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ABSTRACT
In recent years, spurred on by the development and avail-
ability of programmable NICs, end hosts have increasingly
become the enforcement point for core network functions
such as load balancing, congestion control, and application
specific network offloads. However, implementing custom
designs on programmable NICs is not easy: many potential
bottlenecks can impact performance.

This paper focuses on the performance implication of PCIe,
the de-facto I/O interconnect in contemporary servers, when
interacting with the host architecture and device drivers. We
present a theoretical model for PCIe and pcie-bench, an
open-source suite, that allows developers to gain an accu-
rate and deep understanding of the PCIe substrate. Using
pcie-bench, we characterize the PCIe subsystem in modern
servers. We highlight surprising differences in PCIe imple-
mentations, evaluate the undesirable impact of PCIe features
such as IOMMUs, and show the practical limits for common
network cards operating at 40Gb/s and beyond. Furthermore,
through pcie-bench we gained insights which guided soft-
ware and future hardware architectures for both commercial
and research oriented network cards and DMA engines.
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1 INTRODUCTION
The idea of end hosts participating in the implementation of
network functionality has been extensively explored in enter-
prise and datacenter networks [6, 7, 25, 49, 56, 58]. Moreover,
the disruptive introduction into the market of programmable
NICs, alongside the deployment in datacenters of hybrid
Xeon and FPGA platforms [15], has boosted the demand for
new refined solutions which combine software functions and
hardware NIC acceleration to improve end host network-
ing performance [53], flexibility [16], or a combination of
both [29]. Several efforts try to leverage end host hardware
programmability to improve datacenter scalability [12, 13]
or specific network functions such as load balancing, appli-
cation level quality of service and congestion control [1].

In this paper, we show that PCIe, alongside its interaction
with the host architecture and device drivers, can signifi-
cantly impact the performance of network applications. Past
research has mostly considered this impact in the context
of specific applications such as Remote DMA (RDMA) [24],
GPU-accelerated packet processing [17], and optimized Key-
Value-Store (KVS) applications [31, 32, 34]. In contrast, we
argue that a more generic approach to studying and char-
acterizing PCIe is needed as it has become essential to im-
plement not only specialized, high-performance network
functions, but also storage adaptors and custom accelera-
tor cards, such as for machine learning [23]. It is in this
context that we introduce a theoretical model for PCIe (§3),
design a methodology to characterize PCIe in real systems
(§4), describe its implementation (§5), and present the results
derived using our approach (§6). This permits us to draw
several specific conclusions about the way PCIe currently
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operates and the implications this has for operating system
and application design (§7). For example, we demonstrate
how both NUMA for PCIe devices and IOMMUs can have a
negative performance impact on application performance.

The contributions of this paper are:
• We introduce a model of PCIe. The model provides a
baseline for expected PCIe throughput for a wide range
of PCIe configurations. It also allows to quickly assess
the performance impact when iterating through design
alternatives for device and device driver interactions, e.g.,
when implementing custom NIC functionality.
• Weoutline amethodology, pcie-bench: a combination of
micro-benchmarks that systematically measures aspects
of performance for both a device’s DMA engines and,
more crucially, the PCIe root complex1.
• We describe two implementations of pcie-bench based
on commodity PCIe peripherals: commercially available
programmable NICs from Netronome and the latest NetF-
PGA boards. The implementations are available as open
source2 to allow for the reproducibility of our results and
to enable other practitioners to apply to other systems
and architectures.
• We present the first, publicly-disclosed, detailed measure-
ments of PCIe performance across several generations
of conventional host-systems; this permits us to trace
the evolution of PCIe root complex implementations and
highlight some surprising differences between implemen-
tations even from the same vendor.
• We discuss the lessons we learned alongside a number
of practical use-cases for pcie-bench. From the original
need to characterize, debug, and improve implementa-
tions, to aid and evaluate the growing area of research
of customized solutions enabled by programmable NICs.
Furthermore, the results are also directly applicable to
the growing number of other high-performance such as
specialized accelerator cards.

2 MOTIVATION
Traditionally, I/O interconnects in commodity systems, such
as PCIe, are not widely studied, in part, because they have
worked effectively for many years. It is only as we have I/O
devices that approach (and exceed) the capabilities offered by
PCIe, e.g., dual-port 40Gb/s network adapters, that we have
seen a significant number of hardware-software co-designs3

1The PCIe root complex connects the processors and memory subsystem
of a host system with the PCIe switch fabric to individual PCIe devices. Its
functionality is similar to the PCI host bridge in older systems.
2https://www.pcie-bench.org
3Such I/O-aware software design is hardly new. In the past, when faster
ATM and 1Gb/s PCI bus adapters were introduced, many driver and kernel
redesigns have been proposed [9, 50, 60].

with the constraints of PCIe in mind [16, 29, 30]. Along-
side them, many novel software frameworks have also been
proposed to avoid the overhead of conventional network
stacks [3, 8, 46, 54].
Unfortunately, with 40 and 100Gb/s NICs, PCIe, even in

combination with optimized software stacks, is becoming
the bottleneck. Moreover, modern network applications with
tight latency requirements can be affected by the delays in-
troduced by both the DMA engines in PCIe devices and the
PCIe end-host implementation. Finally, the host-side imple-
mentation of PCIe in modern x86 based servers has been
changing dramatically, and alternative server architectures
are also emerging. We now look at these aspects in more
detail.
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Figure 1: Modeled bidirectional bandwidth of a PCIe
Gen 3 x8 link, the achievable throughout of a simplis-
tic NIC and a modern NIC with a typical kernel driver
and a DPDK driver.

PCIe impact onnetwork application throughput.APCIe
Gen 3 x8 interface, typically used by 40Gb/s NICs, has a
throughput of 62.96 Gb/s at the physical layer. However,
PCIe protocol overheads reduce the usable bandwidth to
around 50 Gb/s, or significantly less, depending on the PCIe
access patterns. Figure 1 shows the effective bi-directional
bandwidth achievable for such a device (Effective PCIe
BW). The saw-tooth pattern is caused by the packetized struc-
ture of the PCIe protocol where the data to be transferred,
e.g., a network packet, is broken up into smaller PCIe packets
with their own PCIe level headers.

