since SPDY uses only one connection, the only
time these statistics come into play is when the connection
is established. It can potentially impact HTTP, however, be-
cause HTTP opens a number of connections over the course
of the experiments. We conducted experiments where we
disabled caching. Interestingly, we find from our results
that both HTTP and SPDY experience reduced page load
times. For example, for 50% of the runs, the improvement
was about 35%. However, there was very little to distinguish
between HTTP and SPDY.

7. RELATED WORK
Radio resource management: There have been several at-

tempts to improve the performance of HTTP over cellu-
lar networks (e.g. [10,12]). Specifically, TOP and TailTheft
study efficient ways of utilizing radio resources by optimiz-
ing timers for state promotions and demotions. [5] studies

the use of caching at different levels (e.g., nodeB, RNC) of a
3G cellular network to reduce download latency of popular
web content.

TCP optimizations: With regards to TCP, several propos-
als have tried to tune TCP parameters to improve its per-
formance [14] and address issues like Head of Line (HOL)
blocking and multi-homing. Recently, Google proposed in
an IETF RFC 3390 [4] to increase the TCP initial congestion
window to 10 segments to show how web applications will
benefit from such a policy. As a rebuttal, Gettys [6] demon-
strated that changing the initial TCP congestion window
can indeed be very harmful to other real-time applications
that share the broadband link and attributed this problem
to one of ”buffer bloat”. As a result Gettys, proposed the
use of HTTP pipelining to provide improved TCP conges-
tion behavior. In this paper, we investigate in detail how
congestion window growth affects download performance for
HTTP and SPDY in cellular networks. In particular, we
demonstrate how idle-to-active transition at different proto-
col layers results in unintended consequences where there are
retransmissions. Ramjee et al. [3] recognizes how challenging
it can be to optimize TCP performance over 3G networks
exhibiting significant delay and rate variations. They use an
ACK regulator to manage the release of ACKs to the TCP
source so as to prevent undesired buffer overflow. Our work
inspects in detail how SPDY and HTTP behave and thereby
TCP in cellular networks. Specifically, we point out a funda-
mental insight with regards to avoiding spurious timeouts.
In conventional wired networks, bandwidth changes but the
latency profile does not change as significantly. In cellular
networks, we show that spurious timeout is caused by the
fact that TCP stays with its original estimate for the RTT
and a tight retransmission timeout (RTO) estimate derived
over multiple round-trips during the active period of a TCP
connection is not only invalid, but has significant perfor-
mance impact. Thus, we suggest using a more conservative
way to manage the RTO estimate.

8. CONCLUSION
Mobile web performance is one of the most important

measures of users’ satisfaction with their cellular data ser-
vice. We have systematically studied, through field mea-
surements on a production 3G cellular network, two of the
most prominent web access protocols used today, HTTP and
SPDY. In cellular networks, there are fundamental interac-
tions across protocol layers that limit the performance of
both SPDY as well as HTTP. As a result, there is no clear
performance improvement with SPDY in cellular networks,
in contrast to existing studies on wired and WiFi networks.

Studying these unique cross-layer interactions when oper-
ating over cellular networks, we show that there are funda-
mental flaws in implementation choices of aspects of TCP,
when a connection comes out of an idle state. Because
of the high variability in latency when a cellular end de-
vice goes from idle to active, retaining TCP’s RTT estimate
across this transition results in spurious timeouts and a cor-
responding burst of retransmissions. This particularly pun-
ishes SPDY which depends on the single TCP connection
that is hit with the spurious retransmissions and thereby
all the cascading effects of TCP’s congestion control mecha-
nisms like lowering cwnd etc. This ultimately reduces through-
put and increases page load times. We proposed a holistic
approach to considering all the TCP implementation fea-

313

tures and parameters to improve mobile web performance
and thereby fully exploit SPDY’s advertised capabilities.

9. REFERENCES
[1] 3GPP TS 36.331: Radio Resource Control (RRC).

http://www.3gpp.org/ftp/Specs/html-info/36331.htm.

[2] Squid Caching Proxy. http://www.squid-cache.org.

[3] Chan, M. C., and Ramjee, R. TCP/IP performance over
3G wireless links with rate and delay variation. In ACM
MobiCom (New York, NY, USA, 2002), MobiCom ’02,
ACM, pp. 71–82.

[4] Chu, J., Dukkipati, N., Cheng, Y., and Mathis, M.
Increasing TCP’s Initial Window. http://tools.ietf.org/
html/draft-ietf-tcpm-initcwnd-08.html, Feb. 2013.

[5] Erman, J., Gerber, A., Hajiaghayi, M., Pei, D., Sen, S.,
and Spatscheck, O. To cache or not to cache: The 3g
case. IEEE Internet Computing 15, 2 (2011), 27–34.

[6] Gettys, J. IW10 Considered Harmful.
http://tools.ietf.org/html/
draft-gettys-iw10-considered-harmful-00.html, August
2011.

[7] Google. SPDY: An experimental protocol for a faster web.
http://www.chromium.org/spdy/spdy-whitepaper.

[8] Kalampoukas, L., Varma, A., Ramakrishnan, K. K.,
and Fendick, K. Another Examination of the
Use-it-or-Lose-it Function on TCP Traffic. In ATM
Forum/96-0230 TM Working Group (1996).

[9] Khaunte, S. U., and Limb, J. O. Statistical
characterization of a world wide web browsing session.
Tech. rep., Georgia Institute of Technology, 1997.

