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Introduction

• 1 operation per second to 100 TOPS in less than 100 years
• What challenges do computer architects face?
• An advanced exploration of key areas in computer architecture:
• State-of-the-art Processor Design (Simon Moore)
• Memory system design (Tim Jones)
• Reliability (Tim Jones)
• Specification and verification (Jonathan Woodruff)
• 2 x Hardware security  (Jonathan Woodruff + Simon Moore)
• HW accelerators and HW accelerators for ML (Tim Jones)



From sensors and smartphones to servers
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(e.g. Arm Cortex-M0)

1 square represents 
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Module convenors

Simon Moore Timothy Jones Jonathan Woodruff



Seminar format

• Student presentations x 3 (15 minutes each + 5 mins questions)
• Broader discussion of reading group topics (~30 minutes)
• Scene setting lecture for following week’s topic (~20 minutes)



Assessment

• See https://www.cl.cam.ac.uk/teaching/2223/R265/
• Nothing for first week
• For week 2-8:
• Each week, you will submit either an essay or presentation 

(submit via the R265 Moodle site)
• Essays and presentations are marked and feedback will be provided, you will 

see an indication of the range of the mark (e.g. pass, merit, distinction).
• The lowest mark is dropped and the remainder are scaled to give a final mark 

out of 100

https://www.cl.cam.ac.uk/teaching/2223/R265/


Weekly essays

• Around 1500 words (1450-1650)
• Write an essay on two of the reading group papers
• Introduce the challenges the papers tackle, describe and clarify the important 

concepts, identify the key contributions the papers make. 
• Critique the work, e.g. discuss cost, trade-offs and limitations, identify the 

strengths, weaknesses and any flaws in the work. Perhaps discuss how the ideas 
have been evaluated and questions that remain. Compare to and discuss relevant 
related work. 
• What open questions and research questions remain? Do you have sound ideas 

for future work? Discuss relevant trends and future challenges.
• “Essays will be assessed for technical content, clarity, accurate critique, linkage of 

related work and sound proposals for future development.”
• Note 3-4 interesting ideas or questions to help stimulate our group discussion
• Do try to read around the subject, it is an opportunity to learn/explore. 



Presentations

• 15 minutes + 5 minutes for questions
• Your presentations will be based on one of the papers from the 

reading group material or other work related to the week’s theme
• Your chosen paper(s) must be agreed with the module convenor in 

advance
• You do not need to submit an essay when you will be presenting. 

Slides should be submitted via Moodle
• No more than 12 slides please
• Keep your slides simple (and text to a minimum)



Trends in Computer Architecture 

Early computers Gains from bit-level parallelism
Pipelining and superscalar issue + Instruction-level parallelism 

Multicore / GPUs + Thread-level parallelism / data-level 
parallelism

Greater integration (large SoCs), 
heterogeneity and specialisation + Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The 
memory hierarchy typically consumes a large fraction of the transistor 
budget.

Time



Historical performance gains

Source: Jeff Preshing

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/


Historical performance gains

• From 1985-2002 microprocessor performance improved by ~800 times
• How was this possible?

• The “iron law” of processor performance:

Time = instructions  x  Clocks Per Instruction (CPI)  x clock period
executed



Technology scaling: faster transistors 

• From 1985-2002 we saw ~7 new 
process generations

• Scaling provides smaller and faster 
transistors. Performance improves 
~1.4x per generation so for 7 
generations we have: ~10x faster 
logic gates
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Source: Stanford CPU DB
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A shorter critical path

• We can also try to reduce the number 
of gates on our critical path:

• This can be done by inserting 
additional registers to break complex 
logic into different “pipeline” stages

• Advances were also made that 
improved circuit-level design 
techniques

• The length of our critical paths 
reduced by ~10x (1985-2002)

Source: Stanford CPU DB
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Historical performance gains

Clock period
• Clock frequency improved quickly 

between 1985 and 2002:
• ~10x from faster transistors, and
• ~10x from pipelining and circuit-

level advances. 
• So overall, ~100X of the total 800X 

gains came from reduced clock 
periods

Source: Stanford CPU DB
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Instruction count

• Increased datapath width (e.g. 16-bit to 32-bit to 64-bit)
• Larger register files (fewer load/store instructions)
• More complex instructions?
• SIMD instructions



Clocks Per Instruction (CPI)

• Early machines were limited by transistor count. As a result they often 
required multiple clock cycles to execute each instruction (CPI >> 1)

• As transistor budgets improved we could aim to get closer to a CPI of 1
• This is easy if we don’t care at all about clock frequency
• Designing a high-frequency design with a good CPI is much harder. We 

need to keep our high-performance processor busy and avoid it stalling, 
which would increase our CPI. This requires many different techniques 
and costs transistors (area) and power.