Apart from transferring the packet data itself, a NIC also
has to read TX and freelist descriptors, write back RX (and
sometimes TX) descriptors and generate interrupts. Device
drivers also have to read and update queue pointers on the
device. All these interactions are PCIe transactions consum-
ing additional PCIe bandwidth. If we model a very simple
NIC, which DMAs individual descriptors for every packet
and where the driver reads/writes the queue pointers for
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every packet, we can see a dramatic decrease in achievable
bi-directional bandwidth (Simple NIC). Such a device would
only achieve 40 Gb/s line rate throughput for Ethernet frames
larger than 512B. Most modern NICs (and drivers) therefore
implement a number of optimizations, such as en-queuing
descriptors in batches, pre-fetching descriptors, interrupt
moderation, etc. These optimizations increase the complex-
ity of the NIC but are required to achieve acceptable through-
put. Modern NIC (kernel driver) in the figure shows the
throughput of such a moderately optimized NIC/driver com-
bination with a typical Linux kernel driver. Modern software
frameworks, such as DPDK [8], enable further optimizations
at the driver level (no NIC hardware changes). By disabling
interrupts and polling write-back descriptors in host memory
instead of device registers, the number of PCIe transactions
is further reduced and the achievable bandwidth is increased
(Modern NIC (DPDK driver)). We detail how these models
are derived in Section 3. However, Figure 1 shows that when
designing custom offloads to programmable NICs, developers
and researchers have to be acutely aware of the overheads
imposed by PCIe transactions, caused both by the device and
the device driver.

PCIe impact on network application latency. We used
an ExaNIC [11] to estimate the contribution of PCIe to the
overall end-host latency experienced by a network applica-
tion. We executed a loopback test to measure the total NIC
latency (from application to the wire and back) with various
sized packets. The test writes a packet to the driver’s buffer
and measures the latency between when the packet starts
to be written to PCIe and when the packet returns. The test
utilizes kernel bypass mode, so does not include any kernel
overheads. We also modified the ExaNIC firmware, using
Exablaze firmware development kit4, to measure the PCIe
latency contribution.

600
800
1000
1200
1400
1600
1800
2000
2200
2400

0 200 400 600 800 1000 1200 1400 1600

90.6%
84.4%

77.2%

M
ed
ia
n
La
te
nc
y
(n
s)

Transfer Size (Bytes)

NIC
PCIe contribution

Figure 2: Measurement of NIC PCIe latency.

Figure 2 shows the results from the test. On the ExaNIC,
the PCIe subsystem contributes between 77% of the latency
for 1500B packets, increasing to more than 90% for small
4http://www.exablaze.com/docs/exanic/user-guide/fdk/fdk/

packet sizes. In particular, the overall latency is well within
the range which has been shown to have negative impact on
performance for several common datacenter applications [63].

Measurement of NIC PCIe latency Figure 2 illustrates
that the round trip latency for a 128B payload is around
1000 ns with PCIe contributing around 900 ns . With 40 Gb/s
Ethernet at line rate for 128B packets, a new packet needs
to be received and sent around every 30ns . Assuming that
the measured PCIe latency is symmetric, this implies that
the NIC has to handle at least 30 concurrent DMAs in each
direction to accommodate this latency in order to achieve
line rate for 128B packets. Given that a NIC also has to issue
DMAs for descriptors, the number of in-flight DMAs a NIC
has to handle is even higher. Furthermore, as we show in
§6.2, some systems introduce significant variance in latencies,
which the NIC’s DMA engines also have to accommodate.
This not only introduces significant complexity whenwriting
optimized software for programmable NICs but also imposes
constraints on the device driver having to supply host buffers
in large enough batches for the NIC to consume.

PCIe root complex is evolving. In modern, x86 based
servers, the PCIe root complex has seen a rapid evolution
in recent years. Specifically, together with the memory con-
troller(s), it has been closely integrated with the CPU cores,
enabling tighter integration of PCIe devices with a CPU’s
caches, e.g., Intel’s Data Direct I/O (DDIO) [20]. For multi-
socket systems, this integration also results in non-uniform
memory access (NUMA [28]) for PCIe devices: Some DMA re-
quests may target memory local to the socket the PCIe device
is attached to while others need to traverse the CPU inter-
connect. Finally, most modern systems have an IOMMU [22]
interposed in the data path between a PCIe device and the
host. The IOMMUperforms address-translation for addresses
present in PCIe transactions and utilizes an internal Trans-
action Lookaside Buffer (TLB) as a cache for translated ad-
dresses. On a TLB miss, the IOMMU must perform a full
page table walk, which may delay the transaction and thus
may increase latency and impact throughput. These recent
technologies not only impact the overall latency (and band-
width) of PCIe transactions, but they also introduce variance
as transactions are now depending on the temporal state of
caches, IOMMU TLB and the characteristics of the CPU in-
terconnects. Furthermore, after years of a relative x86 mono-
culture in the server market, designs around ARM64 and
Power processors have all received mainstream deployment.
Each of these architectures have vastly different implementa-
tions of the I/O subsystem and most of the associated details
are not publicly available, making it hard for researchers
to characterize and understand the differences among these
server architectures.
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The impact of PCIe on the throughput experienced when
data needs to be transferred from hardware to software and
vice versa, the predominant contribution of PCIe to the over-
all NIC latency, the introduction of new technologies in the
PCIe root complex, and the mainstream deployment of new
server architectures have motivated us to build pcie-bench:
to get a better, more detailed and systematic understand-
ing of the PCIe implementation in commodity systems and
to help developers to fine tune applications to make more
efficient use of the underlying system.

3 MODELLING PCIE
As part of pcie-bench we have developed a model of the
PCIe specification [47, 57]. The model allows us to: (1) vali-
date bandwidthmeasurements frommicro-benchmarks against
expected bandwidth based on the specification, and (2) model
the impact of more complex device/host interactions, such
as shown in Figure 1 with the NIC models.
PCIe uses a high-speed serial interconnect based on a

point-to-point topology consisting of several serial links (or
lanes) between endpoints. It is a protocol with three lay-
ers: physical, data link and transaction. While the data link
layer (DLL) implements error correction, flow control and
acknowledgments, the transaction layer turns user applica-
tion data, or completion data, into PCIe transactions using
Transaction Layer Packets (TLPs).

Most available 40Gb/s NICs today have a PCIe Gen 3 in-
terface with 8 lanes. Each lane offers 8 GT/s (Giga Trans-
actions per second) using a 128b/130b encoding, resulting
in 8 × 7.87 Gb/s = 62.96 Gb/s at the physical layer. The
DLL adds around 8–10% of overheads due to flow control
and acknowledgment messages, leaving around 57.88Gb/s
available at the TLP layer5. For each transaction, the physical
layer adds 2B of framing and the DLL adds a 6B header.
At the transport layer, the standard defines a number of

different TLP types. For the purpose of this paper, the rele-
vant packet types are: Memory Read (MRd), Memory Write
(MWr), and Completion with Data (CplD). TLPs have a com-
mon header, a type specific header, and an optional trailing
digest. The common header contains information, such as
the type of TLP and the TLP length, and is 4B in size. The
header of MWr and MRd TLPs is 12B long (assuming 64bit
addressing) while for CplD TLPs it is 8B. The maximum
amount of data carried in a single TLP (Maximum Payload
Size, or MPS) is negotiated between the peers and the op-
tional 4B digest contains an end-to-end CRC (ECRC). Typical
values for the MPS are 256B or 512B.

5The DLL overhead depends on the transaction rate and implementation
details. The value of 57.88 Gb/s was derived using recommended values
from the PCIe specification [47].

