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ABSTRACT
It is widely accepted that the current Internet architecture
is insufficient for the future: problems such as address space
scarcity, mobility and non-universal connectivity are already
with us, and stand to be exacerbated by the explosion of
wireless, ad-hoc and sensor networks. Furthermore, it is far
from clear that the ubiquitous use of standard transport and
name resolution protocols will remain practicable or even
desirable.

In this paper we propose Plutarch, a new inter-networking
architecture. It subsumes existing architectures such as that
determined by the Internet Protocol suite, but makes ex-
plicit the heterogeneity that contemporary inter-networking
schemes attempt to mask. To handle this heterogeneity,
we introduce the notions of context and interstitial func-
tion, and describe a supporting architecture. We discuss
the benefits, present some potential scenarios, and consider
the research challenges posed.

1. INTRODUCTION
The remarkable success of the global Internet is frequently
attributed to a set of design decisions that prioritize sim-
plicity and robustness through a strongly specified suite of
protocols, and the incorporation of only essential mecha-
nisms within the network itself. The astounding growth of
this network over the past thirty years serves as a clear tes-
tament to the wisdom of these principles.

However, in recent years, the Internet’s architectural as-
sumptions have been fundamentally challenged. In particu-
lar, the introduction of specialized networks such as sensor
networks, along with various middleboxes have all begun
to strain the existing framework. As a result, we propose
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Plutarch, a new framework for next generation networks.
It differs from the existing Internet architecture primarily
in that it embraces heterogeneity in the hope of allowing
radical innovation. The homogeneous Internet architecture
and its advantages are not abandoned but retained as one
architecture among many.

In Plutarch we divide the world into contexts, each compris-
ing some set of hosts, routers, switches, network links and so
forth. Within a context we expect homogeneity regarding
such things as addresses, packet formats, transport proto-
cols and naming services. Distinct contexts differ in at least
one of these areas.

Communication across a set of contexts is enabled by in-
terstitial functions, which map between the sets of func-
tionalities encapsulated by contexts. We can divide such
functionalities into four main areas:

Addressing: Mapping between different address contexts
is a well-understood problem, and one that exists today in
NAT boxes, for example. We suggest that programmatic
interfaces to such functionality should be exposed, allow-
ing mappings to be automatically set up, maintained and
managed by network users.

Naming: Today, DNS provides a single global namespace,
with management handled by hierarchical delegation. We
predict that emerging services such as VoIP and personal
area networking will favour an alternative approach of map-
ping between a plurality of naming systems, for reasons of
scalability and administrative overhead.

Routing: Different styles of routing protocol are appropri-
ate in different networks. For example, connecting an ad-hoc
wireless network with on-demand routing to an Internet AS
running OSPF and BGP requires a more complex mapping
than simply exposing the routes of each network via BGP.
Using an explicit interstitial function to map routing infor-
mation between these networks hides the churn of Internet
routes from the on-demand protocol, deals with the wireless
network protocol’s broadcast, and hides the instability and
mutability of routes within the wireless network.



Transport: A single transport protocol struggles to deal
with all network technologies; symptomatic of this prob-
lem is the example of wireless-specific TCP implementations
that use techniques such as splitting and proxying (e.g. [9]).
Optimizing transport protocols for specific network types
has many advantages (for example, the use of large fat pipes
in Grid infrastructures) but these come at the cost of work-
ing out when such optimizations are appropriate. Explicit
interstitial functions provide well-defined points at which
such decisions can be taken.

By not limiting the set of interstitial functions that may be
defined and built we hope to support extensibility within ex-
isting networks, and encourage innovation within new ones.

2. MOTIVATION
We present the Plutarch framework for a number of rea-
sons. The principal one is the concrete problem of con-
necting networks where a common overlay protocol such as
IPv4 or IPv6 is infeasible or undesirable, for example sensor
networks, or specialized networks which offer valuable intra-
domain functionality which IP must ignore. We discuss this
issue, and how our solution addresses it, in the rest of this
paper.