Clocks Per Instruction (CPI)

• Eventually industry was also able to fetch and execute multiple 
instructions per clock cycle. This reduced CPI to below 1

• When we fetch and execute multiple instructions together we often refer 
to Instructions Per Cycle (IPC), which is 1/CPI

• For instructions to be executed at the same time they must be 
independent. 

• Again, growing transistor budgets were exploited to help find and exploit 
this Instruction-Level Parallelism (ILP)



IPC and instruction count

• Of the 800x improvement in 
performance (1985-2002), ~100x is 
from clock frequency improvements.

• The remaining gains (~8x) were from 
a reduction in instruction count, 
better compiler optimisations and 
improvements in IPC.

The graph to the right shows these improvements. It plots 
performance (SpecInt2000 benchmark performance per MHz 

for Intel processors against time)
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Moore’s Law

• Moore’s Law predicts that the 
number of transistors we can 
integrate onto a chip, for the same 
cost, doubles every 2 years

Gordon Moore and Robert Noyce at Intel in 1970
Source: IntelFreePress



Moore’s Law

Source: Wgsimon, Wikipedia. License CC BY-SA 3.0

• Processor transistor budgets grew 
quickly as microarchitectures 
became more complex

• 1985 – Intel 386
275K transistors, die size =43mm2

• 2002 – Intel Pentium 4  
42M transistors, die size = 
217mm2

https://en.wikipedia.org/wiki/Transistor_count
https://creativecommons.org/licenses/by-sa/3.0/


Limits to single core performance

• Limits to pipelining
• Cost of interruptions grow, e.g. impact of cache misses and mispredicted

branches
• Ultimately, some components are difficult or expensive to pipeline
• There are also practical limits to distributing very high-frequency clocks, 

registers represent a finite delay and we may struggle to balance logic between 
pipeline stages

• Limits of Instruction-Level Parallelism (ILP)
• Large amounts of ILP are very difficult to discover and exploit efficiently
• Our returns on investment quickly diminish, i.e. we must use more power and 

more transistors to expose and exploit ever smaller amounts of ILP.



Optimal pipeline depth
T = 5ns, penalty of interruption 
is (S-1)

Simple pipeline design
C= 300ps (clock/register overheads)
Pipeline interruption every 6 
instructions

Aggressive pipeline design
C = 100ps
Pipeline interruption every 25 
instructions

Source: Robert Mullins, University of Cambridge



Limits to single core performance

• Power consumption
• Historical performance gains 

have been impressive but power 
consumption also grew very 
quickly during the 1980s and 
1990s

• This happened even with 
improvements in  fabrication 
technology and reductions in 
supply voltage 

• Power quickly became, and 
remains, a first order design 
constraint for all significant 
markets

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Dennard and Post-Dennard scaling

See “A Landscape of the New Dark Silicon Design Regime”, 
Michael Taylor, IEEE Micro, Sept/Oct. 2013

Property Dennard Post-Dennard

∆ Quantity S^2 S^2

∆ Frequency S S

∆ Capacitance 1/S 1/S

∆ Power 1 S^2

∆ Util = 1/Power 1 1/S^2

For a fixed power budget, the total chip 
utilisation has to fall.
Leaving us with so-called “dark silicon”



Limits to single core performance

• On-chip wiring
• Wire delays scale relatively poorly compared to logic delays
• This limits the amount of state reachable in one clock cycle
• Unfortunately, this limits the performance of large complex processors



Slowing single-core performance gains

To summarise, sustaining single core 
performance gains became difficult due 
to:
• The limits of pipelining
• The limits of Instruction-Level 

Parallelism (ILP)
• Power consumption
• The performance of on-chip wires
As a result performance gains slowed 
from 52% to 21% per year for the 
highest performance processors