PCIe MWr transactions are simple posted transactions and
the number of bytes transferred by a DMA write of size sz
can be calculated with:

Btx = ⌈sz/MPS⌉ ×MWr_Hdr + sz (1)

where MWr_Hdr is 24B (2B framing, 6B DLL header, 4B
TLP header, and 12B MWr header). In contrast, PCIe mem-
ory reads (MRd), e.g., a device reading data from the host,
require two TLP types: MRd TLPs and CplD TLPs. A MRd
TLP is sent to request data from the peer, then the data is
returned via one or more CplD TLPs. Thus, PCIe memory
reads consume bandwidth in both directions. A MRd request
may only request data up a certain amount (Maximum Read
Request Size, or MRRS), negotiated between the peers. A
typical value for the MRRS is 512B. The data returned via
CplD TLPs is bounded by the MPS. The number of bytes
consumed for a DMA read of size sz is then:

Btx = ⌈sz/MRRS⌉ ×MRd_Hdr + sz (2)
Brx = ⌈sz/MPS⌉ ×CplD_Hdr + sz (3)

withMRd_Hdr being 24B and CPL_Hdr 20B.
The PCIe configuration of a device, e.g., PCIe Gen 3 device

with 8 lanes (x8), provides us with the available bandwidth
and the values for MPS and MRRS. With the formula above,
we can then calculate the effective bandwidth for different
transfer sizes sz. The graph Effective PCIe BW in Figure 1
was calculated using this model assuming a PCIe Gen 3 x8 de-
vice,MPS = 256B, andMRRS = 512B using 64bit addressing.
The saw-tooth pattern shows the overhead of the additional
DLL/TLP headers for every MPS bytes of data, with the over-
head being higher for smaller transfer sizes. The graph also
shows the impact of MRRS as the additional MRd TLPs con-
sume bandwidth which otherwise would be usable by MWr
transactions.
The model also allows us to calculate the overhead for

more complex device/host interactions. For example, for the
graph of the Simple NIC in Figure 1 we calculate the PCIe
bandwidth used both for packet send (TX) and receive (RX)
of a simple NIC. For TX, the driver writes updates the TX
queue tail pointer on the device (4B PCIe write). The device
then DMAs the descriptor (16B PCIe read) and, subsequently,
the packet buffer. After transmission, the device generates an
interrupt (4B PCIe write) and the driver reads the TX queue
head pointer (4B PCIe read). For RX, the driver updates the
RX queue tail pointer to enqueue a buffer on the freelist (4B
PCIe write). The device then DMAs the freelist descriptor
(16B PCIe read), DMAs the packet (PCIe write) and the RX
descriptor (16B PCIe write) to the host and generates an
interrupt (4B PCIe write). Finally, the driver reads the RX
queue head pointer (4B PCIe read). The model then calculates
the overhead for each of these transactions and computes
the achievable bandwidth.

330



Understanding PCIe performance for end host networking SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

The NIC model described above is very simplistic and all
modern NICs deploy a variety of optimizations. For example,
the Intel Niantic NIC [19] DMAs batches of up to 40 TX
descriptors from the host and may write batches up to 8
TX descriptors back to the host. Optimized NIC (kernel
driver) in Figure 1 shows the performance impact of these
optimizations over the simple NICmodel. Throughput can be
further improved by driver changes, as shown by Optimized
NIC (DPDK driver) in the same figure. The Intel DPDK
driver configures the device differently: no interrupts are
generated and the driver does not read device registers to
determine if packets have been received/transmitted6. The
graphs for the optimized NIC show that even a moderate
amount of optimization on both the device and the driver
side can significantly improve the achievable throughput.
Our PCIe model is not limited to calculating achievable

throughput for NICs. It can equally be used to programmat-
ically model any PCIe device, provided that some details,
typically obtainable from the device driver or the data sheet,
are available. Furthermore, the model can and has been used
to quickly assess the impact of alternatives when designing
custom NIC functionality. The model has some limitations:
Some of the lower level PCIe overheads, in particular for flow
control messages are only estimated based on the PCIe spec-
ification and the model slightly overestimates their impact.
Furthermore, the model does not account for PCIe overheads
of unaligned DMA reads. For these, the specification requires
the first CplD to align the remaining CplDs to an advertised
Read Completion Boundary (RCB, typically 64B) and un-
aligned PCIe reads may generate additional TLPs.

4 THE PCIE-BENCH METHODOLOGY
While the PCIe protocol stack is relatively easy to model, it
is the implementation of the DMA engine and, in particular,
the increased complexity of the PCIe root complex, discussed
in §2, which makes it hard to evaluate the end to end PCIe
performance in real systems. Therefore, we designed a set
of PCIe micro-benchmarks in the spirit of lmbench [39] and
hbench:OS [5]. The main idea is to perform individual PCIe
operations from a device to a buffer in host memory while
carefully controlling the parameters which may affect per-
formance.
Figure 3 illustrates the host buffer setup and the param-

eters which determine the access from a PCIe device. We
define a (logically) contiguous buffer on the host. The buffer
may be contiguous in DMA address space or comprised of a
number of smaller buffers. It must be significantly larger than
the size of the Last Level Cache (LLC), because, on some ar-
chitectures, the PCIe root complex interfaces with the cache

6The DPDK driver polls on descriptor queues in host memory instead,
checking for the valid fields indicating that a descriptor has been updated.

Transaction 0 Transaction 1

Host Buffer

Window size

Cacheline

Window
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Transaction 2

Figure 3: Host buffer layout and access parameters

system of the CPUs. To measure cache effects, only a subset
of the host buffer, the window size, is accessed repeatedly.

For a given micro-benchmark we access the window size
of the host buffer with multiple DMA requests and keep the
amount of data transferred with each request fixed (transfer
size). A DMA may start at an offset from a host cache line,
allowing us to determine if there are any penalties for un-
aligned accesses. To ensure that each DMA request touches
the same number of cache lines, the window is divided into
equal sized units. Each unit is the sum of offset and transfer
size, rounded up to the next cache line. A micro-benchmark
can typically be configured to access the units sequentially
or randomly (access pattern), though for most experiments
in this paper we use random access. For each benchmark,
the state of the CPU cache needs to be carefully controlled.
By default, the cache is thrashed before every benchmark to
ensure a cold cache. Optionally, we may attempt to warm
the cache from the host, by writing to the window (host
warm), or from the device. The latter is achieved by issuing a
number of write DMAs to the window (device warm), before
running tests. Understanding the impact of the host cache
system is important: when transmitting packets from the
host, typically, at least the packet header would be cache res-
ident, and when receiving from the network, the packet data
may get DMAed to non-cache resident buffers, depending
on the overall pressure on the caches. Finally, the locality
of the host buffer needs to be controlled. In SMP systems
with integrated PCIe and memory controller, the entire host
buffer is either allocated local to the node the PCIe device is
attached to, or to a different (non-local) node.