The second reason is that the abstract model underlying
Plutarch captures the state of the Internet we see today
better than models based on the Internet’s original archi-
tectural principles [11]. This is not to say these principles
are wrong or inappropriate; rather, we claim that a concep-
tual framework based upon them does not facilitate clear
thinking about the future of the network. They may be the
right principles, but they are not an adequate frame.

Finally, a model of networking based on explicit contexts
provides a clearer framework within which to debate future
architectural changes to the Internet than the current tra-
dition allows. We hope it will allow the debate to move
forward.

We accept that we might appear to be moving the debate
back, to the days where the Internet was a concatenation of
disparate networks (ARPANET, MILNET, SATNET, etc),
or catenet, rather than the universal lowest-common-
denominator overlay network it latterly became. However,
we feel that there is merit in revisiting this approach to
networking and extending it to take account of much more
recent computer science and distributed systems research.
One could view the approach of Plutarch as application of
concepts such as late binding and context relative nam-
ing from the last two decades of distributed systems re-
search [28].

Consequently, this paper concentrates on naming and ad-
dressing issues for establishing connectivity between radi-
cally heterogeneous networks, a problem that the Internet
Protocol only partially solved. In this paper, we are literally
concerned only with ‘inter-networking,’ and not with any of
the many other networking issues such as the units, timeli-
ness or guarantee of resource allocation, security or auditing.
A concrete realization of our framework must address these
issues, but within the contexts of the particular networks
being connected: we do not believe it is sensible to address

them through a single unifying overlay network protocol.

3. THE INTERNET PROTOCOL MODEL
The IP suite imposes a single networking model and ad-
dressing scheme over the many different underlying network
types it supports. This model [6, 11] is characterized by in-
dependent datagrams, a single, global address space for all
endpoints, and unreliable best-effort delivery. The resulting
homogeneity has allowed both overlying applications and
underlying network implementations to be deployed inde-
pendently, and has seen the network as a whole develop at
a rapid rate. The Internet’s sucess is usually rationalized by
its homogeneity at the IP layer and the ease and low cost of
its implementation.

Although the homogeneity imposed by a universal IP layer
has provided the scaffolding to develop today’s global net-
work, it is now an inhibitor of further innovation. The IP
suite forms a strict ‘semantic bottleneck’ to which it is in-
creasingly difficult to cleanly incorporate anything but in-
cremental modification. A prime example of an unclean
modification that has nonetheless taken hold is Network
Address Translation (NAT) [23]. NAT boxes serve a very
useful purpose in the real Internet, while breaking one of
the model’s fundamental assumptions: all machines on the
Internet are equal in terms of connectivity (if not capacity
or bandwidth).

In fact, it can be argued that this assumption has been in-
valid for some time, regardless of the presence or absence of
NAT. Due to the nature of Internet routing and the com-
plexity of running a network (or any distributed system) of
such scale, it is common to discover that two seemingly con-
nected Internet nodes cannot communicate directly. This
recently lead to the development of the Resilient Overlay
Network (RON) [2].

However, we believe that this bottleneck is an inevitable con-
sequence of the homogenization of the network layer, rather
than a weakness inherent in IP. Although helpful for a num-
ber of years, while the network was undergoing its initial
‘big bang’ phase, the approximations in the model are now
becoming too out-of-step with reality. Consequently, merely
replacing the existing protocol suite will not be sufficient to
avoid future similar shortcomings; the model itself must be
addressed.

4. ARCHITECTURE
In contrast to proposals for new protocols or modifications
to existing ones, we suggest that future network architec-
tures focus on mechanisms allowing inter-operation of many
heterogeneous networks without mandating a one-size-fits-
all protocol suite. The extensive heterogeneity of contem-
porary networks should be embraced.

More concretely, functions such as naming, addressing, rout-
ing and transport must be supported end-to-end across rad-
ically heterogeneous networks through the addition of suit-
able explicit interaction at boundaries. By making these
regime transitions explicit, we believe that (i) the network
model will more accurately reflect the network’s reality, and
(ii) the network model will be more extensible, allowing new



services to more easily be incorporated at all architectural
layers.