Source: Jeff Preshing

Year

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/


Multicore processors

• From ~2005 multicore designs 
became mainstream

• The number of cores on a single 
chip increased over time

• Clock frequencies increased more 
slowly 

• Individual cores were designed to 
be as power efficient as possible

e.g. 4 x Arm Cortex-A72 processors, 
each with their own L1 caches and a 
shared L2 cache 



Multi-core processors

Exploiting multiple cores comes with its own set of challenges and 
limitations:
• Power consumption may still limit performance
• We need to write scalable and correct parallel programs to exploit them 
• Amdahl’s law
• On-chip and off-chip communication will limit performance gains
• Off-chip bandwidth is limited and may throttle our many cores
• Cores also need to communicate to maintain a coherent view of memory



Specialisation

• Today we often need to look beyond general-purpose programmable 
processors to meet our design goals

• We trade flexibility for efficiency
• We remove the ability to run all programs and design for a narrow 

workload, perhaps even a single algorithm
• These “accelerators” can be 10-1000x better than a general-purpose 

solution in terms of power and performance



Specialisation

What does specialisation allow us to do? 
• Remove infrequently used parts of the processor
• Tune instruction set for common operations or replace with hardwired control 
• Exploit forms of parallelism abundant in the application(s) – we often see a 

specialised processing element and local memory reproduced many times.
• Instantiate specialised memories and tune their widths and sizes
• Provide specialised interconnect between components
• Optimise data-use patterns



Specialisation

Data assumes a 45nm process @0.9V, source: “Computing’s energy problem (and 
what we can do about it)”, Mark Horowitz, ISSCC 2014



Specialisation

Neural Processor Unit (NPU)Graphics Processing Unit 
(GPU)



Limits to specialisation

• There are new costs associated with designing each new accelerator
• The chip, or “ASIC”, produced may only be competitive in a smaller target 

market, reducing profitability
• Specialisation reduces flexibility
• The logic invested in specialised accelerators is no longer general-purpose 
• Algorithm changes may render specialised hardware obsolete

• Once we’ve specialised, further gains may be difficult to achieve
• Specialisation isn’t immune to the concept of diminishing returns



Today’s System-on-Chip designs (SoCs)

• A modern mobile phone SoC 
(2019) may contain more than 7 
billion transistors

• It will integrate:
• Multiple processor cores
• a GPU
• a large number of specialised 

accelerators
• Large amount of on-chip memory
• High bandwidth interfaces to off-

chip memory

GPU

mem interface

mem interface

mem interface

mem interface

Neural
Processor

Unit
(NPU)4 “big”

cores

4 “small” 
cores 

L2/L3 
cache 

memory

Other 
accelerators 

A high-level block diagram of a 
mobile phone SoC



Apple A12 SoC

• 2019
• 7nm TSMC process
• 83 mm^2
• 40+ accelerators
• 2 big Arm cores, 

4 little Arm cores, 
GPU and NPU



State-of-the-art fabs: 7nm and beyond

• Oct 2019: TSMC ramping 
7nm+ process towards 
commercial availability

• Uses Extreme Ultraviolet 
(EUV) lithography for 
critical layers 

• Will be used for AMD Zen 
3, Kirin 990 5G mobile 
processor:
• 10+ billion transistors
• 8 Arm cores, 5G 

support, NPU, …. IBM, EUV lithography for 5nm  
(NanoWire/NanoSheet – “gate-all-around” MOSFETs)



The future – the end of Moore’s Law?

• The end of Moore’s Law has been predicted many times
• Scaling has perhaps slowed in recent years but transistor density continues to 

improve
• Eventually 2D dimensional scaling will have to slow 
• We are ultimately limited by the number of atoms!

• Where next?
• Interesting new packaging options, e.g. chip stacking and chiplets
• Going 3D - Future designs may take advantage of multiple layers of transistors on a 

single chip (monolithic 3D). Note: the gains are linear rather than exponential 
• New types of memory (interesting compute in memory ideas, e.g. for ML)
• New materials and devices



Intel: Ponte Vecchio HPC GPU
• 47 functional tiles or chiplets
• They exploit TSMC (5nm and 

7nm) and Intel (7nm) 
processes. 5 different process 
nodes in total

• Stacking exploits Through Stack 
Vias (TSVs) and micro bumps

• Co-EMIB = silicon chips 
embedded in package substrate  
to interconnect dies

• HBM memory is again built 
using die stacking techniques to 
place many layers of DRAM on 
top of a memory controller die