4.1 Latency benchmarks
The first set of the PCIe micro-benchmarks measures the
latency of individual PCIe operations. Measuring the latency
of a PCIe Memory Read (MRd) transactions (from the device)
is relatively easy on most programmable hardware: take a
timestamp before issuing a DMA Read and another times-
tamp when the completion of the DMA Read is signaled by
the DMA engine, then log the time-difference. DMA Read
latency benchmarks are labeled LAT_RD throughout.
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The latency of DMA Memory Writes can not be mea-
sured directly from the device as PCIe Memory Write (MWr)
transactions are posted: they are sent without explicit ac-
knowledgment of success. Instead, we indirectly measure
the latency of writes by issuing a DMA Write followed by
a DMA Read from the same address. PCIe ordering ensures
that the PCIe root complex handles the Read after the Write.
Note, this approach does not allow us to compute the latency
of DMAWrites alone as the latency of the DMA Read may be
affected by the preceding DMAWrite. The results from these
benchmarks are labeled LAT_WRRD. For latency benchmarks
we record the latency for each transaction and then calculate
the average, median, min, max, 95th, and 99th percentile.

Latency measurements allow us to assess the cost of cache
and IO-TLB misses, or the added latency for accessing re-
mote memory from a PCIe device. While we can not measure
the latency of a DMAWrite directly, the latency of a DMA
Write followed by a DMA Read to the same address pro-
vides insights into technologies, such as DDIO. Measuring
latency includes the device overheads, such as the cost of
issuing DMA requests or receiving notifications of comple-
tions. Therefore, when looking at the impact of the PCIe root
complex, it is more insightful to study the relative change in
latencies rather than the absolute latency values.
As highlighted in Section 2, latency measurements are

of particular importance when writing software for pro-
grammable NICs or when implementing DMA engines in
(reconfigurable) logic: the measured latency in Figure 2 by
far exceeds the inter-packet times for small packets. Mea-
sured latency and its variance determines howmany in-flight
DMAs need to be handled.

4.2 Bandwidth benchmarks
The second set of PCIe micro-benchmarks focuses on band-
width. DMA bandwidth is measured by taking a timestamp
at the start, issuing a significant number of DMAs and taking
a timestamp at the end. The bandwidth can be calculated by
the time difference and the amount of data transferred. We
are interested in straight DMA Read and DMA Write band-
width (labeled BW_RD and BW_WR respectively). To measure
bi-directional bandwidth we issue alternating DMARead and
Write transactions (labeled BW_RDWR). This ensures that PCIe
MRd TLPs compete with PCIe MWr TLPs for the bandwidth
to the root complex.
Bandwidth benchmarks, especially with small transfer

sizes and random access patterns, generate a significant load
on the system. If the DMA engine can saturate the PCIe
link with 64 byte transfers, this would generate around 69.5
million transactions per second in each direction with the
root complex handling a transaction every 5ns . Therefore,
bandwidth micro-benchmarks can expose limitations in the

root complex implementation as well as stressing the imple-
mentation of a device’s DMA engines.

5 IMPLEMENTATIONS
The pcie-bench methodology requires programmatic and
fine grained control over the PCIe device’s DMA engines.
We have implemented the methodology on both commer-
cial boards from Netronome and research oriented NetF-
PGA boards. Two independent implementations of the same
methodology validate our performancemeasurements against
different host architectures and provide direct insights into
two different PCIe implementations.

5.1 Netronome NFP implementations
Netronome offers a number of highly programmable NICs
based on the NFP-6000 and NFP-4000 Ethernet controllers
[44, 45, 59]. These Ethernet controllers feature up to 120
eight-way multi-threaded Flow Processing Cores (FPCs), a
hierarchical memory subsystem, and fully programmable
PCIe interfaces, all interconnected via a distributed switch
fabric. The PCIe subsystem exposes two interfaces to the
FPCs: A command interface allowing the core to issue small
PCIe read and write transactions directly from registers and
a bulk DMA interface allowing FPCs to en-queue large trans-
fers between host memory and memory on the NFP. The
PCIe micro-benchmarks are implemented as firmware on
the FPCs utilizing both interfaces. The micro-benchmarks
work both on NFP-4000 and NFP-6000 based controllers.

Firmware. The full PCIe micro-benchmark suite is imple-
mented in a single firmware image. It provides a simple
control interface, allowing a user space program on the host
to select which type of benchmark to run and provide the
necessary configuration parameters, such as the host buffer
location, transfer size etc. Benchmark results are written to
NFP memory where they can be read back from the host.

Latency tests are run on a single thread in one of the FPCs.
This thread calculates the next host address to use and pre-
pares a DMA descriptor. The thread then reads the current
value of the internal timestamp counter and enqueues the
DMA descriptor to the DMA engine. The DMA engine sig-
nals the thread once the DMA completed and the thread
takes another timestamp and journals the difference to mem-
ory on the NFP. A variant of the latency benchmarks uses the
direct PCIe command interface, which is suitable for small
transfer (up to 128 bytes). With this variant, instead of build-
ing and enqueuing a DMA descriptor, the thread can directly
issue the PCIe read or write commands and gets signaled
on completion. The timestamp counter increments every 16
clock cycles, which, on a 1.2 GHz NFP, provides a resolution
of 19.2ns . For latency benchmarks we typically journal the
timing for 2 million transactions.
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For DMA bandwidth tests, the challenge is to ensure that
DMA descriptors are enqueued to the DMA engine at a
higher rate than it drains the queue. To achieve this for
small transfer sizes, we use 12 cores with 8 threads as DMA
workers. In a loop, each DMA worker thread calculates a
host address, prepares and enqueues a DMA descriptor and
yields until the completion is signaled. An atomic counter,
shared between all workers, is decremented before issuing
a new DMA request. If the counter value goes below zero,
the worker stops. For BW_RDWR tests, each worker issues a
DMA Read if the counter is even and a DMA Write when
the counter is odd. A control thread is used to start all the
worker threads and waits for them to complete. The elapsed
time is used to calculate the achieved bandwidth. For band-
width tests 8 million DMA requests are performed. For both
DMA latency and bandwidth tests the DMA descriptors are
configured to target an internal 256 KB SRAM, known as the
Cluster Target Memory. This memory has an access latency
of 50-100 cycles. Enqueuing DMA descriptors incurs a sim-
ilar latency. These latencies add a fixed cost to each DMA
transfer, and while they are specific to the NFP, we expect
other programmable NICs to have similar overheads. The
firmware is implemented in Micro-C, an NFP specific exten-
sion to C. The micro-benchmark suite is implemented with
around 1500 lines of code, with the core requiring around
500 lines of code. The code can be compiled, without exter-
nal dependencies, to run on NFP6000 and NFP4000 based
networking cards.