4.1 End-to-End Naming and Addressing
In our view, the twin functions of naming and addressing
should be implemented in accordance with the end-to-end
argument. Paradoxically, the current Internet imposes sin-
gle mechanisms for addressing (IPv4, by design) and naming
(DNS, by an accident of evolution) from the middle of the
network. This leads to a requirement for globally-bound
names and addresses. As we have seen, the model is already
insufficient to capture the architecture of the current Inter-
net (NATs, IPv4/v6 gateways, dynamic DNS servers, etc.),
and does not address the connection of other, radically dif-
ferent networks (sensor nets, planetary-scale overlays, etc.).

Rather than attempting put the genie back in the bottle
by imposing a single global IPv6 addressing scheme every-
where (already unrealistic in the face of simple devices such
as sensors), we propose here a more heterogeneous naming
scheme.

In this scheme there are no global names or addresses. In-
stead, each network end system exists in an explicit context1

in which all names and addresses usable by the end system
must be bound. This allows flexibility in end systems by
removing the requirement for homogeneity imposed by the
‘middle’ of the IP network, and moving naming and ad-
dressing policy decisions towards the end systems. Passing
a name or address from one such context to another entails
rebinding the referent of the name in the destination context.
This operation is carried out by an interstitial function, de-
scribed below, and is the key challenge in heterogeneous
networking.

This model has two compelling features. First, it neatly
captures the reality of IP networking today, and in particular
the use of NATs, proxies, and similar. Second, it extends to
future networking technologies while still encompassing the
current Internet, and without sacrificing the factors which
have made it successful as a technology.

For example, a large cluster of very small networked sensors
(such as Berkeley motes [16]) can send data to an Internet
host even though they cannot implement an IP stack (due
to computational, memory, and power limitations, and in-
termittent connectivity) by binding an address in their own
local network context which corresponds to a gateway to
the host. Conversely, every sensor can be addressed from
an IPv6 network by projecting the sensor network address
space onto a subset of the IPv6 address space.

The model is clearly not limited to this two-context case.
Two sensor clouds (or two mobile phone networks) can use
the Internet for transit by appropriate binding of names in
contexts. Similarly, we can accomodate the present-day ex-
ample of two IP networks routing data between them over a
third network technology: the address bindings and transla-
tions in this case are realised in the NAT facilities at network
boundaries.

1IPv4 hosts today are observed to exist in a ‘context of
no context’: the context certainly exists, but is not made
explicit.

This implies a significant change in emphasis: rather than
viewing non-IP (or non-IPv4, or non-globally-routable-IP)
networks as exceptions peripheral to a central IP network,
we advocate recognizing them as peer networks and address-
ing the end-to-end problems in communicating between such
heterogeneous peers, of which the current Internet is but
one.

The central problems in this scheme are communicating and
resolving names and addresses across network boundaries.
The goal of our architecture is to provide a set of composi-
tional building blocks that may be used to allow the com-
position of heterogeneous networks in order to provide an
end-to-end service. The two abstractions we propose are
the context and the interstitial function (IF).

4.2 Contexts
Contexts serve two purposes: first, they describe communi-
cation mechanisms embodied by different networks, within
which an endpoint might bind a particular communication
session; second, they serve as descriptors allowing end-to-
end services to be composed via the application of network
closures.

Within the Plutarch system, communication takes place be-
tween endpoints within contexts. Following Saltzer’s notion
of ‘context’ [22] or the ANSA notion of ‘naming context’ [28],
a context is abstractly a set of bindings with reference to
which names may be resolved. In Plutarch, a context de-
scribes a region of the network that is homogeneous in some
regard. All names, be they DNS names, IP addresses, Eth-
ernet MAC addresses, users, network links, etc, are resolved
within some context.