[10] Liu, H., Zhang, Y., and Zhou, Y. Tailtheft: leveraging
the wasted time for saving energy in cellular
communications. In MobiArch (2011), pp. 31–36.

[11] Popa, L., Ghodsi, A., and Stoica, I. HTTP as the
narrow waist of the future internet. In Hotnets-IX (2010),
pp. 6:1–6:6.

[12] Qian, F., Wang, Z., Gerber, A., Mao, M., Sen, S., and
Spatscheck, O. TOP: Tail Optimization Protocol For
Cellular Radio Resource Allocation. In IEEE ICNP (2010),
pp. 285–294.

[13] Shruti Sanadhya, and Raghupathy Sivakumar.
Adaptive Flow Control for TCP on Mobile Phones. In
IEEE Infocom (2011).

[14] Stone, J., and Stewart, R. Stream Control Transmission
Protocol (SCTP) Checksum Change.
http://tools.ietf.org/html/rfc3309.html, September
2002.

[15] W3techs.com. Web Technology Surveys. http://w3techs.
com/technologies/details/ce-spdy/all/all.html, June
2013.

[16] Wang, X. S., Balasubramanian, A., Krishnamurthy,
A., and Wetherall, D. Demystifying Page Load
Performance with WProf. In Usenix NSDI’13 (Apr 2013).

[17] Welsh, M., Greenstein, B., and Piatek, M. SPDY
Performance on Mobile Networks. https://developers.
google.com/speed/articles/spdy-for-mobile, April 2012.

[18] Winstein, K., Sivaraman, A., and Balakrishnan, H.
Stochastic Forecasts Achieve High Throughput and Low
Delay over Cellular Networks. In Usenix NSDI’13 (Apr
2013).

APPENDIX
A. CELLULAR STATE MACHINES

The radio state of every device in a cellular network fol-
lows a well-defined state machine. This state machine, de-
fined by 3GPP [1] and controlled by the radio network con-
troller (in 3G) or the base station (in LTE), determines when
a device can send or receive data. While the details of the

CELL_DCH

IDLE CELL_FACH

Idle for
5 sec

1.5 sec

Idle for
12 sec

DRX

Continuous
Reception

3G LTE

Short
DRX

Long
DRX

100 m
se

c

20 msec

RRC_CONNECTED

2 se
c

0.4
 se

c

RRC_IDLE
11.5 sec

0.4 sec
Queue size >

ThresholdSe
nd/R

cv
 D

at
a

Se
nd/R

cv
 D

at
a

No power
No Allocated
Bandwidth

No power
No Allocated
Bandwidth

Send/Rcv
Data

Power: 800 mW
High Bandwidth

Power:1000+ mW
High Bandwidth

Promotion

Demotion

Figure 18: The RRC state machines for 3G UMTS
and LTE networks

states, how long a device remains in each state, and the
power it consumes in a state differ between 3G and LTE,
the main purpose is similar: the occupancy in these states
control the number of devices that can access the radio net-
work at a given time. It enables the network to conserve
and share available radio resources amongst the devices and
for saving the device battery at times when the device does
not have data to send or receive.

3G state machine: The 3G state machine, as shown
in Figure 18, typically consists of three states: IDLE, For-
ward access channel (CELL FACH) and Dedicated chan-
nel (CELL DCH). When the device has no data to send
or receive, it stays in the IDLE state. The device does
not have radio resource allocated to it in IDLE. When
it wants to send or receive data, it has to be promoted to
the CELL DCH mode, where the device is allocated ded-
icated transport channels in both the downlink and uplink
directions. The delay for this promotion is typically ∼2 sec-
onds. In the CELL FACH, the device does not have a
dedicated channel, but can transmit at a low rate. This is
sufficient for applications with small amounts or intermit-
tent data. A device can transition between CELL DCH
and CELL FACH based on data transmission activity. For
example, if a device is inactive for ∼5 seconds, it is demoted
from CELL DCH to CELL FACH. It is further demoted
to IDLE if there is no data exchange for another ∼12 secs.
Note that these state transition timer values are not general
and vary across vendors and carriers.

LTE state machine: LTE employs a slightly modified
state machine with two primary states: RRC IDLE and
RRC CONNECTED. If the device is in RRC IDLE and
sends or receives a packet (regardless of size), a state promo-
tion from RRC IDLE to RRC CONNECTED occurs in
about 400 msec. LTE makes use of three sub-states within
RRC CONNECTED. Once promoted, the device enters
Continuous Reception state where it uses considerable power
(about 1000mW) but can send and receive data at high
bandwidth. If there is a period of inactivity (e.g., for 100
msec), the device enters the short Discontinuous Reception
(Short DRX) state . If data arrives, the radio returns to the
Continuous Reception state in ∼400 msec. If not, the device
enters the long Discontinuous Reception (Long DRX) state.
In the Long DRX state, the device prepares to switch to the
RRC IDLE state, but is still using high power and wait-
ing for data. If data does arrive within ∼11.5 seconds, the
radio returns to the Continuous Reception state; otherwise
it switches to the low power (< 15 mW) RRC IDLE state.
Thus, compared to 3G, LTE has significantly shorter pro-
motion delays. This shorter promotion delay helps reduce
the number of instances where TCP experiences a spurious
timeout and hence an unnecessary retransmission(s).

314