5.2 NetFPGA
NetFPGA is an open-source community platform [43]. It is
supported by cutting-edge reconfigurable boards, reference
software and hardware designs, as well as the infrastructure
for design development and verification. The latest gener-
ation of NetFPGA board, NetFPGA-SUME, is a PCIe host
adapter card [62] capable of 100Gb/s application speeds. The
board utilizes a large Xilinx Virtex-7 FPGA device incorpo-
rating two PCIe Gen 3 hard-blocks, along with resources such
as QDRII+ and DDR3 memory types.

Hardware.The PCIemicro-benchmark suite is implemented
directly on the FPGA. It enhances the DMA engine described
in [61] with pcie-bench capabilities. The system provides a
simple control interface, allowing the host to select which
micro-benchmark to run along with its parameters. The sys-
tem keeps track of time through a free-running counter,
operating at PCIe core frequency (250MHz), providing a res-
olution of 4ns . Every time the software triggers a new micro-
benchmark, a finite state machine coded into the hardware,
calculates the host addresses and generates the associated
memory read or write request. The design does not use a
FIFO to enqueue DMA requests, instead the DMA requests

are directly passed to the DMA engine. All the memory
requests are generated on-the-fly as the hardware design
allows transmission of a new request every clock cycle.

For latency tests, the system is configured to take a times-
tamp before a DMA read and after the acknowledgment
signal is received. The system records up to 1000 latency
values. For bandwidth tests, the system measures the total
time it takes to perform 1 million transactions. Benchmark
results are written to NetFPGA memory after a benchmark
run, where they can be read back from the host. The FPGA
design is written in Verilog and System Verilog. The micro-
benchmark suite is implemented with around 1200 lines
of code. It can be compiled for NetFPGA-SUME and Xilinx
VC709 boards.

5.3 Kernel drivers
Both the NFP and the NetFPGA implementations use a kernel
driver to initialize the hardware, allocate host memory for
DMAs and provide access to user space programs to control
the execution of the benchmarks and to collect the results.
The NFP pcie-bench driver uses the standard NFP kernel
driver7. It allocates the host side DMA buffers in chunks
of 4MB as this the maximum size which can be allocated
physically contiguous on most Linux kernel versions. The
NetFPGA driver allocates memory either from hugetlbfs
(with 1GB pages) or standard 4KB system pages. hugetlbfs
is the default option as it allows for the easy allocation of
large, physically contiguous areas of memory. Both drivers
provide control over which NUMA node memory is allocated
from and export an interface allowing a user space program
to warm the caches with the controlled portions of the host
DMA buffers. The NFP pcie-bench kernel module is im-
plemented in around 400 lines of code while the NetFPGA
driver is implemented in approximately 800 lines of code.

5.4 Control programs
The execution of benchmarks, gathering of the data and post-
processing of the results is performed by user space programs
in both implementations. The NFP implementation uses a
Python program with a small utility, written in C, to handle
cache warming. The Python program can be used to run
individual tests or a full suite of tests. A complete run takes
about 4 hours and executes around 2500 individual tests. For
latency benchmarks, the control program reads the timing
data of the individual transactions and calculates various
metrics, such as the average, median, min, max and 95th and
99th percentile. Optionally, it generates CDFs, histograms
and time series of the data. For bandwidth tests, the control
program calculates the bandwidth and transaction rate. It is
implemented in 1600 lines of Python and 120 lines of C code.
7https://github.com/Netronome/nfp-drv-kmods
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The NetFPGA control program is implemented in approx-
imately 600 lines of C code and provides a command line
interface to control the individual test parameters. The raw
test results are written to a file for further processing.

5.5 Implementation on other devices
pcie-bench is best implemented on PCIe devices providing
programmatic, fine-grained control over the DMA engines,
such as the Netronome NFP and NetFPGA described above.
There is a growing number of PCIe cards with similar capabil-
ities. For example, the Intel Xeon Phi coprocessor exposes the
device’s DMA engines via descriptor rings both to the Phi’s
cores and the host [18]. There are also a growing number
of programmable NICs with integrated FPGAs, such as the
already mentioned Exablaze NICs [11] and Mellanox’s Pro-
grammable ConnectX-3 Pro [40]. Implementing pcie-bench
on these devices should require roughly the same effort as it
took for the initial two implementations.
Some limited aspects of pcie-bench could potentially

be implemented on non-programmable, commodity NICs
in loopback mode by carefully controlling the locations of
buffers used for packet send and receive. For example, one
could repeatedly enqueue the same packet buffer for trans-
mit and vary the freelist buffers to direct received packets to
a variable window size (or vice versa). The relative changes
in latency or bandwidth may provide some insight into host
side PCIe implementation and changing the alignment of
buffer addresses may reveal limitations of a device’s DMA
engines. Note, however, the results will likely be less accurate
than those obtainable with programmable PCIe devices as
measurements with commodity NICs would always include
overheads for descriptor transfers.

6 EXPERIMENTAL EVALUATION
This section reports the pcie-bench suite in action. Table 1
lists the details of the systems used for the evaluation results
presented in this paper. We focus on systems built around
Intel’s Xeon E5 processors as this is the most common config-
uration used in datacenter servers at the time of writing [55].
We discuss results obtained comparing several generations
of Xeon E5 processors but also include some data from an
Intel Xeon E3 system to compare results with a different pro-
cessor architecture. For all experiments we use a PCIe Gen 3
x8 configuration as it is the default for modern NICs. We ex-
pect the pcie-bench methodology to be equally applicable
to other PCIe configurations including the next generation
PCIe Gen 4 once hardware is available.

6.1 Baseline bandwidth and latency
As the first set of results we present the baseline throughput
of the NFP-6000 and NetFPGA implementations in Figure 4.

We compare them to the required bandwidth for 40Gb/s Eth-
ernet as well as a simplified model of achievable throughput
for a PCIe Gen 3 device. The model accurately calculates the
overhead of the physical, data link, and transaction layer of
PCIe but only estimates the overhead of flow control mes-
sages. We measure the throughput of PCIe read, write, and
alternating read/write transfers for different transfer sizes to
a fixed, 8KB host buffer, which is warmed before each test to
eliminate any caching effects. We vary the transfer size from
64B to 2048B in rough increments of powers of 2 but take
additional measurements with −1/ + 1B around important
transfer sizes, such as some cache line or TLP size bound-
aries. All DMA start addresses are cache line aligned and all
tests were performed on the same Xeon E5 2637v3 system to
eliminate any differences in system configuration. Figure 4
shows the results.
In all three data sets, the NetFPGA implementation of

pcie-bench closely follows the PCIe bandwidth calculated
with our model. For PCIe writes the NetFPGA implementa-
tion achieves a slightly higher throughput though. This is
because the model assumes a fixed overhead for flow control
messages which, for uni-directional traffic, would not impact
traffic throughput. The NFP implementation of pcie-bench
generally achieves slightly lower throughput than the NetF-
PGA implementation (but typically achieves throughput suf-
ficient to support 40Gb/s Ethernet rates). The main reason is
that the NetFPGA implementation directly drives the DMA
engines from the internal FPGA memory and does not per-
form any additional processing. In the NFP implementation,
the DMA engines must also transfer data to/from the host
into internal SRAM, and then transfer it further into NFP
internal memory where it can be accessed by the FPCs of
the NFP card. These additional overheads, as well as the re-
quired buffer management and signaling, introduce a slight
performance degradation. Finally, it is worth noting that each
graph shows that neither implementation is able to achieve
a read throughput required to transfer 40Gb/s Ethernet at
line rate for small packet sizes.
Next, we look at the latency of individual DMA transac-

tions varying the transfer size (Figure 5). The setup is the
same as for the bandwidth results described above. Overall,
the latency numbers for both the NFP-6000 and NetFPGA
are of the same order of magnitude, indicating that the bulk
of the latency can be attributed to general PCIe and overall
host overheads. It is very similar across the four generations
of Intel processors we measured and is also in line with the
latency measured using the ExaNIC presented in § 2.