For instance, a context describing a local LAN environ-
ment may specify that the available link-layer protocol is
Ethernet, and that the network supports link speeds up to
100 Mb/s. Alternatively, a context might describe the lo-
cal administrative space corresponding roughly to the Au-
tonomous System (AS) within which a machine with a given
IP address resides.

An endpoint is likely to exist within multiple contexts si-
multaneously. An obvious example of this is a machine sup-
porting both a 100 Mb/s Ethernet interface and an ATM
interface: such a machine exists in two distinct contexts
each representing the properties of communication across
the different interfaces.

Context membership may be dynamic, and such dynamic
contexts should provide suitable mechanisms for members
joining and leaving. A context may border other contexts,
and multiple nested sets of contexts may exist (i.e. there is
no notion of a global and unique ‘root context’).

An example of nested contexts might be a machine with just
a single 100 Mb/s interface but supporting an IP protocol
stack. It exists simultaneously within the local Ethernet
segment, but also the local IP LAN and potentially the wider
Internet. The context representing the local Ethernet can be
viewed as a specialization of the enclosing IP LAN context,
itself a specialization of the enclosing Internet context.



Note that by definition there is no notion of contexts that
overlap: two contexts are either disjoint, identical, or one
wholly contains the other. The border between two contexts
(whether their relationship is one of adjacency or contain-
ment) is defined by the presence of an interstitial function.

4.3 Interstitial Functions
In order to accommodate the differences between contexts,
while still providing an end-to-end service, data may have
to be manipulated at context borders. To achieve this goal,
we introduce the Interstitial Function (IF), whose purpose
is to allow data to pass between two adjoining contexts.
Contemporary examples of IFs include NAT boxes, signal-
ing gateways, and BGP routers. However, we also envisage
situations where IFs may explicitly be used to bridge dissim-
ilar transport networks (e.g. IPv4 onto ATM) or to provide
high-level service modification, such as transcoding video
streams or inserting forward error correction on unreliable
links. In this sense many application-level gateways can be
considered as IFs situated between application-specific over-
lay contexts.

IFs logically bridge two contexts, and so are composed of
two interfaces representing the two contexts, coupled with
some internal mechanism for translating data arriving at
one context into the other context. IFs can be used to form
chains of contexts connecting endpoints; such a chain can
itself be referred to as a context.

This way of abstracting a context chain as a single con-
text is important in situations where endpoints do not wish
to know the details of all the contexts in the chain, since
they can make no decisions based on such knowledge. For
such endpoints, the properties of the context representing
the chain might be restricted to the properties of the end-
point’s own context (which might themselves be hidden from
a suitably disinterested endpoint) plus the fact that the end-
point’s communication partners can be reached. More inter-
ested endpoints might be made aware of multiple possible
context chains to their communication partners, and make
their own choice as to which context chain to use. This al-
lows for application specific optimization where appropriate.

We expect IFs in general to require a certain amount of
state, whether soft, requiring regular refresh, or hard, re-
quiring replication or some other form of backup. State may
be acquired epidemically or as a side-effect of some user ac-
tion. Note that even though some state may be considered
to apply per-flow (e.g. an entry in a contemporary NAT
forwarding table), this does not mean that it must be estab-
lished per flow, or that any per-flow signaling is required.
This issue is specific to a particular IF and thus orthogonal
to Plutarch as an architecture.

5. EXAMPLES
In this section, we discuss concrete examples of how a context-
based networking architecture works or would work in prac-
tice. Some of these examples are scenarios which are out-
side the scope of the Internet protocols, and consequently
either currently infeasible, or handled by ad-hoc application-
specific methods. Others are current networking practices
which fit into our model unmodified. We start with the
existing Internet itself.

5.1 The IPv4 Internet
In considering the pragmatic issues of deploying a new Inter-
net architecture, our proposed approach has two strengths:
first, the existing Internet may remain completely unchanged,
and second, contexts may be deployed incrementally.