The latency for DMA requests is higher on the NFP-6000
with an initial fixed offset of about 100ns for smaller trans-
fers, and the gap increasing for larger transfers. The reasons
are twofold. The fixed offset can be explained with the over-
head of enqueuing DMA descriptors to the DMA engines,
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Name CPU NUMA Architecture Memory OS/Kernel Network Adapter
NFP6000-BDW Intel Xeon E5-2630v4 2.2GHz 2-way Broadwell 128GB Ubuntu 3.19.0-69 NFP6000 1.2GHz
NetFPGA-HSW Intel Xeon E5-2637v3 3.5GHz no Haswell 64GB Ubuntu 3.19.0-43 NetFPGA-SUME
NFP6000-HSW NFP6000 1.2GHz
NFP6000-HSW-E3 Intel Xeon E3-1226v3 3.3GHz no Haswell 16GB Ubuntu 4.4.0-31 NFP6000 1.2GHz
NFP6000-IB Intel Xeon E5-2620v2 2.1GHz 2-way Ivy Bridge 32GB Ubuntu 3.19.0-30 NFP6000 1.2GHz
NFP6000-SNB Intel Xeon E5-2630 2.3GHz no Sandy Bridge 16GB Ubuntu 3.19.0-30 NFP6000 1.2GHz

Table 1: System configurations. All systems have 15MB of LLC, except NFP6000-BDW, which has a 25MB LLC.
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Figure 4: Baseline PCIe DMA bandwidth for NFP6000-HSW and NetFPGA-HSW with warm caches.
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Figure 5:Median DMA latency for NFP-6000 and NetFPGA;
minimum and 95th percentile are shown as error bars.

which is avoided in the NetFPGA implementation. When
using the NFP’s direct PCIe command interface, designed for
smaller transfers, the NFP-6000 achieves the same latency
as the NetFPGA, further indicating that the majority of the
latency can be attributed to host system. The widening of the
gap as the transfer size increases can be explained by consid-
ering the internal architecture of the NFP (§ 5.1). Every DMA
transfer to/from the host causes an additional transfer from
the internal SRAM to NFP internal memory. This additional
transfer increases the latency depending on the transfer size,
but it is useful for decoupling the DMA request from the
(variable) packet processing times performed by the FPCs.

6.2 Comparing architectures
Figure 5 shows that the minimum and 95th percentile of
DMA latencies for a Intel Xeon E5 system are very close to
the median latency, suggesting that there is little variance
in the latency experienced by PCIe transactions. Figure 6
shows the distribution of 64B DMA read latencies for the
same system (NFP6000-NFP) as a CDF. The graph confirms
that 99.9% of all transactions fall inside a narrow 80ns range
starting with a minimum of 520ns and a median of 547ns . The
maximum latency out of 2 million transactions was 947ns .
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Figure 6: Latency distribution for Xeon E5 and E3 for 64B
DMA reads with warm caches.

The figure also shows the result from a Xeon E3 system
of the same processor generation (NFP6000-HSW-E3). The
results stand in stark contrast to those from the Xeon E5
system. The minimum latency on the Xeon E3 system is
actually lower with 493ns but themedian is more than double
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with 1213ns . Furthermore, from around the 63rd percentile
the latency increases dramatically with the 90th percentile
being double themedian and the 99th percentile being 5707ns .
The 99.9th percentile (11987ns) is an order of magnitude
larger than the median with most latencies beyond being
larger than 1ms up to a maximum latency of 5.8ms .

The differences are also reflected in the bandwidth bench-
marks (not shown) where for DMA reads the Xeon E3 system
only matches the Xeon E5 system for transfers larger than
512B and, for DMA writes, never achieves the throughput
required for 40Gb/s Ethernet for any transfer size.
We can only speculate on the causes for this different

behavior. It seems likely that Intel maintains completely
different PCIe root complex implementations for its Xeon E5
and Xeon E3 lines of processors. Looking inmore detail at the
Xeon E3 data, there is no regular pattern to the occurrence of
the longer latencies. We suspect that, in particular the larger
latencies may be related to hidden power saving modes. We
have previously observed large (< 1ms) latencies on Xeon E5
systems before disabling power saving modes in the BIOS.
However, disabling them on the Xeon E3 system did not
significantly change the latency distribution.

6.3 Caching and DDIO
We now examine the impact of caching and DDIO on PCIe
transactions. For these experiments we keep all parameters
constant, except for the window size and the state of the LLC.
The window size was varied from 4KB to 64MB, exceeding
the 15MB or 25MB size of the LLC on all our systems.
Firstly, we look at PCIe transaction latency. To measure

the latency we use the NFP’s PCIe command interface with
8 Byte transactions, as it is the lowest latency operation we
have available. We ensure that each subsequent transaction
touches a different cache line as described in Section 4.1. The
results are shown in Figure 7(a). For PCIe reads (LAT_RD)
with a cold cache we see no changes in latency as we change
the window size: All PCIe reads are serviced from memory.
When the cache is warm, the read latency is around 70ns
lower but increases once the window size exceeds the size
of the LLC. This confirms that PCIe reads are serviced from
the LLC if the data is resident in the cache. With a warm
cache, the latency of a posted PCIe write followed by a read
(LAT_WRRD) follows roughly the same pattern: writes and
reads hit the LLC and, once the window size exceeds the LLC
size, the latency increases by around 70ns . For a cold cache
the LAT_WRRD results illustrate the effect of DDIO: For small
window sizes new cache lines get allocated and writes (and
subsequent reads) are performed to/from the cache. Once the
window size exceeds the 10% of the LLC reserved for DDIO,
dirty cache lines have to be flushed out to memory before
the write can succeed, causing a 70ns delay for most writes.

For larger transfer sizes, the differences between hitting the
cache or not is reduced significantly: for 64B LAT_WRRD tests
the difference is around 10ns .
The bandwidth data, presented in Figure 7(b), suggest a

similar story. For 64B DMA Reads (BW_RD), there is a mea-
surable benefit if the data is already resident in the LLC. For
larger transfer sizes (not shown) the benefit is smaller, and
from 512B DMA Reads onwards, there is no measurable dif-
ference. For DMAWrites (BW_WR), there is no benefit if the
data is resident in the cache or not. There is also no mea-
surable benefit on keeping the windows size below the 10%
of the LLC. We suspect that the DDIO portion of the cache
is cleaned quick enough, so that all DMA Writes either hit
the main LLC or the DDIO portion. Since DDIO can not be
disabled and there are no dedicated performance counters it
is not possible to validate this hypothesis.

6.4 NUMA impact
With the PCIe root complex and memory controllers inte-
grated in each CPU node, a PCIe device may access memory
local or remote to the node to which it is attached. In this
section we evaluate the performance impact of this non-
uniform memory access. The host buffer is allocated either
on the node the PCIe device is attached to (local) or on the
other node in a 2-way NUMA system (remote). The cache is
warmed or thrashed on the node the buffer is allocated from.

Figure 8 shows the percentage change for DMA read band-
width of local memory versus remote memory for different
transfer sizes across different window sizes with a warm
cache. 64B DMA reads experience a 20% drop in throughput
(from ∼32Gb/s to ∼25Gb/s). The difference drops to around
10% once the DMAs are not serviced from the local cache
anymore. With 128 and 256B DMA reads the penalty for
accessing remote memory drops to 5-7% (e.g., from ∼44Gb/s
to ∼41Gb/s for 128B). There is no noticeable penalty for 512B
DMA reads. The data is confirmed by cold cache DMA read
throughput (not shown) where remote 64B reads experience
a constant 10% penalty (∼5% for 128B and 256B reads).
The throughput of DMA Writes does not seem to be af-

fected by the locality of the host buffer nor by the size of the
host buffer. In contrast with the Intel specification [20], we
believe that all DMA Writes may be initially handled by the
local DDIO cache.

For completeness, the latency numbers do not differ much
from the local case presented in Figures 5 and 7 except that
remote accesses add a constant 100ns of latency to our sys-
tems. Overall, the results from our two dual socket systems
(NFP6000_BDW and NFP6000_IB) are the same, indicating
there has been little change in the two generations sepa-
rating them.
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6.5 The IOMMU effect
Finally, we look at the impact of an IOMMU interposed in
the datapath between PCIe devices and the host. To mea-
sure the impact of the IOMMU, we enable it on the Linux
kernel command line with intel_iommu=on. IOMMU imple-
mentations in Ivy Bridge and newer architectures support
super-pages to reduce the number of page table entries, and
thus reduce the number of TLB entries. For our experiments
we disable this behavior (by also specifying sp_off on the
kernel command line). This forces the use of 4KB page table
entries and allows us to use a relatively small 64MB host
buffer for our experiments.
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Figure 9: Impact of IOMMUs on DMA reads of different
transfer sizes with warm caches (NFP6000-BDW).

Figure 9 shows the result for different transfer sizes. Like
the data presented in Section 6.4 the graph shows the per-
centage change to the same experiment run without IOMMU.
For small window sizes, there are no measurable differences
across the range of transfer sizes. However, once the win-
dow size is increased beyond 256KB, the throughput drops
dramatically. For 64B DMA Reads it drops by almost 70% and
even for 256B DMAs the drop is still a significant 30%. There
is no change for transfer sizes of 512B and above. For DMA
Writes (not shown), the drop is not quite as dramatic (55%
for 64B writes), but is still very significant.

From this data we conclude that on that particular system
the IO-TLB has 64 entries (256KB/4KB), a number that is not
published by Intel. The latency of 64B Reads increases from
around 430ns to 760ns , putting the cost of an IO-TLB miss
and subsequent page table walk at around 330ns . For smaller
transfer sizes this penalty is relatively high compared to the
time it takes to transfer the data, and thus the impact on the
throughput is higher still. The data is surprisingly consistent
across all 4 generations of Intel micro-architectures where
we ran the experiments, and we observe the same effects
with our NetFPGA pcie-bench implementation. With such
consistent results across the 4 micro-architecture genera-
tions we conclude Intel’s IOMMUs have undergone little
development since their first implementation.

7 LESSON LEARNED AND USE CASES
The results obtained from pcie-bench can be and have been
used to characterize and tune system software for high per-
formance I/O. There are a plethora of sophisticated tools
to analyze operating system and application performance,
e.g., [14, 21], as well as tools to understand the performance
impact of host CPU architectures and OS primitives, e.g.,
[5, 39]. However, none of these tools provide detailed insights
into the performance of the I/O subsystem. pcie-bench pro-
vides the necessary data to fine-tune specialized network
stacks [37, 38], and optimize kernel IOMMU handling [48].
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Area Observation Evaluation-directed recommendation
IOMMU (§6.5) Significant throughput drops as working-set size increases. Co-locate I/O buffers into superpages.

DDIO (§6.3) Small transactions are faster when the data is resident in the cache. DDIO improves descriptor ring access and
performance for small packet receive.

NUMA (§6.4) Higher cost of DMA reads from remote memory compared to local caches. Place descriptor rings on the local node.(small transactions)
NUMA (§6.4) No significant difference between remote and local cache performance. Place packet buffers on the node where
(large transactions) processing happens.

Table 2: Notable findings from this paper, derived experimentally with pcie-bench.

Table 2 reports the notable findings from this paper which
have been derived experimentally with pcie-bench. Based
on the IOMMU data, we strongly recommend using super-
pages and trying to force the IO buffers used for DMA to
be co-located in as few super-pages as possible. This may
be possible in carefully controlled environments, such as
virtualized network appliances. However, in multi-tenant
Virtual Machine (VM) environments offering assigned PCIe
devices to VMs, it is currently not possible to isolate the IO
performance of VMs sufficiently with Intel’s IOMMUs.

For NUMA architectures, we found that small DMA reads
from the remote cache are significantly more expensive than
reads from the local cache. Accessing data on a remote node
also adds around 100ns of latency. While it may not be fea-
sible to “pin” small network packets to the local node, it
would certainly be useful to locate data structures, such as
descriptor rings, on the local node. Our data suggests that,
for larger packet sizes, the locality of the packet buffer is not
critical and it is recommended to allocate data on the nodes
where the processing happens.

Finally, our measurements confirm the documented oper-
ation of DDIO and show that, for small transfers, accesses
are around 70ns faster for cache resident data. We see two
areas where this can be beneficial for network applications.
Firstly, access to descriptor rings is lower latency, and there-
fore incur less overhead. Secondly, the integration with the
caches should benefit small packet receive, in particular for
packet sizes which are not multiples of a cacheline (e.g., 64B
Ethernet frames with the 4B FCS stripped). Since the data is
directly DMAed into the cache, dirty cachelines do not need
to be written back to memory before the DMA can succeed.