The contemporary, globally routeable Internet exists as a
context in itself. Within this context, mechanisms remain
unchanged and the network may continue to evolve as it
always has: we do not advocate the deliberate replacement
of the Internet, but the peaceful coexistence of the Internet
as one context among many.

We already see examples of alternative contexts alongside
the Internet, for instance NAT-connected LANs. In this case
the interstitial function is performed by NAT boxes, and is
simplified by the use of IP on both sides and the interstitial
address mapping being (at present) relatively static.

With the context-supporting services deployed within the
existing Internet, other contexts may be connected at its
borders (sensor networks, NAT-connected LANs, etc.), above
it as overlays, alongside it (emerging network protocols, of
which IPv6 is the strongest candidate), or even beneath it
(private link layer networks). These other networks may
innovate and evolve relatively independently, using IFs to
interact with one another where necessary.

Note also that an initial deployment of small numbers of
contexts will not require a large degree of support service
layer within the Internet. Our current efforts are to pro-
vide a peer-to-peer overlay allowing border nodes hosting
IFs to communicate with one another permitting adjoining
contexts to interact. If successful we imagine that the load
on this peer-to-peer network may require supporting by a
more structured overlay.

5.2 Transiting Multiple Contexts

Sensor

Network

GPRS

Mobile

Network

Ipv4

Internet

Interstitial Function

Chained Context

Figure 1: Connecting Across Contexts

Figure 1 shows a situation which might arise in today’s net-
work. A wayward graduate student, bound for a network-
ing conference in Germany, desires to query the state of his
research sensor network which is attached to the Internet
through a host in Vancouver. His connectivity in Europe is
through a GPRS phone, attached to his laptop. As the IP
service provided by his GPRS provider is mapped through
an opaque gateway, and the network sensors, in an effort to



reduce power, do not even implement an IP stack, neither
end of this connection is directly addressable from points
within the Internet.

An end-to-end connection between the laptop and sensor
network can be set up using our proposed architecture as
follows:

Stage 1: Name resolution. As there are no global names,
the first stage in connecting the hosts is to query for the
desired context (or host, or service). Such queries take the
form of a collection of name=value pairs and our present
approach to a naming service is to employ epidemic-style
gossip [3] advertisements and queries across contexts. The
route query describes the target name, and the properties
of the communication channel to be provided. For instance:

route(name=myExperimentalSensorNetwork,
props=(protocol=QueryProtocolv1.2,

transit(connection=reliableByteStream)))

Note that the target name need not have any meaning out-
side of the target context: it is simply an identifier used
for searching. The transit parameters describe properties
of any midpoint contexts involved in the link. These may
be taken as hints to constrain the distributed search, and
validated by the querier on considering the result set. Note
also that in this simple example, we are connecting a set
of specific end-to-end hosts. The query model is intended
to support other approaches to location, such as Intentional
Naming [1].

Queries percolate through the lookup fabric and result in
a set of candidate replies being returned to the requesting
host. Replies are in the form of chained-context descriptors.
These list a vector of context descriptions and the associated
IFs that lie between them.

In our example, the service and protocol being requested are
very specific. Only two replies are received on the student’s
laptop, describing a context chain crossing the Internet, but
requiring interstitial functions as shown in Figure 1. The
variation in the set of replies indicate that the local GPRS
context provides both plain IP, and a modified IP, incorpo-
rating forward error correction to help survive packet loss.

Stage 2: Chained context instantiation. Logic in the
host selects one of these context chains to form the con-
nection. The appropriate query result is turned into an in-
stantiation request and forwarded to the appropriate border
node in the GPRS context where an IF is configured. The
request is then forwarded along to the border of the sen-
sor network, where a second IF is configured. As joining
some contexts (configuring suitable IFs) may require some
form of authentication, challenges may be issued back along
the partially open context chain. Alternatively, this process
may be short circuited by embedding authentication in the
initial request message.

Once the chained context has been instantiated, it is added
to the laptop’s list of known contexts. A set of bindings
is installed between the new context name and the related

communications mechanisms on the laptop. In addition, the
context is cached with the name service to facilitate future
connections.