While the above lessons focus on optimizing host system
software, the insights gained with pcie-bench have also im-
plications for the growing area of research moving beyond
straightforward TCP offload to offloading more complex pro-
cessing to programmable and reconfigurable network cards,
e.g., [2, 26, 51, 52]. In order to implement the firmware or
reconfigurable logic for these application-offloads, it is impor-
tant to have a detailed characterization of the DMA engines
and their interaction with the host system. The data pro-
vided by pcie-bench is ideal to guide such implementation

choices. For example, understanding the latency of trans-
actions for the Netronome boards has heavily influenced
the design of multiple firmware implementations that offer
different offloads of network processing. The latency data
determines how many in-flight DMAs the firmware has to
handle (for both packet data DMA and descriptor DMAs)
to sustain line rate. In turn, this determines the sizing of
I/O structures such as rings and other storage for in-flight
DMAs along with specifying the appropriate number of Flow
Processing Cores and threads. The latency and bandwidth
data also determines the amount of batching performed both
in the firmware and the corresponding device driver in the
operating system. For example, on the NFP6000-HSW system,
it takes between 560−666ns to transfer 128B of data from the
host to the device. At 40Gb/s line rate for 128B packets, a new
packet needs to be transmitted every 29.6ns . This means that
the firmware and DMA engines need to handle at least 30
transactions in flight. These calculations can be extended to
take into account the latency for descriptor transfers and to
work out the cycle budget for each DMA. If the IOMMU is en-
abled, the firmware and DMA engines also need to cover the
occasional latency increase of ∼ 330ns , caused by IOMMU
TLB misses. Furthermore, we have seen significant variance
in latencies on some systems, most notably on a Xeon E3 sys-
tem, which further complicate the implementation of high
performance firmware or DMA engine designs.

Finally, the pcie-bench methodology and measurements
can be used by silicon engineers to evaluate existing designs
and inform the objectives of future architecture of DMA en-
gines. For example, the PCIe-latency measurements were
used to assess each iteration of a suite of NetFPGA DMA-
engine designs. Being able to compare the current design
with data from other implementations helps to determine
if a performance bottleneck is due to artifacts in the host
architecture or is a design limitation. More importantly, the
methodology was also extensively used for validation dur-
ing chip bring-up, and to guide architectural decisions in
future silicon at Netronome. Using micro-benchmarks, as
provided by pcie-bench, are ideal as they provided detailed
and controlled data which is not obtainable by other means.
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8 RELATEDWORK
Several papers have observed PCIe and its interactions with
host architecture in the context of higher performance net-
work applications. Kalia et al. [24] provide a low level evalu-
ation and recommendation for RDMA primitives and how
they interact with PCIe. Li et al. [32] discuss the benefits of
DDIO on the performance of modern Key-Value-Store (KVS)
applications. The impact of NUMA on device DMA was dis-
cussed by Lim et al. [34] in relation to high performance
KVS applications and by Han et al. [17] for GPU accelerated
packet processing. All these touch on some aspects covered
in this paper but in the context of some higher level applica-
tions. In contrast, pcie-bench allows for a systematic study
of PCIe performance characteristics. The results obtained can
then be used to explain application performance behavior in
detail and may guide future application level performance
improvements more accurately.
As for more generic studies about PCIe, there has been

little micro-benchmark work beyond Miller et al. [41] who
describes an approach to measure PCI and first generation
PCIe interconnect latency through a differential analysis of
transaction delays. Moll et al. [42] demonstrated the use of
FPGA based hardware for profiling software applications
including an analysis of PCI bus performance, while Endo
et al. [10] demonstrate the importance of latency in interac-
tive and transactional application software. In addition, they
introduced a new set of micro-benchmarks to assess the per-
formance against latency and encourage further, application-
specific study of PCI interconnect latency impact.

Surveying specialist cases of PCIe, Lostrie et al. [36] present
a setup for benchmarking the performance of the full PCIe-
communication path between two FPGA-boards with mi-
croTCA. While, Koop et al. [27] evaluate InfiniBand on a
PCIe 2.0 system. The authors study the benefits of PCIe 2.0
on both DDR and QDR data rates on the Mellanox Con-
nectX and also investigate the general trend of additional
interconnect bandwidth upon application-performance on
multi-core machines. Earlier still, Liu et al. [35] evaluate the
third generation InfiniBand HCAs from Mellanox, which
supports PCIe interfaces. They compare the performance
of these with HCAs using PCI-X interfaces. The evaluation
consists of a set of micro-benchmarks at the interconnect
level, including latency, bandwidth, and bidirectional band-
width experiments. They show that InfiniBand HCAs with
PCIe interfaces deliver excellent performance. However, the
methodology is only superficially similar to our own with a
focus firmly on InfiniBand performance.
Finally, Braithwaite [4] and Li et al. [33] investigate I/O

bandwidth in NUMA architectures. The former presents a
method for analyzing main memory and PCIe data-access

characteristics of modern AMD and Intel NUMA architec-
tures. They also present the synthesis of data-access per-
formance models designed to quantify the effects of these
architectural characteristics on bandwidth. Li et al.further
contribute a characterization of the state-of-the-art NUMA
hosts, and propose a methodology to simulate I/O operations
using memory semantics, and in-turn model the I/O band-
width performance. In both cases, these efforts provide little
insight into the explicit and evolving relationship between
PCIe and modern NUMA architectures.

9 CONCLUSION AND FUTUREWORK
This paper shows that PCIe, alongside its interaction with
the root complex and device drivers, can significantly im-
pact the performance of end host networking. Past research
has reported some of the findings in the context of specific
applications, such as RDMA and KVS acceleration. In con-
trast, we provide a theoretical model and a methodology,
pcie-bench, to understand and study inherent bottlenecks
of the PCIe protocol. We also present two implementations
of the methodology for a systematic evaluation and charac-
terization of PCIe devices in real systems.
Beyond the pcie-bench design and implementation, we

discuss our characterization results from a number of sys-
tems. We share lessons learned with implications for current
software systems and future hardware designs. Our study
allows exploration of the impact of new PCIe and host archi-
tecture features such as DDIO and IOMMUs. Specifically, we
demonstrate that the PCIe integration with caches of DDIO
works well but, also characterize the significant, and some-
times undesirable, impact that Intel IOMMUs and NUMA
may have when high DMA rates are necessary.
Our initial results show that more work is to be done.

Given the remarkable differences in PCIe performance be-
tween Xeon E5 and Xeon E3 systems, a more detailed study
with different architectures, e.g., AMD, ARM64, and Power
based servers, would provide further interesting insights into
PCIe implementations. Furthermore, we have not yet studied
the impact of multiple high performance PCIe devices in the
same server, a common configuration in datacenters. Such a
study would reveal further insights into the implementation
of IOMMUs (e.g., are IO-TLB entries shared between devices)
and potentially unearth further bottlenecks in the PCIe root
complex implementation.
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