Stage 3: Communications. Once the context has been
bound to the local host, applications may interact with it
through the associated mechanisms. In many cases these
bindings are likely to involve patching a new context be-
low the socket layer, but other approaches are also worth
considering.

5.3 Other Examples
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Network

NATed

Ipv4 LAN

Ipv4

Network

Resilient

Overlay
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Context
Ethernet

LAN

Ethernet

LAN

Ipv6

Network

Interstitial Function

Chained Context

Figure 2: A Variety of Contexts

Figure 2 shows a set of contexts from which additional ex-
amples may be drawn. The figure shows contexts with a
variety of relationships to one another, and two examples of
chained contexts.

The IPv4 and IPv6 networks are shown alongside one an-
other, as they they provide parallel but incompatible net-
work service. Note that this diagram is not meant to imply
that participation in these two contexts is mutually exclu-
sive. On the contrary, there may be a great deal of overlap
in the memberships. The separate contexts simply show the
boundaries of homogeneous protocols.

The vertical set of contexts associated with the IPv4 context
is to show the relationship between context membership.
The resilient overlay context has been constructed above
the IPv4 context. It provides an additional service, but is
constructed using IPv4 as an underlying communications
mechanism.



The chained context between the sensor network and the
NATed LAN is very similar to the example presented above.
In this case, there is the addition of the IPv6 context in the
chain, resulting in an additional interstitial function.

In the second chained context, two Ethernet LANs are con-
nected across an ATM network. Here the ATM network
contains a set of nodes also participating in the IPv4 net-
work2. In this case, the context chain is meant to indicate
that a link-layer bridge has been implemented across the two
interstitial functions [17].

6. SOME STRAWMEN
To add more solid fuel to the discussion, this section briefly
describes strawman interfaces to three components of this
system: the context, the IF and the Plutarch management
service.

Context Interface
inspect() → value

list() → [name]*

insert(name, value)

lookup(name) → value

remove(name)

The context interface is to be used at end systems to inter-
act with particular instances of contexts. A contemporary
analogy might be the Dynamic DNS API [29].

inspect() returns information pertinent to communi-
cation bound within this context;

list() returns the list of names in this context;

insert() adds a value to this context keyed by a name,
replacing any value that already exists under name in
this context; values may themselves be lists, but the
semantics of merging multiple values under a given
name is context dependent and to be handled by some
entity subject to suitable access permissions;

lookup() translates a name to a value within this con-
text;

remove() removes the entry keyed by name from this
context;

Note that the encoding used may be context specific; the
endsystem inspecting a particular context must be ready
and able to deal with any and all responses. For example,
in a sensor network with millions of nodes, the return value
of list() might not be a straightforward textual list of names.

Interstitial Function Interface
inspect() → (ctxt1, ctxt2, value)

configure(value, caps)

The interstitial function interface is to be used to allow
endsystems to interact with IFs. Most existing IFs do not

2Although this is by no means a constraint—additional
nodes could be involved. While contexts cannot overlap,
memberships may, in a role-based manner.

have programmatic interfaces, but an approximation might
be provided by the various firewall and NAT coordination
protocols [24, 21].

inspect() discovers the two contexts that a particular
IF connects, along with any other relevant informa-
tion;

configure() configures an existing interstitial function
in some way appropriate to the particular IF subject
to the capabilities presented.

Plutarch Management Service Interface
register(props) → ctxt

deregister(ctxt)

link(ctxt1, ctxt2) → [ifun]*

lookup(props, ttl, caps) → [ctxt]*

route(name, props,

ttl, caps) → [ctxt-chain]*

The Plutarch management service interface3 gives access
to a distributed service formed of multiple cooperating in-
stances that may be controlled by distinct administrations.
In keeping with the spirit of Plutarch, there may be many
implementations and instances of Plutarchies interacting via
suitable interstitial functions; we believe that implementa-
tions will have to support functionality similar to that shown
here. Management of capabilities to support a particular
Plutarchy is not specified within the architecture.

register() register a context with the specified commu-
nication properties;

deregister() deregisters a context from this Plutarchy;

link() returns a list of potentially unconfigured IFs ex-
isting between two contexts;

lookup() recovers the contexts supporting particular
properties, subject to a hop limit on the propagation
of the query and capabilities presented in the request;

route() discover a context chain or chains limited in
length by ttl, containing contexts accessible according
to the capabilities presented, and supporting particu-
lar properties terminating with a context in which the
given name is known.

link(), lookup(), and route() should all support delegation
both between components of this Plutarchy and between
instances of Plutarchies. As such, their implementations
should probably return results asynchronously, or at least
support timeouts of some form. Names may be registered
in multiple contexts and are opaque in contexts in which
they are not registered, so endsystems must implement some
application or platform specific policy to select appropriately
from the results of a lookup() or route().

As already noted, a context chain is a sequence of contexts
interleaved with IFs. Endsystems may wish to know and
specify the details of a context chain, in which case should

3Referred to hereafter as the Plutarchy for brevity.



an element of the chain fail, the endsystem must be notified
that it should deal with this, perhaps by invoking another
route() operation. However, as part of the properties pass to
the route() operation, an endsystem may specify the detail
it requires in responses and whether repair of a broken chain
should be automatic. In this way, the Plutarchy can ensure
that route repair occurs in much the same way as occurs
with current Internet routing.

Since this is only a strawman, performance figures are nei-
ther available nor relevant. However, some brief comments
on scalability are perhaps worth making. We believe that
the number of types of context active at a given time is small,
on the order of 10, so the number of different IFs that must
be designed and implemented is manageable. Similarly, al-
though a context-chain could be constructed that traversed
many contexts, most context-chains will be only a few con-
texts in length. Indeed, many applications will not care
about the detail of their context-chains: effectively divid-
ing them into three contexts: the first, the last, and the
rest. The scalability of name lookup is another matter, po-
tentially requiring some research. We expect that standard
mechanisms such as caching and amortization will have a
part to play here.

7. RELATEDWORK
We are by no means the only researchers advocating the ne-
cessity of a new architecture: indeed, the zeitgeist appears
to firmly embrace the notion, as witnessed by this very work-
shop. Much of this work has been inspired by the perceived
failure of the IETF IPng working group.

One of the best known efforts is the ambitious NewArch
project being carried out between ISI, MIT and ICSI [4].
This hopes to present a detailed blueprint for next genera-
tion networking, addressing topics such as mobility, quality
of service and interplanetary communication while ideally
retaining the best of the original architectural principles.
One concrete proposal from this team is the notion of a role-
based architecture in which layering is eschewed in order to
gain maximum flexibility [5].

We argue that the uniformity of this approach is elegant
but unnecessary, and the suggestion that IPv4 be retained
as a base layer does not readily support sensor networks
or scalable multicast, for example. Nonetheless the basic
scheme of explicitly communicating networking semantics
could be usefully applied to our interstitial functions.

Another recent next-generation architecture proposal is
Triad [10, 15]. Much like Plutarch, Triad replaces tradi-
tional name lookup with something more akin to searching.
However their focus is on content-based naming and rout-
ing rather than semi-structured data queries; while novel, it
is not clear that content is king in all contexts. Their de-
ployment model supposes the existing global IPv4 network
augmented with ‘WRAP’ gateways to allow communication
between addressing realms. They thus retain the central-
ity of IPv4 in their architecture, something we consciously
avoid.

The general notion of providing translation between IPv4
realms to avoid perceived problems with NAT boxes was

proposed independently as IP Next Layer (IPNL) [14]. IPNL
separates the communication path into three: an originating
private realm, a global middle realm and a second terminat-
ing private realm. These realms are similar to our notion
of contexts, but are more limited in type and function and
retain the centrality of IPv4.

A technique similar to although simpler than IPNL is pro-
posed in 4+4 [27]. Once again, address translation occurs
between private and more widely known realms, although in
this case the authors envisage more than one middle realm.
The 4+4 scheme is simple, elegant and incrementally de-
ployable, but it limits itself to network-layer issues and does
not propose new naming or transport-layer functionality.

Another recent scheme, AVES [19], specifically targets the
problem of non-IP hosts, including hosts within an address-
ing realm which reuses IP addresses. Their key notion is to
virtualize these non-IP hosts by using waypoints: globally
addressable middle boxes [7] which act as relays for IP traf-
fic. Once more the focus is on IP connectivity and not on a
new architecture per se.

In addition to these projects, several efforts are underway
that address communication across heterogeneous networks:
Delay-Tolerant Networking [12] aims to support networks
whose interstices vary not only in protocol but in time, for
instance inter-planetary communications. This is done using
an overlay network architecture and the use of globally in-
teroperable names. The SelNet project [26] aims to address
network heterogeneity, initially in ad hoc wireless networks.
Their approach is to implement a common underlay network
which uses a mechanism similar to label switching to route
packets across networks.

Our proposal of multiple contexts which explicitly interwork
is perhaps most reminiscent of the idea of the Metanet [30].
In this architecture, the network is divided into regions, each
of which models a particular real-world set of requirements
and limitations; a set of waypoints exist at boundaries be-
tween regions and perform translation as needed. Our work
is based on the same general notion, but attempts to explore
further how such a scheme could be made to work.

8. CONCLUSION AND FUTURE
DIRECTIONS

We have presented Plutarch, an inter-networking architec-
ture that makes heterogeneity explicit so that it may be
exploited. We believe that this better represents the sta-
tus quo in the Internet and more importantly, is extensible
enough to capture future network evolution. Note that, as
with most architectures, this paper is really just a starting
point: considerable future work is required in order to pro-
duce an complete design and implementation reflecting this
architecture.

However, there is an existing body of work on which we can
draw. For example, the Nimrod routing architecture [8] with
its ‘pull’ mode of operation seems well suited to our asyn-
chronous scheme for learning of context chains, although
clearly modification would be required to handle query-based
route finding. In in terms of communication models, the
Internet Indirection Infrastructure [25] provides good evi-



dence for the power of making packet forwarding a some-
times application-level task. We also hope to learn from ex-
isting work on active networks and protocol composition [13,
18, 20], although we do not espouse a ‘pure’ active network-
ing approach.

Notwithstanding this body of work, substantial research is
introduced by this architecture. Issues untouched in this pa-
per include scalable mechanisms for inter-context routing,
IF discovery and failure notification; policy issues in choice
of context and context-chain; and mechanisms to expose
these things to the programmer, either through an existing
network API such as the sockets API, or through some ex-
tended or new API. Transport protocols that can optimize
for the context or contexts over which they operate is also
worth investigation: related work here includes techniques
such as TCP splicing, where a TCP connection is severed
at a proxy between, for example, a GPRS network and the
wired Internet, for performance reasons (essentially to over-
come the performance mismatch between the two networks).

Mechanisms to alleviate some of the current strain on man-
agement of the Internet and Internet address allocation might
also become feasible through the application of contexts
and explicit boundaries. For example, a recent4 substantial
thread on the North American Network Operators Group5

mailing list began due to an ISP having been allocated an
IP address range from a range previously marked as unallo-
cated; other operators, not realising that this address range
had become legitimately active, were refusing to forward
packets connected with that address range.

This is a clear example of the current structures for alloca-
tion and management of IP address blocks are inadequate:
the only recourse in the end was for the operators of the
affected network to broadcast the problem on the mailing
list and hope that others would examine their current filters
carefully, and also to attempt manually to track down each
and every network that was still filtering this address space,
contact them, and ask them to update their filters. We be-
lieve that avoiding the need for a single global management
entity (or hierarchy of entities) may allow techniques from
peer-to-peer networking, and other highly scalable systems
to be usefully applied.
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